دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درباره ریاضی (نامعادله، مثلثات و )

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 27

 

نماد علمی:

نماد علمی مدلی جدید برای عدد نویسی است که از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار کوچک مانند محاسبة جرم سیارات و یا یک اتم از عنصر، استفاده می کنند.

نماد علمی اعداد مثبت را به صورت می نویسند که در آن K عددی است اعشاری بین یک و ده و n نیز عددی صحیح است.

مثال: اعداد زیر را به صورت نماد علمی بنویسد.

(الف (ب

نامعادله:

اگر یک نامساوی شامل متغیر باشد به آن نامعادله گفته می شود.

روش حل نامعادله:

حل نامعادله از بسیاری جهات شبیه حل معادله می باشد، ولیکن با این تفاوت که در حل نامعادله برای مجهول محدوده ای به عنوان پاسخ (جواب) بدست می آید و در معادله یک مقدار مشخص و معینی برای مجهول حاصل می گردد.

:مثال

قوانین و نکات مهم در مورد نامساوی

1-به طرفین یک نامساوی می توان عددی را اضافه و یا کم نمود.

 

2-می توان طرفین یک نامساوی را در عددی مثبت ضرب یا بر آن تقسیم کرد.

 

3-اگر طرفین یک نامساوی را در یک عدد منفی ضرب (تقسیم) کنیم جهت نامساوی عوض می شود.

 

4-اگر طرفین یک نامساوی هم علامت باشند (مثبت یا منفی باشند) و طرفین را عکس کنیم. جهت نامساوی عوض می شود.

 

حل نامعادلات کسری:

برای حل نامعادلات کسری مانند معادلات گویا عمل می کنیم. یعنی دو طرف نامعادله را در کوچکترین مضرب مشترک مخرجها ضرب می نمائیم تا نامعادله از حالت کسری به خطی درآید.

 

نامعادلات توأم: این گونه نامعادلات یا بصورت دو نامعادله مجزا می شوند و یا اینکه ما باید آنها را به صورت دو نامعادله مجزا درآوریم. و روش حل آن بدین صورت است که هرکدام از نامعادلات را حل نموده و در نهایت بعد از بدست آوردن پاسخ آنها، اشتراک جوابهای آن دو را به عنوان جواب یا پاسخ اصلی بیان می کنیم.

مثال: نامعادلات توأم زیر را حل نمائید.

 

 

 

 

 

مثلثات

درجه (D): اگر یک دایره را به 360 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک درجه گویند.

گراد (G): اگر یک دایره را به 400 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک گراد گویند.

رادیان (R): یک رادیان زاویه ای است که کمان مقابل به آن برابر شعاع دایره باشد. یعنی هر دایره رادیان است.

رابطة مقابل برقرار است

مثال 1:

100 گراد چند درجه و چند رادیان است؟

 

مثال 2:

مقدار زاویه ای را بر حسب رادیان بیابید که اگر به اندازه اش بر حسب درجه 15 واحد اضافه شود اندازة آن برحسب گراد بدست آید.

 

نسبتهای مثلثاتی:

برای بدست آوردن نسبتهای مثلثاتی، یک زاویه را با جهت مثبت محور xها درنظر می گیریم. و



خرید و دانلود تحقیق درباره ریاضی (نامعادله، مثلثات و    )


تحقیق درباره ریاضی سوال

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 2

 

مسئله ای از نسبتهای مثلثاتی - 12-14-2007, 10:05 PM

 

مسئله ای از نسبتهای مثلثاتی



خرید و دانلود تحقیق درباره ریاضی  سوال


تحقیق درباره ریاضی عمومی برق

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

1- الف. قضیه فشردگی را بیان کنید.

ب. در صورتی که به ازای هر برقرار باشد. مطلوب است

ج. در تابع که در آن x بدست بینهایت میل می کند را بیابید اگر

2- حد و زیر را محاسبه کنید.

الف. ب. ج.

3- اگر تابع زیر در x=1 پیوسته باشد، حاصل b2+a3 را بدست آورید.

 

4- مشتق توابع زیر را محاسبه کنید.

 

5- با استفاده از مشتقگیری لگاریتمی، مشتق تابع را محاسبه کنید.

6- اگر . آنگاه حاصل را بدست آورید.

7- معادله خط مماس و خط قائم بر منحنی را در نقطه ای به طول x=0 از منحنی محاسبه کنید.

8- مقدار را محاسبه کنید.

9- به کمک دیفرانسیل مقدار تقریبی هر یک از اعداد زیر محاسبه کنید.

، 04/1 Lim

10- انتگرالهای زیر را محاسبه کنید.

 

 

11- الف. حاصل را محاسبه کنید.

ب. نشان دهید

12- مشت تایید بین دو منحنی را محاسبه کنید.

13- حاصل عبارت را محاسبه کنید.

1- از یک گروه 50 نفری دانشجویان، 25 درص ریاضی پیش و 28 نفر درس ریاضی عمومی دارند، چند نفر هم ریاضی پیش و هم ریاضی عمومی دارند.

2- معادله توانی را حل نمایید.

3- حاصل عبارت را ساده کنید.

4- عبارت زیر را ساده کنید.

.ب .الف

5- نامعادله را حل نمایید.

6- اگر 30/0 = 2 Log و 47/0 = 3Log و 84/0 = 7 Log مطلوب است.

و

7- معادله را حل نمایید.

8- دامنه توابع زیر را بیایید.

.ب .الف

9- یک به یک بودن تابع را بررسی کنید.

10- ضابطه تابع معکوس را بدست آورید.

1- حدود زیر را محاسبه کنید.

الف. ب. ج.

2- b,a را طوری تعیین کنید که تابع زیر در x=2 پیوستگی راست و حد چپ آن برابر 3 باشد.

 

3- با استفاده از تعریف مشتق بر مشتق تابع را محاسبه کنید.

4- مشتق توابع زیر را محاسبه کنید.

.ب .الف

5- معادله خط مماس و خط قائم بر منحنی را در نقطه ای به طول x=2 بنویسید.

6- دیفرانسیل تابع را در نقطه x=0 به ازای محاسبه کنید.

7- به کمک دیفرانسیل مقدار را تعریف کنید.

8- انتگرالهای زیر را محاسبه کنید.

(ب (الف

(د (ج

1- اگر مطلوب است برحسب c,b,a

2- الف: معادله دایره ای مرکز و شعاع دایره را مشخص کنید.



خرید و دانلود تحقیق درباره ریاضی عمومی برق


تحقیق درباره روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

روش ژاکوبی برای حل مسائل غیر خطی

روش ژاکوبی در واقع تعمیمی از روش سیمپلکس برای حل مسائل خطی می‌باشد یا به عبارت دیگر روش ژاکوبی در حالتی خاص همان روش سیمپلکس می‌باشد.

تئوری روش مشتق مقید(ژاکوبی)

فرض می‎شود که توابع g, f دو بار پیوستة مشتق پذیر باشند (از ردة C2). ایدة روش ژاکوبی یافتن گوی بسته ای است که در تمام نقاط آن مشتق های جزئی مرتبه اول موجود و شرط g(x)=0 برآورده گردد. همان طور که می دانیم نقاط بحرانی نقاطی اند که مشتقات جزئی تابع در آن‌ها صفر گردد.

برای شناسایی نقاط بحرانی از شرایط کافی به شرح زیر استفاده می کنیم:

شرایط کافی برای نقطة بحرانی جهت اکسترمم بودن آن است که ماتریس هسیان محاسبه شده در نقطه

هنگامی که می نیمم است مثبت باشد .

هنگامی که ماکزیمم است منفی باشد .

برای روشن کردن این مفهوم تابع f(x1 , x2) را در نظر می گیریم. هدف می نیمم کردن تابع با توجه به محدودیت g1(x1 , x2) = x2 - b=0 می‎باشد. (b ثابت است.) منحنی ایجاد شده توسط سه نقطة C , B , A مقادیری از f را نمایش می‎دهد که محدودیت اعمال شده همواره برآورده می گردد. روش ژاکوبی، گرادیان f(x1 , x2) را در هر نقطه ای از منحنی ABC تعریف می‌کند. هر نقطه ای که مشتق آن برابر صفر گردد نشان دهنده یک نقطه بحرانی برای این مسئله مقید می‎باشد که در شکل زیر نقطة B ، نقطه موردنظر می‎باشد.

با استفاده از ق تیلور برای نقاط در همسایگی قابل قبول x داریم:

 

 

هنگامی که خواهیم داشت:

 

 

و از آنجا که g(x)=0 در نتیجه بنابراین خواهیم داشت:

 

حال یک دستگاه با (n+1) مجهول و (m+1) معادله خواهیم داشت که مجهولاتمان درایه‌های می باشند با مشخص شدن پیدا می‎شود. و این بدان معناست که در واقع m معادله با n مجهول داریم. اگر m>n آن گاه حداقل (m-n) معادله زائد می باشند. پس از حذف آنها، سیستم به تعداد کارایی از معادلات مستقل مانند کاهش خواهد یافت. برای حالتی که m=n باشد جواب می‎باشد و این نشان دهنده آن است که X همسایگی قابل قبول ندارد و فضای حل تنها از یک نقطه تشکیل یافته است. در اینجا این حالت موردنظر نیست و ما به بررسی حالت m < n می‎پردازیم.

X = ( Y, Z) Y= (y1 , ….ym) & Z= (z1 ,z2 …, zn-m)

متغیرهای مستقل و وابستة بردار X می باشند . حال بردار گرادیان f و g را با توجه به بردارهای Z , Y بازنویسی می کنیم:

 

تعریف می کنیم: که ماتریس “ژاکوبین” و ماتریس “کنترل” نامیده می‎شود.

ماتریس J یک ماتریس نامنفرد می‎باشد چرا که بنا به تعریف m معادلة موجود مستقل می‌باشند و اجزای بردار Y می‎توانند به گونه ای از X انتخاب گردند که J معکوس پذیر گردد.

با استفاده از تعاریف بالا معادلات مطرح شده را مجدداً بازنویسی می کنیم:

(*)

 

این مجموعه از معادلات از تغییر در (که Z بردار مستقل ما می‎باشد) اثر می پذیرد.

جایگذاری مقدار به دست آمده در رابطة (*) عبارت زیر را به دست می‎دهد:

 

از این معادله، مشتق مقید با توجه به بردار مستقل Z به دست می‎آید:

 

که نمایش دهندة گرادیان محدود (مقید) بردار f وابسته به Z می‎باشد. بنابراین باید در نقاط بحرانی برابر صفر باشد.

شرایط کافی مشابه قسمت قبل می‎باشد. در این حالت با این وجود ماتریس هسیان مطابق با بردار مستقل Z خواهد بود.

 

i امین سطر ماتریس هسیان می‎باشد. توجه کنید که W تابعی از Y و Y تابعی از Z می‎باشد.

بنابراین گرفتن مشتق جزئی نسبت به Zi با استفاده از قاعدة زنجیری انجام می‎گیرد.

مثال: در این مثال می خواهیم چگونگی محاسبة در نقاط داده شده با استفاده از فرمول های گفته شده را نشان دهیم. مطلوب است مطالعة تغییرات در همسایگی قابل قبول .

 



خرید و دانلود تحقیق درباره روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی  کامپیوتر)


تحقیق درباره رشته ریاضی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

رشته ریاضی

هدف

ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» .

دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید:

«علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.»

دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.»

گرایش‌های مختلف این رشته و اهداف آنها عبارتند از:

ریاضی کاربردی:

هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.

ریاضی محض:

هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.

ریاضی دبیری:

هدف از شاخه دبیری تربیت دبیران وکارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیش‌دانشگاهی باشند.

ماهیت :

« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همه‌جا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»

فارغ‌التحصیلان این رشته می‌توانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش‌ خصوصی در اموری همانند طراحی سیستمها در امر بهینه‌سازی و بهره‌وری ، در بخش صنعت برای اموری همانند مدل‌سازیهای ریاضی و در آموزش و پرورش و ... ، مسوولیتهای متفاوتی را به عهده گیرند.

گرایش‌‌های مقطع لیسانس:

«رئیس اتحادیه بین‌المللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»

«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان می‌پردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده می‌شود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان می‌گردد»

«وقتی صحبت از ریاضی محض می‌شود نباید تصور کرد که تنها باید در گوشه‌ای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایده‌های ریاضی از ذهن پژوهشگران نمی‌روید بلکه ریاضیدانها غالبا الهام خود را از طبیعت می‌گیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.»

عموما ریاضیات کاربردی به شاخه‌ای از ریاضی گفته می‌شود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،‌فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخه‌ای گفته می‌شود که به نظریه‌پردازی ریاضی می‌پردازد اما باید توجه داشت که امروزه این دو گرایش آن‌چنان در هم ادغام شده‌اندکه مرزی را نمی‌توان بین آنها مشخص کرد.

زیا گاه یک تئوری کاملا محض وارد مرحله کاربردی شده و چون در عمل با مشکل روبرو می‌شود، بار دیگر به حوزه تئوری برمی‌گردد و در نهایت پس از رفع نقایص، دوباره وارد مرحله کاربردی می‌شود. یعنی یک تعامل و ارتباط دوجانبه‌ای بین ریاضی کاربردی و محض وجود دارد و هریک از این دو شاخه، از تجربیات شاخه دیگر به بهترین نحو استفاده می‌کند و به همین دلیل یک ریاضیدان موفق باید از هر دو شاخه اطلاع داشته باشد.»

معرفی دروس تخصصی

معرفی مختصری از درسهای تخصصی گرایش ریاضی کاربردی:

ریاضیات گسسته:

هدف از این درس، آشنایی با زمینه‌های مختلف ریاضیات گسسته و کاربردهای آن با تاکید بر اثبات و ارائه الگوریتمهای مناسب است. سرفصلهای این درس عبارتنداز : معادله تفاضلی و رابطه بازگشتی ، تابع مولد، اصل شمول و طرد،گراف و ماتریس، تطابق و دیگر کاربردهای گراف، جبربولو کاربردهای آن و آشنایی باطرحهای بلوکی، مربع لاتین، صفحه‌های تصویری، کدگذاری و رمزنگاری.

برنامه‌سازی پیشرفته:

در این درس، دانشجویان به مباحثی همچون برنامه‌سازی صحیح ،‌ مستند سازی برنامه‌ها ، برنامه‌سازی ساخت یافته، آشنایی با زبان دوم برنامه‌سازی و مقایسه آن با زبان اول، اشکال‌زدایی و آزمایش برنامه، حصول اطمینان از صحت برنامه‌ها ، الگوریتمهای غیر عددی شامل : پردازش رشته‌ها، روشهای جستجو و مرتب کردن ، آشنایی مقدماتی با کامپایلرها و دیگر برنامه‌های مترجم، اجرای طرحهای بزرگ و ... می‌پردازند.

آنالیز عددی:

هدف از این درس، ارائه الگوریتمهای عددی و بررسی خطاهای ایجاد شده از حل عددی مسائل است. در خصوص روشهای تکراری، بررسی همگرایی و نرخ همگرایی نیز مورد تاکید می‌باشند. در این درس سرفصلهای موجود عبارتند از : نمایش اعداد حقیقی، انواع مختلف خطاها، آنالیز خطاها، حل معادلات خطی، مشتق و انتگرال‌گیری عددی و حل معادلات دیفرانسیل عددی و ... .

ساختمان داده‌ها:

در این درس، دانشجویان با آرایه‌ها ، بردارها، ماتریسها ، صفها و ردیفها، لیستهای پیوندی، خطی، حلقوی ، روش نمایش و کاربرد لیستهای پیوندی ، درختها و پیمایش‌ آنها، روش نمایش و کاربرد درختها، درختهای تصمیم‌گیری ، گرافها و نمایش آنها، تخصیص حافظه به صورت پویا و مسائل مربوط آشنا می‌شوند.

تحقیق در عملیات:

در این درس ، دانشجویان با زمینه تحقیق در عملیات، انواع مدلها و مدلهای ریاضی، برنامه‌ریزی خطی، شبکه‌ها و مدل حمل و نقل، سایر مدلهای مشابه، آشنایی با برنامه‌ریزی متغیرهای صحیح ،‌برنامه‌ریزی پویا، برنامه‌ریزی غیرخطی و مدلهای احتمالی آشنا می‌گردند.

آینده شغلی ، بازار کار ، درآمد:

«کاربرد ریاضی در علوم مختلف انکارناپذیر است. برای مثال مبحث آنالیز تابعی در مکانیک کوانتومی، کاربرد بسیاری زیادی دارد و یا در بیشتر رشته‌های مهندسی معادله «لاپ لاسی» که یک معادله ریاضی است، مورد استفاده قرار می‌گیرد. در جامعه‌شناسی نیز نظریه احتمال و نظریه گروهها نقش بسیار مهمی ایفا می‌کند. در کل باید گفت که همه صنایع ،‌زیر ساخت ریاضی دارند و به همین دلیل در همه مراکز صنعتی و تحقیقاتی دنیا، ریاضیدانها در کنار مهندسان و دانشمندان سایر علوم حضوری فعال دارند و آنچه در نهایت ارائه می‌شود، نتیجه کار تیمی آنهاست.»

دکتر ریاضی از اساتید دانشگاه در مورد فرصت‌های شغلی موجود در ایران می‌گوید: «اگر در جامعه ما مشاغل جنبه علمی داشته باشند، قطعا به تعداد قابل توجهی ریاضیدان نیاز خواهیم داشت چون یک ریاضیدان می‌تواند مشکلات را به روش علمی حل کند. البته این به آن معنا نیست که در حال حاضر هیچ فرصت شغلی برای یک ریاضیدان وجود ندارد اما باید حضور ریاضیدانها در مراکز تحقیقاتی و صنعتی پررنگتر باشد.»

هرچقدر که شغل یک فرد تخصصی‌تر شود، میزان ریاضیاتی که لازم دارد، بیشتر می‌گردد.

برای مثال یک مهندس الکترونیک از آنالیز تابعی و فرآیندهای تصادفی استفاده می‌کند و یا یک برنامه‌ریز پروژه‌های اقتصادی از مطالب پیشرفته آماری مانند سریهای زمانی ، به عنوان ابزار کار یاری می‌گیرد. به همین دلیل امروزه تربیت متخصصان علم ریاضی، یعنی افرادی که قادر هستند ریاضیات مورد نیاز را آموزش داده و یا تولید کنند، اهمیت بسیار زیادی دارد. چرا که لازمه پیشرفت در تکنولوژی ، توجه به دانش ریاضی می‌باشد.

اما یکی از دانشجویان این رشته نظر جالبی در مورد توانایی یک فارغ‌التحصیل رشته ریاضی دارد:

«درست است که در جامعه ما مکان مشخصی برای جذب فارغ‌التحصیلان ریاضی وجود ندارد اما یک لیسانس ریاضی به دلیل نظم فکری و بینش عمیقی که در طی تحصیل به دست می‌آورد، می‌تواند با مطالعه و تلاش شخصی در بسیاری از شغل‌ها ، حتی شغل‌هایی که در ظاهر ارتباطی با ریاضی ندارد موفق گردد.»

توانایی‌های مورد نیاز و قابل توصیه

شاید مهمترین توانایی علمی یک دانشجوی ریاضی ، تسلط بر درس ریاضی دبیرستان ‌باشد که این امر صرفا زاییده علاقه شخصی به این درس است.

«این رشته نیازمند دانشجویانی است که از نظر ذهنی آمادگی جذب ایده‌های جدید را داشته باشند و بتوانند الگوها و نظم را درک کرده و مسائل غیرمتعارف را حل کنند. به عبارت دیگر یک روحیه علمی ، تفکر انتقادی و توانایی تجزیه و تحلیل داشته باشند.»

از آنجا که ریاضیات ورود به عرصه‌های ناشناخته و کشف قوانین آن است ، علاقمندی به مباحث ریاضی از همان دوران تحصیل در دبیرستان مشخص می‌شود. همین علاقمندی است که می‌تواند راه‌های بسیار سخت را برای دانشجوی این رشته هموار سازد.

یک ریاضیدان قبل از هرچیز باید جرات قدم‌گذاری در وادی ناشناخته‌ها را داشته باشد. بطور کلی دقت ،‌تجزیه و تحلیل صحیح و صبر و پشتکار سه عامل اصلی در توفیق داوطلب در این رشته می‌باشد.

وضعیت کنونی نیاز کشور به این رشته

دکتر بابلیان معتقد است هر وزارتخانه یا شرکتی نیاز به افرادی دارد که علاوه بر دانستن الفبای کامپیوتر، دارای توانایی تجزیه و تحلیل و تصمیم‌گیری مناسب باشند. در این زمینه شرکتها می‌توانند فارغ‌التحصیلان ریاضی محض و یا کاربردی را جذب نمایند.



خرید و دانلود تحقیق درباره رشته ریاضی