لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
الف) تاریخچهایده ی نمایش یک تابع برحسب مجموعه ی کاملی از توابع اولین بار توسط ژوزف فوریه، ریاضیدان و فیزیکدان بین سال های ۱۸۰۶-۱۸۰۲ طی رساله ای در آکادمی علوم راجع به انتشار حرارت، برای نمایش توابع بکار گرفته شد. در واقع برای آنکه یک تابعf(x) به شیوه ای ساده و فشرده نمایش داده شود فوریه اساسا ثابت کرد که می توان از محور هایی استفاده کرد که بکمک مجموعه ایی نامتناهی از توابع سینوس وار ساخته می شوند. بعبارت دیگر فوریه نشان داد که یک تابع f(x) را می توان بوسیله ی حاصل جمع بی نهایت تابع سینوسی و کسینوسی به شکل sin(ax) و cos(ax) نمایش داد. پایه های فوریه بصورت ابزار هایی اساسی، با کاربردهای فوق العاده متواتر در علوم، در آمده اند، زیرا برای نمایش انواع متعددی از توابع و در نتیجه کمین های فیزیکی فراوان بکار می روند. با گذشت زمان ضعف پایه های فوریه نمایان شد مثلا دانشمندان پی بردند پایه های فوریه و نمایش توابع سینوس وار در مورد سیگنال های پیچیده نظری تصاویر، نه تنها ایده آل نیستند بلکه از شرایط مطلوب دورند، بعنوان مثال به شکل کارآمدی قادر به نمایش ساختارهای گذرا نظیر مرزهای موجود در تصاویر نیستند. همچین آنها متوجه شدند تبدیل فوریه فقط برای توابع پایه مورد استفاده قرار می گیرد و برای توابع غیر پایه کار آمد نیست.(البته در سال ۱۹۴۶ با استفاده از توابع پنجره ای، که منجر به تبدیل فوریه ی پنجره ای شداین مشکل حل شد.. در سال ۱۹۰۹ هار اولین کسی بود که به موجک ها اشاره کرد. در سال های ۱۹۳۰ ریاضیدانان به قصد تحلیل ساختارهای تکین موضوعی به فکر اصلاح پایه های فوریه افتادند. و بعد از آن در سال ۱۹۷۰ یک ژئوفیزیکدان فرانسوی به نام ژان مورله متوجه شد که پایه های فوریه بهترین ابزار ممکن در اکتشافات زیر زمین نیستند، این موضوع در آزمایشگاهی متعلق به الف آکیلن منجر به یکی از اکتشافات تبدیل به موجک ها گردید.در سال ۱۹۸۰ ایومیر ریاضیدان فرانسوی، نخستین پایه های موجکی متعامد را کشف کرد(تعامد نوعی از ویژگی ها را بیان می کند که موجب تسهیلات فراوانی در استدلال و محاسبه می شود، پایه های فوریه نیز متعامدند.) در همین سال ها مورله مفهوم موجک و تبدیل موجک را بعنوان یک ابزار برای آنالیز سیگنال زمین لزره وارد کرد و گراسمن فیزیکدان نظری فرانسه نیز فرمول وارونی را برای تبدیل موجک بدست آورد.در سال ۱۹۷۶ میرو و مالت از پایه های موجک متعامد توانسنتد آنالیز چند تفکیکی را بسازند و مالت تجزیه موجک ها و الگوریتم های بازسازی را با بکار بردن آنالیز چند تفکیکی بوجود آورد. در سال ۱۹۹۰ مورنزی همراه با آنتوان موجک ها را به دو بعد و سپس به فضاهایی با ابعد دیگر گسترش دادند و بدین ترتیب بود که آنالیز موجکی پایه گذاری گردید.ب) آشناییآنالیز موجک (Wavelet Analysis) یکی از دستاوردهای نسبتا جدید و هیجان انگیز ریاضیات محض که مبتنی بر چندین دهه پژوهش در آنالیز همساز است، امروزه کاربردهای مهمی در بسیاری از رشته های علوم و مهندسی یافته و امکانات جدیدی برای درک جنبه های ریاضی آن و نیز افزایش کاربردهایش فراهم شده است.در آنالیز موجک هم مانند آنالیز فوریه با بسط تابع ها سروکار داریم ولی این بسط برحسب «موجک ها» انجام می شود.موجک تابع مشخص مفروضی با میانگین صفر است و بسط برحسب انتقالها و اتساعهای این تابع انجام می گیرد، بر خلاف چند جمله ای های مثلثاتی، موجک ها در فضا بصورت موضعی بررسی می شوند و به این ترتیب ارتباط نزدیکتری بین بعضی توابع و ضرایب آن ها امکان پذیر می شود و پایداری عددی بیشتری در باز سازی و محاسبات فراهم می گردد. هر کاربردی را که مبتنی بر تبدیل سریع فوریه است می توان با استفاده از موجک ها فومول بندی کرد و اطلاعات فضایی (یا زمانی) موضعی بیشتری بدست آورد. بطور کلی، این موضوع بر پردازش سیگنال و تصویر و الگوریتم های عددی سریع برای محاسبه ی عملگرهای انتگرالی اثر می گذارد.آنالیز موجک حاصل ۵۰ سال کار ریاضی (نظریه ی لیتلوود – پیلی و کالدرون – زیگموند) است که طی آن، با توجه به مشکلاتی که در پاسخ دادن به ساده ترین پرسش های مربوط به تبدیل فوریه وجود داشت، جانشینهای انعطاف پذیر ساده تری از طریق آنالیز همساز ارائه شدند. مستقل از این نظریه که درون ریاضیات محض جای دارد، صورتهای مختلفی از این رهیافت چند مقیاسی (multi Scale) را در طی دهه ی گذشته در پردازش تصویر، آکوستیک، کدگذاری(به شکل فیلترهای آیینه ای متعامد و الگوریتمهای هرمی)، و استخراج نفت دیده ایم.ج) کاربردهاآنالیز موجک همراه با تبدیل سریع فوریه در تحلیل سیگنالهای گذرایی که سریعا تغییر می کنند، صدا و سیگنالهای صوتی، جریان های الکتریکی در مغز، صداهای زیر آبی ضربه ای و داده های طیف نمایی NMR، و در کنترل نیروگاههای برق از طریق صفحه ی نمایش کامپیوتر بکار رفته است. و نیز بعنوان ابزاری علمی، برای روشن ساختن ساختارهای پیچیده ای که در تلاطم ظاهر می شوند، جریان های جوی، و در بررسی ساختارهای ستاره ای از آن استفاده شده است. این آنالیز به عنوان یک ابزار عددی می تواند مانند تبدیل سریع فوریه تا حد زیادی از پیچیدگی محاسبات بزرگ مقیاس بکاهد، بدین ترتیب که با تغییر هموار ضریب، ماتریس های متراکم را به شکل تنکی که به سرعت قابل محاسبه باشد در آورد. راحتی و سادگی این آنالیز باعث ساختن تراشه هایی شده است که قادر به کدگذاری به نحوی بسیار کارا، و فشرده سازی سیگنالها و تصاویرند.آنالیز موجک امروزه کاربردهای فراوانی پیدا کرده است که از آن جمله می توان به کاربرد آن در تصویر برداری پزشکی (MRI) و سی تی اسکن (CAT)، جداسازی بافت های مغزی از تصاویر تشدید مغناطیس، تشخیص خودکار خوشه های میکروکلسیفیکاسیون، تحلیل تصاویر طیفی تشدید مغناطیسی (MR Spectrorscopy) و عملکردهای تشدید مغناطیسی (F MRI) اشاره نمود.
ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیتهای ظاهرا پیچیده نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر میسازند تا این نظم را توصیف کنیم» .
دکتر ریاضی استاد ریاضی و رییس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم میگوید: «ریاضیات علم مدلدهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی میباشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمیباشد.»
اهداف گرایشهای مختلف این رشته عبارتنداز:
۱- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسایل صنعتی، اقتصادی و برنامهریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.
۲- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسایل در قالب ریاضی و مدلسازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.
۳- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیشدانشگاهی باشند.
ماهیت :
« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همهجا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»
فارغالتحصیلان این رشته میتوانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسایل سروکار دارند، در بخش خصوصی در اموری همانند طراحی سیستمها در امر بهینهسازی و بهرهوری ، در بخش صنعت برای اموری همانند مدلسازیهای ریاضی و در آموزش و پرورش و … ، مسوولیتهای متفاوتی را به عهده گیرند.
گرایشهای مقطع لیسانس:
«رییس اتحادیه بینالمللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»
«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان میپردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده میشود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسایل موجود در جامعه بیان میگردد»
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 6 صفحه
قسمتی از متن .doc :
رابطه بین ریاضی وفیزیک
نگرش کلی: فیزیک علمی است که قوانین حاکم بر جهان طبیعت را بصورت مدون بیان می کند. بنابراین برای ارائه این قوانین بصورت معادلات و روابط ریاضی ، لازم است که یک فیزیکدان باید با اصول و قوانین اساسی ریاضی آشنا باشد. التبه در بعضی از علوم دیگر مانند شیمی نیز این ضرورت احساس می شود، ولی اغراق آمیز نیست بگوییم که ریاضیات بعنوان الفبای فیزیک می باشد. این ضرورت سبب شده است که درسی تحت عنوان روشهای ریاضی در فیزیک ایجاد شود. ضرورت با هم بودن ریاضی و فیزیک: اگر تاریخچه پیدایش علوم را مورد توجه قرار دهیم. ملاحظه می گردد که فیزیک در ریاضی معمولا پا به پای هم گسترش و رشد یافته اند. و اکثر فیزیکدانان قدیمی ، ریاضیدان نیز بوده اند. بعنوان مثال به اسحاق نیوتن ، گالیله و دیگران اشاره کرد. علاوه بر این هر مبحث فیزیک را مد نظر قرار دهیم، ملاحظه می کنیم که به نوعی دریایی از ریاضیات در آن وجود دارد. به فرض اگر مبحث سینماتیک حرکت را مورد توجه قرار دهیم، خواهیم دید که اگر بخواهیم سرعت و یا شتاب را تعریف کنیم، بایستی با قوانین مشتقگیری آشنا باشیم تا بتوانیم بگوییم که مشتق مکان در هر لحظه برابر سرعت لحظه ای و مشتق سرعت در هر لحظه ، شتاب لحظه ای خواهد بود. اولین قدم در ریاضی فیزیک: اولین گام در مطالعه ریاضی فیزیک ، آشنایی با آنالیز برداری است. چون مفاهیم برداری نقش اساسی را در فیزیک بازی می کند. یعنی زمانی که یک کمیت فیزیکی را تعریف می کنیم، ابتدا باید به آنالیز برداری مراجعه کرده و تکلیف این کمیت را از لحاظ برداری ، اسکالر بودن مشخض کنیم، تا بعد بتوانیم خواص و ویژگیهای این کمیت را بیان کنیم. پایه های ریاضی فیزیک: • آنالیز برداری • دستگاههای مختصات • جبر برداری • جبر کلیدی • جبر لی • قضایای برداری • قوانین تبدیل مختصات به یکدیگر • جبر تانسوری • دترمنیان ، ماتریس و نظریه گروه • توابع مختلط • توابع مختلط • جبر توابع مختلط • بسطهای توابع مختلف • حساب ماندهها • توابع خاص آینده ریاضی فیزیک: امروزه با پیشرفت علوم کامپیوتری که توانایی انجام محاسبات بسیار پیچیده ریاضی را در زمانهای بسیار کوتاه دارند، بیشتر فعالیتها در راستای استفاده هر چه بیشتر از رایانه برای حل معادلات ریاضی ، محاسبات طولانی ریاضی ، قرار دارد. به عبارت دیگر پیشرفت علوم ریاضی بویژه ریاضی فیزیک با پیشرفت علوم کامپیوتری همسو شده است.
فیزیک علمی است که قوانین حاکم بر جهان طبیعت را بصورت مدون بیان می کند. بنابراین برای ارائه این قوانین بصورت معادلات و روابط ریاضی ، لازم است که یک فیزیکدان با اصول و قوانین اساسی ریاضی آشنا باشد. التبه در بعضی از علوم دیگر مانند شیمی نیز این ضرورت احساس می شود، ولی اغراق آمیز نیست بگوییم که ریاضیات بعنوان الفبای فیزیک می باشد. این ضرورت سبب شده است که درسی تحت عنوان روشهای ریاضی در فیزیک ایجاد شوداگر تاریخچه پیدایش علوم را مورد توجه قرار دهیم. ملاحظه می گردد که فیزیک و ریاضی معمولا پا به پای هم گسترش و رشد یافته اند. و اکثر فیزیکدانان قدیمی ، ریاضیدان نیز بوده اند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
فهرست
1-مقدمه
2-داده ها و محتوا
3-نمودار میله ای
4-نمودار چند ضلعی
5-نمودار چند بر تجمعی
6-نمودار مستطیلی
7-نمودار دایره ای
8-میانه و مد
9-نمودار جعبه ای
10-میانگین
نتیجه گیری
مقدمه:
هدف این پروژه بررسی نمرات فیزیک دانش آموزان سال دوم ریاضی فیزیک در مدرسه میباشد. بیشتر دانش آموزان اوقات فراغت خود را صرف بازی میکنند و احساس مسئولیتی نسبت به درس خود ندارند آیا بهتر نیست که با برنامه پیش برویم؟ ما اگر برنامه ریزی درستی داشته باشیم مطمئناً پیشرفت خوب و مطلوبی را درس های خود مشاهده می نماییم.
این پروژه با پرسش از دانش آموزان صورت گرفته است. در این رابطه، داده ها جمع آوری و مورد تجزیه و تحلیل قرار گرفتند. در این بررسی از محاسبات آماری و نمودارها و میانگین استفاده شده است.
داده ها:
نمرات فیزیک دانش آموزان سال دوم دبیرستان رشته ی ریاضی فیزیک
14-12-10-5/6-11-16-19-5/15
25/10-75/14-5/10-5/14-4-15
75/13-10-19-15-75/14-3-14
10-11-13-5/14-10-12-16
درصد فراوانی تجمعی
فراوانی تجمعی
درصد فراوانی نسبی
فراوانی نسبی
فراوانی مطلق
نسان دسته
حدود دسته
7
2
7
07/0
2
5/2
5-0
10
3
3
03/0
1
5/7
10-5
75
21
62
62/0
18
5/12
15-10
100
28
25
25/0
7
5/17
20-15
تعریف طول دسته: تفاضل دو کران پایین متوالی یا دو کران بالای متوالی را طول دسته می نامیم.
طول دسته 4=4÷16 16=3-19=R= دامنه
فراوانی مطلق داده Xi برابر تعداد دفعاتی است که آن داده تکرار شده است.
فراوانی نسبی: اگر Fi فراوانی دسته I ام و تعداد داده ها n باشد کسر را فراوانی نسبی دسته I ام می گوییم.
100×فراوانی نسبی= درصد فراوانی نسبی
فراوانی تجمعی هر دسته برابر تعداد اشیایی است که مقدار آنها از کران بالای آن دسته کمتر اند.
نمودار میله ای:
این نمودار بیشتر برای متغیرهای گسسته و کیفی مناسب است. آن چه که در این نمودار مهم است مقایسه فراوانی ها است.
نمودار چند ضلعی:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .doc :
مقدمه:
ابتدا درباره ی نقش ریاضی در دنیا چند سطری می نویسیم.
ریاضیات نقشی بسیار مهم در دنیا دارد برای اینکه ما اگر بخواهیم هر کاری را که انجام دهیم باید حساب کنیم که آن کار درست است یا غلط. مثال: اگر یک فضانورد هنگامی که می خواهد به فضا برود باید ابتدا(قد وزن ضربان قلب و تمام این ها را اندازه گیری و سپس با استفاده از معاملات ریاضی حساب کند که آیا او توانایی به فضا رفتن را دارد یا اینکه نه یا میزان سوختی را که سفینه ی او تا فضا مصرف می کند، با استفاده از معاملات ریاضی محاسبه می کند. خوب حال می خواهیم ببینیم ریاضی چه نقشی در صنعت دارد.
ریاضیات و صنعت قطعات سازی:
به نام و یاد خداوند باری تعالی آغاز می کنیم.
ریاضیات در هر چیزی که در دنیا است دخالت فراوانی دارد چرا که هر چیزی را که بخواهیم بسازیم یا اینکه حمل کنیم باید حساب کنیم که ببینیم آیا می شود یا اینکه نه.
نقش ریاضی در صنعت خودرو سازی این است که اگر بخواهیم یک قطعه از خودرو را بسازیم باید از محاسبات ریاضی استفاده کنیم برای مثال:
برای ساختار سر سیلندر ماشین باید چه کار کنیم و چه محاسباتی را انجام دهیم.
برای ساخت یک سر سیلندر ماشین باید ابتدا فلزاتی را با هم ترکیب کنیم باید حساب کنیم که آلیاژهای مربوط را به چه نسبتی با هم ترکیب کنیم. که فلزی که به دست می آید و قالب ریزی می شود آیا مقاومت فشارهایی ناشی از قدرت موتور را دارد.
به مرحله ی قالب ریزی می رسیم: در این مرحله برای قالب ریزی باید حساب کنیم که چه مقدار از فلز مذابی را که به دست آمده است در قالب بریزیم که قطعه با محاسباتی که ما کرده ایم درست از کار درآید.
بعد از ساخت قطعه به مرحله ی تراشکاری می رسیم که قطعه باید تراشکاری برود و در تراشکاری جای لوازم سر سیلندر تراشیده شود.
در تراشکاری، تراشکار سر سیلندر خام را با استفاده از محاسباتی که انجام داده است رویش نقشه و طرح را کشیده و زیر دستگاه می گذارد. تا جای قطعات که روی سرسیلندر بسته می شود تراشیده شود اندازه محاسبات به کامپیوتر داده می شود و دستگاه تراش مشغول تراش می شود.
تراشکاری تمام شده است و سرسیلندر خودرو آماده آن است که به خودرو سازی ارسال شود و آماده استفاده است.
یک سرلیندر کامل متشکل از:
میل سوپاپ
استکان تایپیت
کاسه نمد
شیم سوپاپ
سوپاپ
گیت و فنر
لازم به ذکر است که هر کدام از این ها نیاز به مراحل ساخت و آماده شدن هستند و باید برای ساخت آن ها از محاسبات ریاضی استفاده شود تا هر کدام به اندازه های متعادل، استاندارد در آید.
مرحله ی جمع کردن سر سلیند با استفاده از لوازمی که نام برده شد:
در این مرحله مکانیک باید با استفاده از اندازه گیری و محاسباتی که انجام می دهد(وسایل اندازه گیری کلیس) سرسلیندر را طوری جمع کند که بتواند کارایی لازم را در موتور اتومبیل داشته باشد. مرحله آخر سرسیلندر، را روی موتور بسته و آماده ی بازدهی است.
خوش بختانه وطن عزیزمان ایران با یاری خدا و با اتکای مهندسان جوانی که با علم ریاضی آشنایی کاملی دارند توانسته ایم در صنعت خودرو سازی حرف های فراوانی زده و توانایی وطن عزیزمان ایران را به رخ جهانیان بکشیم.
ما در ریاضی با استفاده از جوانان برومند ایران توانسته ایم رتبه های بالایی در المپیادهای جهانی به دست آوریم.
و با یاد و نام پروفسور حسابی مقاله ام را به پایان می رسانم. باشد که بتوانم با یاری خداوند گامی برای پیشرفت هر چه بیشتر علم ریاضی در وطنم انجام دهم، تا پرچم کشورم در عرصه های جهانی بر بام دنیا باشد.