لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 22 صفحه
قسمتی از متن .doc :
مکانیک در فیزیک
نگاه اجمالی:
مکانیک کلاسیک یکی از قدیمیترین و آشناترین شاخههای فیزیک است. این شاخه با اجسام در حال سکون و حرکت ، و شرایط سکون و حرکت آنها تحت تاثیر نیروهای داخلی و خارجی ، سرو کار دارد. قوانین مکانیک به تمام گستره اجسام ، اعم از میکروسکوپی یا ماکروسکوپی، از قبیل الکترونها در اتمها و سیارات در فضا یا حتی به کهکشانها در بخشهای دور دست جهان اعمال میشود.
. سینماتیک حرکت:
سینماتیک به توصیف هندسی محض حرکت ( یا مسیرهای) اجسام ، بدون توجه به نیروهایی که این حرکت را ایجاد کردهاند ، میپردازد. در این بررسی عاملین حرکت (نیروهای وارد بر جسم) مد نظر نیست و با مفاهیم مکان ، سرعت ، شتاب ، زمان و روابط بین آنها سروکار دارد. در این علم ابتدا اجسام را بصورت ذره نقطهای بررسی نموده و سپس با مطالعه حرکت جسم صلب حرکت واقعی اجسام دنبال میشود.
حرکت اجسام به دو صورت مورد بررسی است:
سینماتیک انتقالی:
در این نوع حرکت پارامترهای سیستم به صورت خطی هستند و مختصات فضایی سیستمها فقط انتقال مییابد. از اینرو حرکت انتقالی مجموعه مورد بررسی قرار میگیرد. کمیت مورد بحث در سینماتیک انتقالی شامل جابهجایی ، سرعت خطی ، شتاب خطی ، اندازه حرکت خطی و...میباشد.
سینماتیک دورانی
در این نوع حرکت برخلاف حرکت انتقالی پارامتر اصلی حرکت تغییر زاویه میباشد. به عبارتی از تغییر جهت حرکت ، سرعت و شتاب زاویهای حاصل میشود. و مختصات فضایی سیستم ها فقط دوران مییابند. جابهجایی زاویهای ، سرعت زاویهای ، شتاب زاویهای و اندازه حرکت زاویهای از جمله کمیات مورد بحث در این حرکت میباشند.
دینامیک حرکت :
دینامیک به نیروهایی که موجب تغییر حرکت یا خواص دیگر ، از قبیل شکل و اندازه اجسام میشوند میپردازد. این بخش ما را با مفاهیم نیرو و جرم و قوانین حاکم بر حرکت اجسام هدایت میکند. یک مورد خاص در دینامیک ایستاشناسی است که با اجسامی که تحت تاثیر نیروهای خارجی در حال سکون هستند سروکار دارد.
پایه گذاران مکانیک کلاسیک:
با این که شروع مکانیک از کمیت سرچشمه میگیرد ، در زمان ارسطو فرایند فکری مربوط به آن گسترش سریعی پیدا کرد. اما از قرن هفدهم به بعد بود که مکانیک توسط گالیله ، هویگنس و اسحاق نیوتن بدرستی پایهگذاری شد. آنها نشان دادند که اجسام طبق قواعدی حرکت میکنند ، و این قواعد به شکل قوانین حرکت بیان شدند. مکانیک کلاسیک یا نیوتنی عمدتا با مطالعه پیامدهای قوانین حرکت سروکار دارد.
قوانین سه گانه اسحاق نیوتن راه مستقیم و سادهای به موضوع مکانیک کلاسیک میگشاید.این قوانین عبارتند از:
قانون اول نیوتن:
هر جسمی به حالت سکون یا حرکت یکنواخت خود در روی یک خط مستقیم ادامه میدهد مگر اینکه یک نیروی خارجی خالص به آن داده شود و آن حالت را تغییر دهد.
قانون دوم نیوتن
آهنگ تغییر تکانه خطی یک جسم با برآیند نیروهای وارد بر آن متناسب بوده و در جهت آن قرار دارد.
قانون سوم نیوتن:
این قانون که به قانون عمل و عکسالعمل معروف است ، اینگونه بیان میشود. هر عملی را عکس العملی است ، مساوی با آن و در خلاف جهت آن.
فرمولبندی لاگرانژی مکانیک کلاسیک:
در برسی حرکت اجسام به کمک قوانین نیوتون اجسام به صورت ذرهای در نظر گرفته میشود. بنابراین ، بررسی حرکات سیستم های چند ذرهای ، اجسام صلب ، دستگاههای با جرم متغیر ، حرکات جفت شده و ... به کمک قوانین اسحاق نیوتن به سختی صورت میگیرد. لاگرانژ و هامیلتون دو روش مستقلی را برای حل این مشکل پیشنهاد کردند. در این روشها برای هر سیستم یک لاگرانژین (هامیلتونین) تعریف کرده ، سپس به کمک معادلات اویلر-لاگرانژ (هامیلتون-ژاکوپی) حرکات محتمل سیستمها مورد بررسی قرار میگیرد. موارد شکست فرمولبندی اسحاق نیوتن :
تا آغاز قرن حاضر . قوانین اسحاق نیوتن بر تمام وضعیتهای شناخته شده کاملا قابل اعمال بودند. مشکل هنگامی بروز کرد که این فرمولبندی به چند وضعیت معین زیر اعمال شدند:
اجسام بسیار سریع
اجسامی که با سرعت نزدیک به سرعت نور حرکت میکنند.
اجسام با ابعاد میکروسکوپی مانند الکترونها در اتمها.
شکست مکانیک کلاسیک در این وضعیتها ، نتیجه نارسایی مفاهیم کلاسیکی فضا و زمان است.
مکمل مکانیک کلاسیک:
مشکلات موجود در سر راه مکانیک کلاسیک منجر به پیدایش دو نظریه زیر شد:
فرمولبندی نظریه نسبیت خاص برای اجسام متحرک با سرعت زیاد
فرمولبندی مکانیک کوانتومی برای اجسام با ابعاد میکروسکوپی
مکانیک تحلیلی
نگرش کلی
مکانیک تحلیلی همانگونه که از نامش بر میآید ، شاخهای از علم گسترده فیزیک است که به تجزیه و تحلیل حرکت سیستمهای مختلف میپردازد. در مکانیک کلاسیک حرکت در حالت کلی مورد بحث قرار میگیرد. و کمتر به ریزهکاریهای موجود در حرکت پرداخت میشود. به عنوان حرکت یک دستگاه چند ذرهای به طور کامل جرمی میشود ، در صورتیکه در مکانیک کلاسیک بیشتر حرکت تک ذره و در نهایت سیستم دو یا سه ذرهای مورد بحث قرار میگیرد. مکانیک تحلیلی جهت آماده سازی برای کار پیشرفته در فیزیک جنبه اساسی دارد. یکی از اهداف مکانیک تحلیلی تحریک حس کنجکاوی در خواننده است به گونهای که او را به فکر کردن درباره پدیدههای فیزیکی در قالب عبارات ریاضی آماده میکند و زمینهای برای درک عمیق اصول اساسی مکانیک ایجاد میکند. هدف فرا گرفتن مکانیک ، باید این باشد که شئی تقریبا به همان اندازه شهودی برای بیان ریاضی مسائل فیزیکی و همچنین برای تغییر فیزیکی جوابهای ریاضی در خواننده پدید آید.
سیر کلی مطالب در مکانیک تحلیلی
ابتدا مفاهیم اساسی مکانیک و قوانین مکانیک و ثقل به زبان ریاضی بیان میشوند. سپس مساله حرکت در فضای یک بعدی به طور کامل تشریح میگردد. و حرکت نوسانگر هماهنگ به عنوان مهمترین مثال حرکت تک بعدی بررسی میشود، که در این بررسی اعداد مختلف برای نمایش کمیتهای نوسانی استفاده میشود. بنابراین یک توصیف اولیهای از مکانیک به وجود میآید.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
دانشگاه آزاد اسلامی – واحد نیشابور
عنوان:
فیزیک هسته ای
استاد مربوطه :
جناب آقای موسی زاده
گرد آورنده :
شیرین میامئی
زمستان 86
چکیده :
برای بررسی تاریخچه فیزیک هستهای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان میکردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» میباشد اقتباس کردند. این حدس و گمان دانشمندان یونانی حدود هزار سال دوام آورد، چند دهه طول کشید که نظریه غیر قابل تجزیه بودن اتم رد شد. اولین و اساسیترین نتیجه تحقیقات ثابت کرد که اتم شامل دو جزء اصلی میباشد:هسته سنگین که تقریبا تمام جرم اتم را در خود دارد.
پوستهای سبک که از ذرات الکتریسیته (الکترون) ساخته شده است. این الکترونها با سرعت فوق العاده زیادی به دور هسته در حرکت بوده و هرگز به روی آن سقوط نمیکنند.
ساختار هسته
تا آنجا که به ساختار هستهای مربوط است میتوان هسته اتم را به عنوان یک جرم نقطهای و یک بار نقطهای در نظر گرفت.
هسته ، شامل تمامی بار مثبت و تقریبا تمامی جرم اتم است، در نتیجه مرکزی را تشکیل میدهد که الکترونها حول آن میچرخند.
فیزیک هسته ای چیست؟
درون هر اتم میتوان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.پروتونها در کنار هم قرار میگیرند و هسته اتم را تشکیل میدهند، در حالی که الکترونها به دور هسته میچرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب میکنند، پروتون و الکترون هم یکدیگر را جذب میکنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته میگردد. در اغلب حالتها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع میکنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت میگیرد )
تعداد پروتونهای هسته نوع اتم را مشخص میکند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت میشوند، AL27 یا آلومینیوم 27 نامیده میشوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان میدهد.اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده میشود.بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل میدهد. شکل های مختلف اتم، ایزوتوپ نامیده میشوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.اتمهای ناپایدارتا اوایل قرن بیستم، تصور میشد تمامی اتمها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع میکند.
هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما میشناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل میدهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار میکند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
تاریخچه
برای بررسی تاریخچه فیزیک هستهای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان میکردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» میباشد اقتباس کردند. این حدس و گمان دانشمندان یونانی حدود هزار سال دوام آورد، چند دهه طول کشید که نظریه غیر قابل تجزیه بودن اتم رد شد. اولین و اساسیترین نتیجه تحقیقات ثابت کرد که اتم شامل دو جزء اصلی میباشد:
هسته سنگین که تقریبا تمام جرم اتم را در خود دارد.
پوستهای سبک که از ذرات الکتریسیته (الکترون) ساخته شده است. این الکترونها با سرعت فوق العاده زیادی به دور هسته در حرکت بوده و هرگز به روی آن سقوط نمیکنند.
ساختار هسته
تا آنجا که به ساختار هستهای مربوط است میتوان هسته اتم را به عنوان یک جرم نقطهای و یک بار نقطهای در نظر گرفت.
هسته ، شامل تمامی بار مثبت و تقریبا تمامی جرم اتم است، در نتیجه مرکزی را تشکیل میدهد که الکترونها حول آن میچرخند.
فیزیک هسته ای چیست؟
درون هر اتم میتوان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.پروتونها در کنار هم قرار میگیرند و هسته اتم را تشکیل میدهند، در حالی که الکترونها به دور هسته میچرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب میکنند، پروتون و الکترون هم یکدیگر را جذب میکنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته میگردد. در اغلب حالتها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع میکنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت میگیرد )
تعداد پروتونهای هسته نوع اتم را مشخص میکند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت میشوند، AL27 یا آلومینیوم 27 نامیده میشوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان میدهد.اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده میشود.بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل میدهد. شکل های مختلف اتم، ایزوتوپ نامیده میشوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.اتمهای ناپایدارتا اوایل قرن بیستم، تصور میشد تمامی اتمها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع میکند.
هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما میشناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل میدهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار میکند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم هم ایزوتوپ پایداری است، ولی ایزوتوپ بعدی که تریتیوم خوانده میشود، ناپایدار است. تریتیوم که هیدروژن 3 نیز خوانده میشود، در هسته خود یک پروتون و دو نوترون دارد و طی یک واپاشی رادیواکتیو به هلیوم 3 تبدیل میشود. این بدان معنی است که اگر ظرفی پر از تریتیوم داشته باشید و آن را بگذارید و یک میلیون سال بعد برگردید، ظرف شما پر از هلیوم 3 است. هلیوم 3 از 2 پروتون و یک نوترون ساخته شده وعنصری پایدار است ).
در برخی عناصر مشخص، به طور طبیعی همه ایزوتوپها رادیواکتیو هستند. اورانیوم بهترین مثال برای چنین عناصری است که علاوه بر رادیواکتیویته زیاد سنگین ترین عنصر رادیواکتیو هم هست که به
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 53
تعریف حرکت
حرکت یکی از اساسی ترین و روشنترین پدیده های است که دراطراف خود مشاهده می کنیم حرکت است مانند وزش باد و راه رفتن انسان ...
مبدا زمان
لحظه شروع حرکت یا لحظه t=0 را مبدا زمان مینامیم
مبدا مکان
وضع متحرک را در هر لحظه می توان نسبت به دستگاه محور های مختصاتی بررسی کرد که مبدا این دستگاه را مبدا مکان می نامیم
بردار مکان یا بردار وضعیت
برداری است که در هر لحظه مبدا را به محل متحرک وصل می کند
بردار تغییر مکان یا بردار جابجایی یا تغییرات برداروضعیت
برداری است که مکان اولیه متحرک را مستقیما به مکان ثانوی وصل میکند.
سرعت
در اصطلاح عامیانه سرعت عبارتست از مسافت طی شده در واحد زمان بعنوان مثال اگر اتومبیلی با سرعت ثابت 50 کیلو متر بر ساعت در حرکت باشد در هر ساعت مسافت 50 کلیومتر را می پیماید بدون توجه به اینکه مسیر حرکت چه شکلی دارد.
ازدیدگاه برداری سرعت مفهوم دیگری دارد و عبارتست از بردار تغییر مکان در واحد زمان که در بعضی موارد با مسافت طی شده در واحد زمان برابر است ولی الزاما با مسافت طی شده در واحد زمان برابر نیست
سرعت متوسط
سرعت متوسط برابر است با بردار تغییر مکان در واحد زمان
زمان/بردار تغییر مکان=سرعت متوسط
تندی
در بعضی از کتابهای مکانیک اصطلاح تندی را بعنوان مسافت طی شده در واحد زمان تعریف کرده اند
زمان /مسافت طی شده =تندی متوسط
تعریف حرکت
اگر مختصات جسمی نسبت به مبدایی با گذشت زمان تغییر کند این جسم نسبت به این مبدا در حال حرکت است توجه داشته باشید که حرکت امری است نسبی و بستگی به مبدا سنجش دارد یعنی ممکن است جسمی نسبت به یک مبدا در حال سکون ولی نسبت به مبدا دیگری در حال حرکت باشد
مسیر حرکت
مکان هندسی مجموعه نقاطی که متحرک از آنها عبور کرده است مسیر حرکت می نامیم اگر مسیر خط راست باشد حرکت را مستقیم الخط و اگر مسیر منحنی باشد حرکت را منحنی الخط می نامیم
مسیر حرکت
مکان هندسی مجموعه نقاطی که متحرک از آنها عبور کرده است مسیر حرکت می نامیم اگر مسیر خط راست باشد حرکت را مستقیم الخط و اگر مسیر منحنی باشد حرکت را منحنی الخط می نامیم
معادله سرعت - زمان
رابطه ایست بصورت کلیv=f(t) که در آن v سرعت متحرک درهر لحظه از زمان بعنوان تابع و t لحظه ایست که دارای سرعت v می باشدبعنوان متغیر
سرعت لحظه ای
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 25
مکانیک سماوی محدودهای از فیزیک فضا را تشکیل میدهد که در آن حرکت اجرام آسمانی مورد مطالعه قرار میگیرد. در مکانیک سماوی از موضوعات مکانیک کلاسیک و روابط و قوانین آن استفاده میگردد. مکانیک کلاسیک اغلب برای مطالعه میدان گرانشی و اثرات آن روی اجسامی مانند سیارات ، ماهوارهها ، سفینههای فضایی و موشکهای فضاپیما به کار میرود. البته لازم به ذکر است که علاوه بر نیروی گرانشی عوامل دیگری مانند مقاومت اتمسفر روی مدار اجسام و یا برهمکنشهای پلاسمایی مانند باد خورشیدی و یا شهاب سنگها نیز در توصیف مکانیک سماوی دخالت دارند.
سیر تحولی و رشد تقریبا میتوان گفت که مکانیک سماوی با کارهای کپلر به صورتی دقیق شروع شد. کپلر توانست با نفوذ در فراسوی مرزهای مشاهده و توصیف ریاضی ، حرکت اجرام آسمانی را برحسب نیروهای فیزیکی توضیح دهد. در منظومه کپلر سیارهها ، دیگر به سبب ماهیت آسمانی خود حرکت نمیکردند و دیگر به سبب داشتن شکلهای کروی در حرکت دورانی طبیعی نبودند. کپلر بر اساس پدیدههای مشاهده شده به دنبال قوانین فیزیکی بود تا تمامیجهان را به شیوه دقیق کمی توصیف کند. یکی از دانشمندانی که کپلر با او درباره پیشرفتهای علمی مکاتبه داشت، گالیله بود. کمک اصلی کپلر به تئوری سیارهای ، قوانین تجربی او بر اساس رصدهای تیکو براهه بود.
گالیله هم در تئوری و هم در مشاهده کوشا بود. گالیله نظریه حرکت خود را بر مبنای مشاهدههای مربوط به حرکت اجرام در سطح زمین استوار کرد. کارهای او در زمینه دانش جدید مکانیک با فرضیات ارسطویی در فیزیک و ماهیت حرکتهای آسمانی مغایرت داشت. گالیله توانست نخستین تلسکوپ را بسازد. بعد از گالیله ، که در دوران خفگان حکومت نظریه ارسطویی زندگی میکرد، تحولی عظیم در علوم مختلف ایجاد شد و بساط نظریه ارسطویی تقریبا برچیده شد. این دوران همزمان با دوره نیوتن بود. نیوتن در این زمان قانون جهانی گرانش خود را بیان کرد.
نیوتن با تکیه بر قوانین حرکت خود توانست ماهیت نیروهای وارد بر سیارات را کشف کند. وی به این نتیجه رسید که یک قانون جهانی گرانش در مورد همه اجسامی که در منظومه شمسی حرکت میکنند، وجود دارد. بعد از نیوتن دانشمندان دیگری در مورد حرکت سیارات منظومه شمسی به مطالعه پرداختند و هر روز نتایج و نظریههای جدیدی حاصل میشد. تا اینکه آلبرت انیشتین نظریه نسبیت عام خود را که در مورد گرانش بود، ارائه داد. بعد از کار انیشتین ، دانشمندان مختلفی در تشریح نظریه نسبیت عام تلاش کردند و نظریههای جدیدی در مورد کیهان شناسی و گرانش حاصل شد.
قوانین حرکت اجرام آسمانی در اوایل قرن هفدهم ، پیش از آنکه نیوتن قوانین حرکت خود را کشف کند، کپلر سه قانون زیر را در مورد حرکت سیارات اعلام کرد. کپلر این قوانین را از رصد دقیق و پردامنهای که تیکو براهه از حرکت سیارات انجام داده بود، استنتاج کرد. سیارات در مدارهای بیضی شکل حرکت میکنند که خورشید در یکی از کانونهای آن قرار دارد. این قانون را میتوان با در نظر گرفتن معادله مسیر حرکت ذرهای که تحت تاثیر میدان گرانشی حاصل از یک ذره دیگر حرکت میکند، تشریح کرد. در این حالت با احراز شرایط خاصی مسیر حرکت ذره یک مسیر بیضوی خواهد بود. کپلر با مشاهده مدار بیضوی مریخ به این نتیجه رسید که مسیر حرکت سیارات بیضوی خواهد بود. شکل مدار زمین را میتوان با اندازهگیری بزرگی ظاهری خورشید در سال Sideral پیدا کرد. زمین یک مدار بسته را حول خورشید طی میکند. سطح جاروب شده توسط بردار شعاعی که از خورشید تا سیارات رسم میگردد، در زمانهای مساوی ، برابر است. این قانون نتیجهای از قانون بقای اندازه حرکت زاویهای است. این قانون نشان میدهد که نیروی وارد بر سیارات نیرویی مرکزی است. همانگونه که قانون اول از این حقیقت که نیروی وارد بر سیارات با عکس مربع فاصله متناسب است، حاصل شده بود. مربع زمان تناوب چرخش سیارات به دور خورشید با مکعب نصف محور بزرگتر بیضی متناسب است. قانون سوم از این حقیقت ناشی میشود که نیروی گرانشی وارد بر هر ذره با جرم آن ذره متناسب است. با استفاده از این قانون میتوان جرم خورشید را محاسبه کرد. با استفاده از این قانون ، دانشمندان توانستهاند جرم پنج سیاره را که جرمشان به مراتب کمتر است، تعیین کنند.
براساس قوانین کپلر و با در نظر گرفتن اینکه زمین و ماه حول مرکز جرم خود در حال حرکت هستند، جرم ماه 1.81 جرم زمین محاسبه شده است. حرکت زمین سبب اختلاف نظر در وضعیت ظاهری اجرام آسمانی مانند زهره ، مریخ و سیارکها میشود. تعیین جرم سیاراتی مانند زهره و عطارد که فاقد ماه هستند، به مراتب مشکلتر است. ارتباط مکانیک سماوی با سایر علوم میتوان گفت که بین حرکت سیارات حول خورشید و مسئله حرکت الکترونها حول هسته اتم ، مشابهت وجود دارد. به عبارت دیگر ، حرکت سیارات یک حالت تقریبا ماکروسکوپی در ابعاد خیلی بزرگ از حرکت در درون اتم است، هر چند که ماهیت این دو پدیده تفاوتهای زیادی با هم دارند.
بنابراین از همین جا ارتباط مکانیک سماوی با مکانیک کلاسیک و مکانیک کوانتومی روشن میگردد. همچنین مکانیک سماوی با اختر فیزیک ، نجوم و کیهان شناسی نیز ارتباط تنگاتنگ دارد و اصولا در بعضی موارد تعیین حد و مرز میان این علوم کار بسیار دشواری است. اهمیت مکانیک سماوی روشن است که بیشتر اطلاعات و آگاهیهای انسان در مورد اجرام آسمانی بوسیله ماهوارهها و سفینههای فضایی که بوسیله انسان به فضا پرتاب شدهاند، حاصل شده است. اما دانستن این مطلب که یک سفینه فضایی تحت چه شرایطی باید در فضا حرکت کند و یا چگونگی قرار گرفتن آن در مدار زمین ، از جمله مسائلی هستند که بوسیله مکانیک سماوی مطالعه و تشریح میگردند و همین امر اهمیت مکانیک سماوی را روشن میکند.
نگاه اجمالی
مکانیک سماوی محدودهای از فیزیک فضا را تشکیل میدهد که در آن حرکت اجرام آسمانی مورد مطالعه قرار میگیرد. در مکانیک سماوی از موضوعات مکانیک کلاسیک و روابط و قوانین آن استفاده میگردد. مکانیک کلاسیک اغلب برای مطالعه میدان گرانشی و اثرات آن روی اجسامی مانند سیارات ، ماهوارهها ، سفینههای فضایی و موشکهای فضاپیما به کار میرود. البته لازم به ذکر است که علاوه بر نیروی گرانشی عوامل دیگری مانند مقاومت اتمسفر روی مدار اجسام و یا برهمکنشهای پلاسمایی مانند باد خورشیدی و یا شهاب سنگها نیز در توصیف مکانیک سماوی دخالت دارند.
/
سیر تحولی و رشد
تقریبا میتوان گفت که مکانیک سماوی
با کارهای کپلر به صورتی دقیق شروع شد.
کپلر توانست با نفوذ در فراسوی مرزهای مشاهده و توصیف ریاضی ، حرکت اجرام آسمانی را برحسب نیروهای فیزیکی توضیح دهد. در منظومه کپلر سیارهها ، دیگر به سبب ماهیت آسمانی خود حرکت نمیکردند و دیگر به سبب داشتن شکلهای کروی در حرکت دورانی طبیعی نبودند. کپلر بر اساس پدیدههای مشاهده شده به دنبال قوانین فیزیکی بود تا تمامیجهان را به شیوه دقیق کمی توصیف کند.
یکی از دانشمندانی که کپلر با او درباره پیشرفتهای علمی مکاتبه داشت، گالیله بود. کمک اصلی کپلر به تئوری سیارهای ، قوانین تجربی او براساس رصدهای تیکو براهه بود. گالیله هم در تئوری و هم در مشاهده کوشا بود. گالیله نظریه حرکت خود را بر مبنای مشاهدههای مربوط به حرکت اجرام در سطح زمین استوار کرد. کارهای او در زمینه دانش جدید مکانیک با فرضیات ارسطویی در فیزیک و ماهیت حرکتهای آسمانی مغایرت داشت. گالیله توانست نخستین تلسکوپ را بسازد.
بعد از گالیله ، که در دوران خفگان حکومت نظریه ارسطویی زندگی میکرد، تحولی عظیم در علوم مختلف ایجاد شد و بساط نظریه ارسطویی تقریبا برچیده شد. این دوران همزمان با دوره نیوتن بود. نیوتن در این زمان قانون جهانی گرانش خود را بیان کرد. نیوتن با تکیه بر قوانین حرکت خود توانست ماهیت نیروهای وارد بر سیارات را کشف کند. وی به این نتیجه رسید که یک قانون جهانی گرانش در مورد همه اجسامی که در منظومه شمسی حرکت میکنند، وجود دارد.