دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد مفاهیم مکانیک کوانتم به روایت مدل های ریاضی 20 ص با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

مفاهیم مکانیک کوانتم به روایت مدل های ریاضی مکانیک کوانتم سرانجام در سال 1926 توسط دو مدل ریاضی به طور کامل در قالب فرمول آمد (غالبا این نقطه را شروع دوره ی کوانتم جدید می دانند). این دو مدل که در ابتدا مستقل می نمودند حاصل ارائه ی دو فیزیک دان آلمانی اروین شرودینگر و ورنر هایزنبرگ بودند. ولی چند سالی طول کشید تا مفاهیم عمیق و انقلابی مکانیک کوانتم در قالب ریاضیات بیان شوند و همه ی پیچیدگی های آزمایش های کوانتم به تفاسیری از مدل های ساده ی ریاضی تبدیل شوند. این اتفاق به همت کسانی چون پل دیراک، شرودینگر، جردن، لانده امکان پذیر شد و دست آخر کتاب ماندگار جان فون نویمان در مبانی ریاضی کوانتم تقریبا همه ی آن چیزی که می توانست در آزمایش های کوانتم قدیم مشاهده شود را در بیان ریاضی می آورد. با ارائه ی دو مدل هایزنبرگ و شرودینگر در سال 1926 هر آن چه موضوع مکانیک کوانتم بود قابل محاسبه شد ولی چیزی که در این متن عمدتا به آن خواهم پرداخت نه این دو مدل ریاضی بلکه توصیفات دقیق تئوری ریاضی کوانتم از واقعیت و انتزاع مفاهیم انحصاری کوانتم است که در نتیجه ی کوشش های دیراک، ... و نویمان به دست آمد. اهمیت این مفاهیم انتزاع شده در این حد است که بتوانیم آن را یک طرح schema بنامیم در حالی که دو مدل مذکور صرفا مدلی ریاضی برای واقعیت طبیعی هستند و البته این جا تفاوت مدل و طرح مشخص می شود. قبل از هر چیز مطلبی را از مکانیک کلاسیک یادآوری می کنم. در مکانیک کلاسیک مکان یا در حالت کلی موقعیت (که وابستگی به زمان ندارد) هر سیستم توسط تعدادی متغیر که مختصات آن سیستم گفته می شوند تعیین می شوند. به تعداد این مختصات درجه ی آزادی آن سیستم می گوییم. ولی از آن جایی که به تجربه دریافته ایم که هر سیستم مکانیکی کلاسیک به ازای هر درجه ی آزادی خود یک معادله ی دیفرانسیل مرتبه ی دو دارد، برای مشخص شدن آینده و گذشته ی یک سیستم کلاسیک باید علاوه بر مختصات سیستم در یک لحظه سرعت تغییرات هر متخصه را نیز اندازه گیری کنیم. به مجموعه ی این اعداد که تمام اطلاعات رفتاری سیستم را برای همه ی لحظات در اختیار می گذارد حالت سیستم می گوییم. بدیهی است که متغیرهای حالت دو برابر متغیرهای مختصات هستند. اولین مفهومی که در مکانیک کوانتم با آن رو به رو خواهیم شد مفهوم مشاهده پذیر observable است؛ از آن جایی که در این تئوری بسیاری اعداد در معادلات و عبارات ظاهر می شوند ولی همه ی آن ها قابل اندازه گیری نیستند. در مکانیک کوانتم به هر پدیده ای که قابل اندازه گیری باشد یک مشاهده پذیر می گوییم. پدیده ای قابل اندازه گیری است که مکانیسمی برای به دست آوردن یک عدد حقیقی دقیق از آن موجود باشد. دومین مفهوم مکانیک کوانتم همین مکانیسم اندازه گیر است؛ به مکانیسمی که یک مشاهده پذیر را اندازه می گیرد دستگاه (اندازه گیر) apparatus آن مشاهده پذیر می گوییم. پس هر مشاهده پذیر دستگاه ویژه ی خود را دارد که به ازای هر اندازه گیری درست یک عدد حقیقی دقیق از آن گزارش می دهد. مجموعه ی اعدادی که از اعمال دستگاه بر روی مشاهده پذیر آن حاصل می شود را طیف ویژه مقدارهای spectrum of eigenvalues آن مشاهده پذیر می گوییم و هر عدد را یک ویژه مقدار eigenvalue از آن مشاهده پذیر می گوییم. همان گونه که در آزمایشگاه نیز موکد شد، مشاهده پذیر مفهومی کلی تر از کمیت فیزیک کلاسیک است. زیر بر خلاف کمیت فیزیک کلاسیک، مشاهده پذیر یک عدد نیست بلکه پدیده ای است قابل اندازه گیری. یعنی فقط وقتی با یک عدد قابل بیان است که با دستگاه متناظرش در کنش قرار گیرد. بنابراین می توان گفت اصلا کار یک دستگاه این است که مشاهده پذیر خود را تبدیل به عدد کند (یا آشکار کند) یا به گونه ای دیگر می گوییم دستگاه مشاهده پذیر را معین کرد definite یا آن را به مقدار دقیق sharp value برد. اگر یک مشاهده پذیر معین شده باشد واکنش دستگاهش با آن فقط یک عدد از طیف ویژه مقدارها را می دهد. یعنی مشاهده پذیر در یک عدد گیر می کند تا طی فرایندی از حالت دقیق در بیاید و دوباره وارد آن شود. گاهی واکنش یک مشاهده پذیر و دستگاهش، مشاهده پذیر دیگری را از حالت معین در می آورد (یعنی اندازه گیری دومی را کاملا نامعتبر می کند). یا به عبارتی دو مشاهده پذیر داریم که هر دو با هم عدد (آشکار) نمی شوند. چنین دو مشاهده پذیری را ناسازگار incompatible observables می گوییم. ولی اگر این گونه نباشد آن دو را سازگار compatible observables می گوییم. یک سیستم کوانتمی system پدیداری کوانتمی است که به کمک مجموعه ای از مشاهده پذیرهای دو به دو سازگار، کاملا (کامل به این خاطر که تمام اطلاعات کافی در مجموعه یافت شود) قابل نمایش representation باشد. اعضای چنین مجموعه ای می توانند همگی با هم عدد باشند یا به عبارتی به ازای این مجموعه از مشاهده پذیرها یک مجموعه



خرید و دانلود تحقیق در مورد مفاهیم مکانیک کوانتم به روایت مدل های ریاضی  20 ص با فرمت ورد


تحقیق در مورد مفاهیم مکانیک کوانتم به روایت آزمایشگاه 28 ص با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 31

 

مفاهیم مکانیک کوانتم به روایت آزمایشگاه

آزمایشگاه اندازه گیری کمیت های مکان-سرعت

 یکی از مهم ترین پرسش هایی که در مواجهه با رویدادهای تصادفی مکانیک کوانتم و اصل عدم قطعیت پیش می آید این است که تصادف در ارتباط با چه کمیت یا کمیت های فیزیکی رخ می دهد و رفتار این کمیت یا کمیت ها صرف نظر از تصادف و احتمالی که برای آزمایش بروز می دهند چگونه تغییر می کنند.

به عبارتی واضح تر اگر مکان یک الکترون یک کمیت تصادفی باشد و ما هیچ گونه آزمایشی روی الکترون انجام ندهیم مکان یه الکترون چگونه تغییر می کند. آیا در این مورد قانون اول نیوتن صدق می کند. خوب اجازه بدهید درباره ی آن چه در آزمایشگاه می گذرد کمی گزارش دهم. البته آزمایش های فرضی ما در یک آزمایشگاه خیالی روی می دهد ولی اعتبار همه ی آن ها به گونه ای واقعی (یعنی نه دقیقا روشی که در این متن به آن اشاره شده است) قابل بررسی است.

 

ابتدا فرض کنید یک الکترون را داخل یک لوله ی شیشه ای مدرج وارد کرده ایم و حرکت الکترون به جلو و عقب رفتن درون لوله مقید شده است. همچنین فرض کنیم الکترون داخل لوله گرچه قابل دیدن نیست ولی لوله ی مورد نظر ما مجهز به مکانیسمی است که هرگاه بخواهیم می توانیم آن را راه اندازی کنیم و در زمان عملا صفر، الکترون داخل لوله برای چشم ما قابل دیدن می شود و در نتیجه ما می توانیم در آن لحظه مکان الکترون رو از روی لوله ی مدرج بخوانیم. بنابراین با هر بار راه اندازی مکانیسم لوله، یک نقطه روی درجات در یک زمان مشخص اندازه گیری می شود. به عبارتی می توانیم بگوییم الکترون در زمان t دقیقا در مکان x قرار دارد و دقت این اندازه گیری می تواند به صورت نامحدودی بیشتر شود طوری که بگوییم کوچک ترین خطایی در اندازه گیری مکان الکترون وجود ندارد.

 

تا همین جا یک گزارش از واقعیت داشته ایم؛ برای هر کمیتی که در مکانیک کلاسیک تعریف شده است مکانیسمی وجود دارد که اندازه ی آن کمیت را به صورت کاملا دقیق و بدون هیچ خطا و احتمالی در یک لحظه ی خاص بدهد. پس اجازه بدهید با مکانیسم خیالی خود کمی بیشتر سرگرم باشیم.

 

با شروع از یک لحظه ی خاص (زمان، صفر) با فواصل زمانی ثابتی (مثلا یک ثانیه) شروع به انجام مکانیسم اندازه گیری می کنیم و در خواهیم یافت که مکان الکترون در اندازه گیری های متوالی به صورت تصادفی تغییر می کند به طوری که با هیچ رابطه ی ریاضی نمی توان مکان دقیق اندازه گیری بعدی را پیش بینی کرد. از طرفی توزیع این مکان های تصادفی نیز احتمال وقوع مکان بعدی را در نزدیکی آخرین مکان وقوع بیشتر نشان می دهد. یعنی اگر الکترون در لحظه ی صفر روی نقطه ی صفر مکان دیده شود در لحظه ی یک به احتمال زیادی حوالی همان نقطه ی صفر مکان دیده خواهد شد، گرچه ممکن است در هر نقطه ای دیده شود.

 

با توجه به گزارش بالا می توان نتیجه گرفت چنین رویدادی در آزمایشگاه خیالی ما نشان از نقض نسبیت خاص دارد. زیرا در فاصله ی زمانی دو اندازه گیری متوالی که مثلا یک ثانیه هستند ممکن است الکترون در دو نقطه که بیش از 300 میلیون متر با هم فاصله دارند دیده شود.

 حالا اجازه بدهید آزمایش را عوض کنیم و سراغ دستگاه خیالی دیگری برویم. در این آزمایش مانند قبل الکترون داخل لوله ای در حال حرکت است و لوله مجهز به مکانیسمی است که با راه اندازی در هر لحظه ی دلخواه سرعت الکترون داخل لوله را نشان می دهد. این بار نیز زمان انجام مکانیسم عملا صفر است.

مانند آزمایش فرضی اندازه گیری مکان های متوالی این بار سرعت های متوالی الکترون را اندازه می گیریم و در کمال تعجب در خواهیم یافت که سرعت الکترون فقط یک مقدار ثابت خواهد بود و هیچ تصادفی روی نخواهد داد. ولی جالب این جاست که اگر الکترون داخل لوله با پدیده ای فیزیکی کنش انجام دهد (مثلا از بیرون لوله یک میدان الکتریکی برقرار کنیم) و آزمایش سرعت های متوالی را تکرار کنیم مقدار ثابتی که برای سرعت اندازه گیری می شود به صورت تصادفی عوض خواهد شد.

 

در حالی که شاید در معمای عدم تشابه آزمایش های مکان و سرعت الکترون باشیم اجازه بدهید به آزمایش مکان برگردیم ولی این بار اندازه گیری های متوالی را آن چنان سریع انجام دهیم که زمان بین اندازه گیری ها صفر باشد یا به عبارتی همه ی آزمایش ها در یک لحظه انجام شود یا به عبارت بهتر زمان متوقف شود. در این صورت خواهیم دید که مکان نیز مانند سرعت، در اندازه گیری های متوالی، فقط یک مقدار می دهد. در حالی که اگر اجازه بدهیم زمانی بگذرد و سپس در یک لحظه چند بار اندازه بگیریم باز مقدار ثابتی خواهیم داشت که البته با دفعه ی قبل متفاوت خواهد بود. تفکر درباره ی یکسان



خرید و دانلود تحقیق در مورد مفاهیم مکانیک کوانتم به روایت آزمایشگاه 28 ص با فرمت ورد


مفاهیم مکانیک کوانتم به روایت مدل های ریاضی 20 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

مفاهیم مکانیک کوانتم به روایت مدل های ریاضی مکانیک کوانتم سرانجام در سال 1926 توسط دو مدل ریاضی به طور کامل در قالب فرمول آمد (غالبا این نقطه را شروع دوره ی کوانتم جدید می دانند). این دو مدل که در ابتدا مستقل می نمودند حاصل ارائه ی دو فیزیک دان آلمانی اروین شرودینگر و ورنر هایزنبرگ بودند. ولی چند سالی طول کشید تا مفاهیم عمیق و انقلابی مکانیک کوانتم در قالب ریاضیات بیان شوند و همه ی پیچیدگی های آزمایش های کوانتم به تفاسیری از مدل های ساده ی ریاضی تبدیل شوند. این اتفاق به همت کسانی چون پل دیراک، شرودینگر، جردن، لانده امکان پذیر شد و دست آخر کتاب ماندگار جان فون نویمان در مبانی ریاضی کوانتم تقریبا همه ی آن چیزی که می توانست در آزمایش های کوانتم قدیم مشاهده شود را در بیان ریاضی می آورد. با ارائه ی دو مدل هایزنبرگ و شرودینگر در سال 1926 هر آن چه موضوع مکانیک کوانتم بود قابل محاسبه شد ولی چیزی که در این متن عمدتا به آن خواهم پرداخت نه این دو مدل ریاضی بلکه توصیفات دقیق تئوری ریاضی کوانتم از واقعیت و انتزاع مفاهیم انحصاری کوانتم است که در نتیجه ی کوشش های دیراک، ... و نویمان به دست آمد. اهمیت این مفاهیم انتزاع شده در این حد است که بتوانیم آن را یک طرح schema بنامیم در حالی که دو مدل مذکور صرفا مدلی ریاضی برای واقعیت طبیعی هستند و البته این جا تفاوت مدل و طرح مشخص می شود. قبل از هر چیز مطلبی را از مکانیک کلاسیک یادآوری می کنم. در مکانیک کلاسیک مکان یا در حالت کلی موقعیت (که وابستگی به زمان ندارد) هر سیستم توسط تعدادی متغیر که مختصات آن سیستم گفته می شوند تعیین می شوند. به تعداد این مختصات درجه ی آزادی آن سیستم می گوییم. ولی از آن جایی که به تجربه دریافته ایم که هر سیستم مکانیکی کلاسیک به ازای هر درجه ی آزادی خود یک معادله ی دیفرانسیل مرتبه ی دو دارد، برای مشخص شدن آینده و گذشته ی یک سیستم کلاسیک باید علاوه بر مختصات سیستم در یک لحظه سرعت تغییرات هر متخصه را نیز اندازه گیری کنیم. به مجموعه ی این اعداد که تمام اطلاعات رفتاری سیستم را برای همه ی لحظات در اختیار می گذارد حالت سیستم می گوییم. بدیهی است که متغیرهای حالت دو برابر متغیرهای مختصات هستند. اولین مفهومی که در مکانیک کوانتم با آن رو به رو خواهیم شد مفهوم مشاهده پذیر observable است؛ از آن جایی که در این تئوری بسیاری اعداد در معادلات و عبارات ظاهر می شوند ولی همه ی آن ها قابل اندازه گیری نیستند. در مکانیک کوانتم به هر پدیده ای که قابل اندازه گیری باشد یک مشاهده پذیر می گوییم. پدیده ای قابل اندازه گیری است که مکانیسمی برای به دست آوردن یک عدد حقیقی دقیق از آن موجود باشد. دومین مفهوم مکانیک کوانتم همین مکانیسم اندازه گیر است؛ به مکانیسمی که یک مشاهده پذیر را اندازه می گیرد دستگاه (اندازه گیر) apparatus آن مشاهده پذیر می گوییم. پس هر مشاهده پذیر دستگاه ویژه ی خود را دارد که به ازای هر اندازه گیری درست یک عدد حقیقی دقیق از آن گزارش می دهد. مجموعه ی اعدادی که از اعمال دستگاه بر روی مشاهده پذیر آن حاصل می شود را طیف ویژه مقدارهای spectrum of eigenvalues آن مشاهده پذیر می گوییم و هر عدد را یک ویژه مقدار eigenvalue از آن مشاهده پذیر می گوییم. همان گونه که در آزمایشگاه نیز موکد شد، مشاهده پذیر مفهومی کلی تر از کمیت فیزیک کلاسیک است. زیر بر خلاف کمیت فیزیک کلاسیک، مشاهده پذیر یک عدد نیست بلکه پدیده ای است قابل اندازه گیری. یعنی فقط وقتی با یک عدد قابل بیان است که با دستگاه متناظرش در کنش قرار گیرد. بنابراین می توان گفت اصلا کار یک دستگاه این است که مشاهده پذیر خود را تبدیل به عدد کند (یا آشکار کند) یا به گونه ای دیگر می گوییم دستگاه مشاهده پذیر را معین کرد definite یا آن را به مقدار دقیق sharp value برد. اگر یک مشاهده پذیر معین شده باشد واکنش دستگاهش با آن فقط یک عدد از طیف ویژه مقدارها را می دهد. یعنی مشاهده پذیر در یک عدد گیر می کند تا طی فرایندی از حالت دقیق در بیاید و دوباره وارد آن شود. گاهی واکنش یک مشاهده پذیر و دستگاهش، مشاهده پذیر دیگری را از حالت معین در می آورد (یعنی اندازه گیری دومی را کاملا نامعتبر می کند). یا به عبارتی دو مشاهده پذیر داریم که هر دو با هم عدد (آشکار) نمی شوند. چنین دو مشاهده پذیری را ناسازگار incompatible observables می گوییم. ولی اگر این گونه نباشد آن دو را سازگار compatible observables می گوییم. یک سیستم کوانتمی system پدیداری کوانتمی است که به کمک مجموعه ای از مشاهده پذیرهای دو به دو سازگار، کاملا (کامل به این خاطر که تمام اطلاعات کافی در مجموعه یافت شود) قابل نمایش representation باشد. اعضای چنین مجموعه ای می توانند همگی با هم عدد باشند یا به عبارتی به ازای این مجموعه از مشاهده پذیرها یک مجموعه



خرید و دانلود  مفاهیم مکانیک کوانتم به روایت مدل های ریاضی  20 ص