دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درباره ی فرآیند عملیاتی نیروگاه اتمی بوشهر

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

فرآیند عملیاتی نیروگاه اتمی بوشهر

ساعت ٢:٥٢ ‎ب.ظ روز جمعه ۱٠ آبان ۱۳۸٧  

 

فرآیند عملیاتی نیروگاه اتمی بوشهر

علیرغم پیچیدگی فناوری یک نیروگاه هسته ای از نوع نیروگاه بوشهر، فرآیند تولید انرژی الکتریکی در نیروگاه هسته ای را می توان به طور ساده به سه مرحله کاملاً مجزا تقسیم نمود که در سه مدار مستقل شامل مدار اول، مدار دوم و مدار خنک کننده انجام می پذیرد.

/

مدار اول

شکافت اورانیوم غنی شده در راکتور منبع تولید انرژی به صورت گرمایی است. این انرژی گرمایی توسط آب مدار اول که در یک مسیر بسته (چهار حلقه) جریان دارد به مولد های بخار منتقل می شود. مولد بخار یک مبدل حرارتی است که آب مدار اول درون لوله های U شکل فولادی آن جریان دارد و آب مدار دوم در یک سیکل کاملاً مجزا با گردش در اطراف این لوله ها، ضمن برداشت حرارت به بخار تبدیل می شود. آب مدار اول پس از خروج از مولد بخار توسط پمپ مدار اول برای برداشت مجدد گرما به راکتور بازگردانده می شود.

مدار دوم

در مدار دوم، بخار تولید شده درمولد بخار به توربین هدایت شده و در آن جا به انرژی مکانیکی تبدیل می شود (چرخش توربین به طور مستقیم ژنراتور نیروگاه را به حرکت درآورده، که منجر به تولید انرژی الکتریکی می شود). سپس بخار خروجی از توربین، به وسیله کندانسور به آب تبدیل شده و مجدداً برای تکمیل و تکرار این چرخه به مولد بخار بازگردانده می شود.

مدار خنک کننده

برای چگالش بخار خروجی از توربین، آب دریا به عنوان خنک کننده، در یک مدار کاملاً مجزا از مدار دوم توسط پمپ های سیرکولاسیون به کندانسور هدایت می شود و پس از برداشت گرما، از طریق یک کانال روباز به طول 400 متر و به دنبال آن چهار تونل 1200 متری در زیر بستر دریا، در عمق 7 متری به دریا باز می گردد.

نقش اصلی راکتور در نیروگاه هسته ای تولید انرژی گرمایی است. فرآیندی که در این راکتور سبب تولید گرما می شود شکافت هسته ای نام دارد. شکافت، فرآیندی است که در طی آن یک هسته اتم سنگین به دو یا چند هسته کوچک تر تبدیل می شود و ضمن این عمل مقداری انرژی به صورت گرما و تابش ساطع می گردد.

در نیروگاه هسته ای با آب سبک، فرایند شکافت غالباً توسط نوترون‌های حرارتی انجام می گیرد. هسته اورانیوم 235 پس از جذب نوترون ناپایدار شده، به دو یا چند جز به نام شکاف‌پاره تقسیم می شود. علاوه بر شکاف‌پاره ها، دو تا سه نوترون بعلاوه مقداری انرژی و ذرات آلفا، بتا و تابش گاما نیز در هر شکافت به دست می‌آید (نوترون های آزاد شده به طور متوسط دارای انرژی Mev2 بوده که برای انجام شکافت هسته اورانیوم 235 بایستی انرژی جنبشی خود را از دست داده، با اتم های محیط خود به تعادل حرارتی دست یابند؛ یعنی انرژی آنها به چند صدم ev برسد. این عمل در نتیجه برخوردهای متوالی نوترون با هسته اتم های هیدروژن مولکول های آب درون راکتور صورت می گیرد). به این طریق، یک عمل شکافت می تواند منجر به شکافت‌های دیگری شود که آنها هم به نوبه خود شکافت های دیگری را به دنبال خواهند داشت. به این واکنش که به صورت تسلسلی شکل ادامه می‌یابد، واکنش شکافت زنجیره ای گویند. لازم به ذکر است که پایدار ماندن واکنش زنجیره ای در قلب راکتور مستلزم وجود جرم بحرانی در قلب راکتور می‌باشد.

انرژی آزاد شده از فرایند شکافت به گرما تبدیل می شود. حرارت تولید شده توسط آب مدار اول برداشت شده، به آب مدار دوم انتقال می یابد و در مدار دوم برای تولید بخار و چرخاندن توربین مورد استفاده قرار می گیرد.

تنظیم مقدار انرژی آزاد شده در یک راکتور هسته‌ای با تعداد شکافت‌هایی که اتفاق می‌افتد، کنترل می گردد. این عمل با کنترل کردن تعداد نوترون‌هایی که برای انجام عمل شکافت موجود می‌باشد صورت می‌گیرد. هر چه تعداد چنین نوترون هایی کمتر باشد، تعداد شکافت ها نیز کمتر است. یکی از روش‌های رسیدن به چنین کنترلی، این است که ماده ای را در راکتور قرار دهند که به آسانی نوترون‌ها را جذب کند. بنابراین با تنظیم مقدار این ماده در راکتور، تعداد نوترون‌های موجود برای عمل شکافت می تواند به میزان مطلوب تنظیم شود.

راکتور نیروگاه هسته ای بوشهر از نوع آب سبک تحت فشار می‌باشد که توان تولید Mw(t)3000 انرژی گرمایی را داشته و متشکل از یک پوسته از جنس فولاد کربنی است که با فولاد ضد زنگ پوشش داده شده است و درون آن قلب راکتور (Core)، سپر حرارتی و نوترونی (Core baffle)، نگهدارنده قلب (Core barrel، محافظ کانال‌های هادی (Protective Tube Unit) قرار گرفته و توسط درپوش راکتور (Upper Unit) بسته می‌شود. آب که به عنوان کند کننده نوترون و خنک کننده استفاده می‌شود، توسط پمپ‌های مدار اول با فشار bar157 و حرارت ˚C291 از طریق  4 نازل خط سرد (Cold Leg) وارد راکتور می‌شود و پس از برداشت حرارت از قلب راکتور با حرارت ˚C321 از طریق 4 نازل خط گرم (Hot Leg) به سمت مولدهای بخار هدایت شده، و در آنجا با تبادل حرارت با آب مدار دوم بخار تولید می‌شود.

منبع تولید گرما، سوخت هسته ای از نوع دی اکید اورانیوم غنی شده با غنای 02/4%، 62/3%، 4/2%، 6/1% می‌باشد. سوخت هسته‌ای به صورت قرص‌های استوانه‌ای به قطر 57/7 و ارتفاع 12 میلی متر ساخته شده که درون میله‌های سوخت قرار دارد.

تعداد 311 میله سوخت با آرایش شش ضلعی، یک مجتمع سوخت را می‌سازند و تعداد 163 مجتمع سوخت در کنار هم قلب راکتور را تشکیل می‌دهند. مکانیزم تولید گرما، واکنش هسته‌ای شکافت اورانیوم و تبدیل آن به پاره های شکافت سبک تر است که همراه با آزاد شدن انرژی و تولید نوترون برای ادامه این زنجیره است.

کنترل واکنش هسته‌ای و در نتیجه کنترل راکتور به کمک اسیدبوریک محلول در آب، به همراه میله‌های کنترل که به محرک‌های سیستم کنترل و حفاظت متصل است، انجام می‌شود.

اجزای راکتور

1- محرک میله‌های کنترل   5- محافظ کانال‌های هادی

2- درپوش راکتور   6- قلب راکتور

3- پوسته اصلی راکتور   7- ورودی خنک کننده

4- نگهدارنده قلب راکتور  8- خروجی خنک کننده     

 

/

         مجموعه توربین بخار K – 1000 – 3000/60 – 3 با قدرت نامی 1000 مگاوات و سرعت 3000 دور در دقیقه جهت به حرکت درآوردن ژنراتور جریان متناوب به کار می‌رود. ژنراتور به همراه مجموعه توربین بر روی یک سازه بتنی سوار شده که این سازه به صورت مجزا از سازه اصلی ساختمان توربین، بر روی فنرهای مخصوصی (جهت خنثی کردن ارتعاشات ناشی از دورهای بحرانی) قرار گرفته است. توربوست نیروگاه اتمی بوشهر شامل چهار توربین از جمله یک توربین فشار بالا و سه توربین فشار پایین می باشد. مجموعه توربین مذکور تک محوری و هر چهار توربین از نوع دو طرفه متقارن است که در هر طرف دارای پنج ردیف پره می باشند. روتور توربین های فشار پایین و فشار بالا به روش آهنگری و به صورت یکپارچه و بدون سوراخ مرکزی ساخته می شود که این کار باعث کاهش تمرکز تنش در روتور خواهد شد.

سیکل آب و بخار نیروگاه اتمی بوشهر این گونه است که بخار تولید شده در مولدهای بخار به ساختمان توربین هدایت و با حداکثر، رطوبت 2/0% و فشار bar8/58 r وارد توربین فشار قوی شده و پس از انجام کار به علت کاهش فشار و حرارت اولیه مرطوب می شود. برای این که این رطوبت به پره های توربین فشار ضعیف  آسیب نرساند، بخار خشک و مجدداً گرم می شود تا به پارامترهای مطلوب دست یابد و پس از آن با فشار bar8/6 r به توربین فشار ضعیف هدایت می شود، به دنبال آن در کندانسور تغییر حالت داده، طی مراحلی احیا شده (پیش گرم و گاززدایی گردیده و تا C˚ 222گرم می شود) و مجدداً به مولدهای بخار باز می گردد.

واحد توربین نیروگاه اتمی بوشهر دارای مدار پیشرفته احیاء از جمله چهار مرحله هیتر فشار پایین، دئراتور (هوازدا)، یک مرحله هیتر فشار بالا و پمپ انتقال کندانس بخار گرم کننده است. تمام هیترهای فوق به غیر از دئراتور که از نوع مخلوطی است. از نوع تبادل حرارت سطحی می باشند. تمام هیترهای احیاء کننده غیر از هیتر فشار پایین شماره چها ر و دئراتور، شامل دو پوسته می باشند و در دو خط موازی قرار دارند.

ژنراتور

ژنراتور نیروگاه اتمی بوشهر از نوع سنکرون سه فاز می باشد که سیم پیچ استاتور آن با آب خنک می گردد. خنک کننده روتور و هسته استاتور آن نیز هیدروژن می باشد. قدرت خروجی آن 1000 مگاوات و دارای دو قطب بوده و با مارک صنعتی TBB – 1000- 27/2 – T3 معرفی می گردد. ولتاژ خروجی استاتور آن نیز kv27 می باشد.

پست

نیروگاه اتمی بوشهر دارای دو پست kv230 و kv400 می باشد که پست kv400 از نوع GIS (گاز ایزوله کننده بین کنتاکت ها) بوده و از طریق دو خط به پست چغادک و شبکه سراسری متصل می گردد و پست kv230 از نوع AIS (هوا ایزوله کننده بین کنتاکت ها) می باشد و اتصال آن به شبکه سراسری توسط دو خط و از طریق پست بوشهر صورت می پذیرد.

اگر راکتور را قلب یک نیروگاه اتمی بدانیم، بدون شک سیستم کنترل و ابزار دقیق، مغز و شبکه عصبی این تأسیسات مهم و گسترده می باشد. سیستم کنترل و ابزار دقیق نیروگاه اتمی بوشهر یکی از پیشرفته ترین سیستم های اتوماسیون موجود در جهان و به صورت یک سیستم کنترل توزیع شده (DCS) بوده، که از نظر لایه های کنترلی به سه سیستم سطح بالا (TLSU)، میانی (TPTS) و پایین (سنسورها و عملگرها) تقسیم می شود.

(Top Level System of the power Unit) TLSU از یک شبکه کامپیوتری با سرعت MBit/s100 تشکیل شده است که بالاترین لایه کنترلی نیروگاه به حساب می آید، اطلاعات را از سطح میانی دریافت کرده، آنها را بر روی ایستگاه های کاری نشان داده و امکان کنترل مرکزی را ایجاد می‌کند. تابلوهای TPTS از چندین (Software Hardware Complex) SHC تشکیل شده که وظیفه نظارت و کنترل سیستم ها و تجهیزات فنی را بر اساس دستورالعمل های جاری بهره برداری نیروگاه اتمی بوشهر عهده‌دار است. TPTS از طریق Gateway به TLSU متصل شده و تبادل داده می‌نماید.

/



خرید و دانلود تحقیق درباره ی فرآیند عملیاتی نیروگاه اتمی بوشهر


کارآفرینی و طرح توجیهی محاسبه راندمان توربین نیروگاه طوس 76 ص (بروزشده)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 77

 

دستورالعمل :

علاوه بر دستنامه مرغک کولچستر که همراه ماشین است، دستنامه های کنترلی دیگری نیز وجود دارد. این بخش از دستنامه مرغک CNC کولچستر در ارتباط با مدارک و ارجاعاتی نوشته شده است تا قبل از استفاده از ماشین ، مطالعه شود. ضروری است که قبل از استفاده از ماشین ، آموزش کافی درباره آن ببینید. البته، نحوه بکارگیری آن توسط شرکت کولچستر از طریق شعبات فروش آن در دسترس است .

عملیات :

مرغک (مرغک ماشین تراش) CNC کولچستر یک ماشین سریع و قوی است که اگر تحت شرایط نامناسب به کار رود، خطرناک است. لطفا” ، قبل از استفاده از ماشین به نکات ایمنی و سلامتی زیر توجه نمایید.

سلامتی و ایمنی در کار:

مطابق با ملزومات سلامتی و ایمنی در کار و غیره ( ACT 1974) این دستنامه شامل اطلاعات لازم برای استفاده بهینه توام با ایمنی است. فرض بر این است که کاربر آن (اپراتور) به خوبی آموزش دیده است، مهارت دارد و مجاز به استفاده از ماشین است اگر در حال آموزش است حداقل ، تحت نظارت دقیق یک شخص ماهر و مجاز است.

توجه عمده به اهمیت دستگاه به همراه مقرراتی است که ممکن است کاربردی باشند مثل محافظت از چشم ها. تاکید شده است که نگهداری خوب ، عقل سلیم و نگهداری ماهرانه ، از ضروریات است. همچنین ، اطلاعات کافی برای تضمین اینکه ماشین به خوبی سرویس شود و به طور مناسب توسط اشخاص دارای مهارت و مجوز ، نگهداری شود ارائه شده است. توصیه می شود که برای ایمنی هر چه بیشتر قبل از بکارگیری آن به کدهای نحوه کار ماشین توجه شود.

مقررات ایمنی عملیات:

1 - ماشین و محل کار را تمیز ، پاکیزه و منظم نمایید.

2 - محافظ ها و کاورها را در جای خود قرار دهید و درهای کابینت ماشین را ببندید.

3 - هرگز چیزی را روی سطح کاری ماشین یا درون اطاقک ماشین قرار ندهید که ممکن است با قطعات گردشی و متحرک، برخورد نماید.

4 - قطعات در حال گردش یا متحرک ماشین را لمس نکنید.

5 - قبل از روشن کردن ماشین ، مطمئن باشید که خاموش کردن آن را یاد دارید.

6 - هرگز ، ماشین را فراتر از ظرفیت آن روشن نگه ندارید.

7 - از پوشیدن انگشتر ، ساعت ، کراوات و یا سایر البسه مثل ، خودداری کنید.

8 - در صورت وقوع حوادث غیرمترقبه ، فورا” ماشن را خاموش کنید.

9 - بدون بررسی قفل کردن صحیح، صفحه نظام ها یا دیگر محورهای چرخنده را تعویض نکنید.

10 - بدون بررسی سازگاری با مرغک شرکت کوچلستر و تولیدکننده اصلی ماشین از سایر دستگاههای کاری استفاده نکنید.

11 - ظرفیت بار محورهای گردان را برای استفاده دستی بررسی کنید.

12 - وقتی که ماشین را ترک می گویید آن را ایزوله کنید (بپوشانید).

خطرات استفاده از ماشین:

وقتی که از ماشین استفاده می کنید، کاملا” از خطرات حین کار زیر آگاه باشید:

الف - سرطان پوستی ناشی از روغن:

سرطان پوست ، ممکن است از طریق تماس مستمر با روغن ، مخصوصا” روغنهای برشکاری یا حتی روغنهای محلول ، ایجاد شود. پیشگیری های زیر باید اتخاذ شوند:

1 - از تماس غیرضروری با روغن بپرهیزید.

2 - لباسهای محافظ بپوشید.

3 - از سپرها و محافظ های حفاظتی استفاده کنید.

4 - لباسهای خیس شده با روغن یا آلوده به آن نپوشید.

5 - پس از کار ، تمام قسمتهای بدن که با روغن تماس داشته اند را به خوبی بشویید.

ب - به کارگیری ایمن از صفحه نظام ماشین تراش:

وقتی که به جزئیات سرعت ماشین و حداکثر سرعت مجاز آن توجه شود، این توضیحات صرفا” به عنوان یک راهنما قلمداد می شوند. این جزئیات باید به عنوان راهنمای عمومی بنا به دلایل زیر توجه شوند.

اگر صفحه نظام آسیب دیده باشد، سرعت های بالا خطرناک است. این امر بویژه برای صفحه نظام های دارای قطعات چدنی، صدق می کند که ممکن است در آنها شکستگی هایی ایجاد شود. نیروی نگهدارنده لازم برای به کارگیری ماشین از قبل ، شناخته شده نیست. حتی این امر برای سازنده صفحه نظام ، مبهم است.

توجه به تاثیر نیروی گریز از مرکز در شرایط خاص ، احتمال گریپاژ قطعات کاری وجود دارد. عوامل دخیل در آن عبارتند از:

الف - سرعت زیاد برای کاری خاص.

ب - وزن و نوع گیره های نگهدارنده ، در صورت استاندارد نبودن.



خرید و دانلود کارآفرینی و طرح توجیهی محاسبه راندمان توربین نیروگاه طوس 76 ص (بروزشده)


کارآفرینی و طرح توجیهی محاسبه راندمان توربین نیروگاه طوس 75 ص (بروزشده)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 77

 

دستورالعمل :

علاوه بر دستنامه مرغک کولچستر که همراه ماشین است، دستنامه های کنترلی دیگری نیز وجود دارد. این بخش از دستنامه مرغک CNC کولچستر در ارتباط با مدارک و ارجاعاتی نوشته شده است تا قبل از استفاده از ماشین ، مطالعه شود. ضروری است که قبل از استفاده از ماشین ، آموزش کافی درباره آن ببینید. البته، نحوه بکارگیری آن توسط شرکت کولچستر از طریق شعبات فروش آن در دسترس است .

عملیات :

مرغک (مرغک ماشین تراش) CNC کولچستر یک ماشین سریع و قوی است که اگر تحت شرایط نامناسب به کار رود، خطرناک است. لطفا” ، قبل از استفاده از ماشین به نکات ایمنی و سلامتی زیر توجه نمایید.

سلامتی و ایمنی در کار:

مطابق با ملزومات سلامتی و ایمنی در کار و غیره ( ACT 1974) این دستنامه شامل اطلاعات لازم برای استفاده بهینه توام با ایمنی است. فرض بر این است که کاربر آن (اپراتور) به خوبی آموزش دیده است، مهارت دارد و مجاز به استفاده از ماشین است اگر در حال آموزش است حداقل ، تحت نظارت دقیق یک شخص ماهر و مجاز است.

توجه عمده به اهمیت دستگاه به همراه مقرراتی است که ممکن است کاربردی باشند مثل محافظت از چشم ها. تاکید شده است که نگهداری خوب ، عقل سلیم و نگهداری ماهرانه ، از ضروریات است. همچنین ، اطلاعات کافی برای تضمین اینکه ماشین به خوبی سرویس شود و به طور مناسب توسط اشخاص دارای مهارت و مجوز ، نگهداری شود ارائه شده است. توصیه می شود که برای ایمنی هر چه بیشتر قبل از بکارگیری آن به کدهای نحوه کار ماشین توجه شود.

مقررات ایمنی عملیات:

1 - ماشین و محل کار را تمیز ، پاکیزه و منظم نمایید.

2 - محافظ ها و کاورها را در جای خود قرار دهید و درهای کابینت ماشین را ببندید.

3 - هرگز چیزی را روی سطح کاری ماشین یا درون اطاقک ماشین قرار ندهید که ممکن است با قطعات گردشی و متحرک، برخورد نماید.

4 - قطعات در حال گردش یا متحرک ماشین را لمس نکنید.

5 - قبل از روشن کردن ماشین ، مطمئن باشید که خاموش کردن آن را یاد دارید.

6 - هرگز ، ماشین را فراتر از ظرفیت آن روشن نگه ندارید.

7 - از پوشیدن انگشتر ، ساعت ، کراوات و یا سایر البسه مثل ، خودداری کنید.

8 - در صورت وقوع حوادث غیرمترقبه ، فورا” ماشن را خاموش کنید.

9 - بدون بررسی قفل کردن صحیح، صفحه نظام ها یا دیگر محورهای چرخنده را تعویض نکنید.

10 - بدون بررسی سازگاری با مرغک شرکت کوچلستر و تولیدکننده اصلی ماشین از سایر دستگاههای کاری استفاده نکنید.

11 - ظرفیت بار محورهای گردان را برای استفاده دستی بررسی کنید.

12 - وقتی که ماشین را ترک می گویید آن را ایزوله کنید (بپوشانید).

خطرات استفاده از ماشین:

وقتی که از ماشین استفاده می کنید، کاملا” از خطرات حین کار زیر آگاه باشید:

الف - سرطان پوستی ناشی از روغن:

سرطان پوست ، ممکن است از طریق تماس مستمر با روغن ، مخصوصا” روغنهای برشکاری یا حتی روغنهای محلول ، ایجاد شود. پیشگیری های زیر باید اتخاذ شوند:

1 - از تماس غیرضروری با روغن بپرهیزید.

2 - لباسهای محافظ بپوشید.

3 - از سپرها و محافظ های حفاظتی استفاده کنید.

4 - لباسهای خیس شده با روغن یا آلوده به آن نپوشید.

5 - پس از کار ، تمام قسمتهای بدن که با روغن تماس داشته اند را به خوبی بشویید.

ب - به کارگیری ایمن از صفحه نظام ماشین تراش:

وقتی که به جزئیات سرعت ماشین و حداکثر سرعت مجاز آن توجه شود، این توضیحات صرفا” به عنوان یک راهنما قلمداد می شوند. این جزئیات باید به عنوان راهنمای عمومی بنا به دلایل زیر توجه شوند.

اگر صفحه نظام آسیب دیده باشد، سرعت های بالا خطرناک است. این امر بویژه برای صفحه نظام های دارای قطعات چدنی، صدق می کند که ممکن است در آنها شکستگی هایی ایجاد شود. نیروی نگهدارنده لازم برای به کارگیری ماشین از قبل ، شناخته شده نیست. حتی این امر برای سازنده صفحه نظام ، مبهم است.

توجه به تاثیر نیروی گریز از مرکز در شرایط خاص ، احتمال گریپاژ قطعات کاری وجود دارد. عوامل دخیل در آن عبارتند از:

الف - سرعت زیاد برای کاری خاص.

ب - وزن و نوع گیره های نگهدارنده ، در صورت استاندارد نبودن.



خرید و دانلود کارآفرینی و طرح توجیهی محاسبه راندمان توربین نیروگاه طوس 75 ص (بروزشده)


تحقیق درمورد دید کلی نیروگاه هسته

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

دید کلی نیروگاه هسته‌ای مانند هر مرکز مولد برق با هدف تولید برق ایجاد می‌شود. تولید برق کار مشکلی به نظر نمی‌رسد. هر یک از شما احتمالا تکمه فلاش عکاسی یا استارت یک اتومبیل را زده است. در هر دوی اینها از انرژی الکتریکی ذخیره شده در یک باطری در موقع لزوم استفاده می‌شود. ولی یک ایستگاه مولد برق را نمی‌توان از تعداد زیادی باطری متصل به هم تشکیل داد.▪ دو دلیل بسیار مهم وجود دارد که چرا این کار نمی‌تواند صورت پذیرد:۱) اول اینکه باطریها مقدار انرژی الکتریکی محدودی دارند و نمی‌توانند بدون آنکه مرتب پر شوند مدت طولانی دوام داشته باشند، علاوه بر این برای پرکردن آنها نیاز به منبع انرژی الکتریکی دیگری است.۲) دوم اینکه باطریها نمی‌توانند انرژی الکتریکی به مقدار زیاد در زمان کوتاهی تهیه کنند.اگر باطری نمی‌تواند منظور یک یک مرکز تولید برق را برآورده سازد پس چه چیز می‌تواند؟ راههای تولید برق مردم سالهای متمادی است حرکت مکانیکی را برای تولید برق مورد نیاز خود بکار می‌برند.می‌دانید اساس کار یک دستگاه مولد برق (ژنراتور) ، اعم از مولد جریان مستقیم یا متفاوت ، حرکت نسبی یک‌ هادی در میدان مغناطیسی است. ولی مولد یک عیب دارد آن این است که مانند باطری نمی‌تواند انرژی الکتریکی ذخیره کند، به عبارت دیگر برقی که مولد تولید می‌کند باید در حین تولید مصرف شود. در همه مولد‌ها یک چیز مشترک است، همه آنها نیاز به منبع قدرت دارند تا استوانه حامل‌هادی‌ها را ، یا آهنربای مولد میدان مغناطیسی را بچرخاند یعنی حرکت مکانیکی سیم‌ها را در میدان مغناطیسی ثابت ( یا حرکت آهنربا را در مقابل سیم پیچ‌ها ثابت) تامین کند. منابع قدرت مورد استفاده انواع مختلف دارند.چهار نوع از آنها که اغلب مورد استفاده قرار می‌گیرند عبارتند از توربین آبی ، توربین بخار ، توربین گازی و موتور‌های درون سوز. توربین آبی در نیروگاه‌های هیدرولیک برای چرخاندن مولد برق (ژنراتور) از توربین آبی استفاده می‌شود. این طریقه تولید برق از لحاظ اقتصاد با صرفه است ولی محدودیت جغرافیایی محل از لحاظ سد سازی دارد. توربین گازی استفاده از توربین گازی برای به کار انداختن مولد‌های برق روز افزون است. اساس کار توربین‌های گازی مانند کار موتور‌های جت است. سوخت می‌سوزد و گازهای حاصل از سوختن در توربین منبسط می‌شود.ساختن توربین‌های گازی کم خرج است ولی بهره برداری از آنها پرخرج می‌باشد، علاوه بر این ابعاد آنها محدود است. به همین جهت اغلب آنها را به عنوان واحد‌های اضافی برای تدارک الکتریسیته بیش از معمول ، بویژه هنگامی که مصارف اختصاصی مورد نیاز است ، بکار می‌روند. توربین بخار توربین بخار وسیله متداولتری برای تامین توان مکانیکی جهت چرخاندن القاء کن مولد برق از نیروگاه است. تفاوت یک نیروگاه بخار با نیروگاههای دیگر در چگونگی تولید بخار است. هر روشی که بکار می‌رود باید مقدار زیادی گرما برای تولید بخار لازم جهت بکار انداختن توربین‌های بخار تهیه شود. در نیروگاههای با سوخت فسیلی این گرما از سوختن زغال سنگ ، نفت ، یا گاز طبیعی حاصل می‌شود. در نیروگاه هسته‌ای گرما از شکافت اتمهای سوخت اورانیوم به دست می‌آید. نیروگاه با سوخت فسیلی نیروگاههای با سوخت فسیلی مدرن پیچیده و پراجزایند.تهیه سوخت و تزریق آن سوختن تولید بخار کارکردن توربین مولد چگالیدن بخار برگشت آب حاصل از چگالیدن بخار به دیگ مکانیسم مراحل نیروگاه با سوخت فسیلی در نیروگاه با سوخت فسیلی ، اول باید سوخت را آماده کرد.مثلا اگر سوخت زغال سنگ است باید به صورت گرد درآید، چنانچه نفت است باید گرم شود ، سپس سوخت آماده شده ، به داخل کوره تزریق یا پاشیده شود. در کوره سوخت با هوا مخلوط شده می‌سوزد و گرمای حاصل از سوختن آن برای تولید بخار بکار می‌رود و چرخه تولید بخار آغاز می‌شود، بخار در توربین منبسط شده و آن را می‌چرخاند و چون محور توربین به محور مولد برق اتصال دارد القاء کن مولد نیز به چرخش در می‌آید و برق تولید می‌شود، بخار پس از خروج از توربین باید متراکم شده دوباره به صورت آب در آید بطوریکه بتوان آن را بوسیله تلمبه به دیگ برگردانده دوباره از آن استفاده کرد. تبدیلات انرژی در مکانیسم کار نیروگاه با سوخت فسیلی در این شش مرحله که در نیروگاه با سوخت فسیلی جریان دارند، انرژی در مراحل پی‌درپی از یک صورت به صورت دیگر تبدیل می‌شود انرژی اولیه در سوخت ذخیره است، وقتی سوخت می‌سوزد مقداری از این انرژی به صورت گرما آزاد می‌شود. آب درون دیگ این انرژی گرمایی را جذب می‌کند و بخار می‌شود. بخار انرژی را به توربین انتقال می‌دهد، در توربین این انرژی به انرژی جنبشی چرخاننده توربین تبدیل می‌گردد که مستقیما به مولد برق انتقال یافته به انرژی الکتریکی تبدیل می‌شود و برق تولید می‌گردد. نیروگاه هسته‌ای در حال حاضر ، در همه نیروگاههای هسته‌ای از توربین بخار برای چرخاندن مولدهای برق استفاده می‌شود، ولی در این نوع نیروگاه ، یک راکتور هسته‌ای جای یک دیگ بخار نیروگاه با سوخت فسیلی را گرفته است.به جای تهیه دائمی‌سوخت فسیلی ، تزریق آن به کوره و سوختن آن به منظور‌ایجاد گرما ، سوخت هسته‌ای گرمای لازم را برای تولید بخار ایجاد می‌کند. و این سوخت فقط تقریبا در هر سال یک بار تعویض می‌شود. گرمای حاصل شده از سوخت هسته‌ای به سیالی به نام خنک کننده راکتور که در اطراف سوخت جریان دارد انتقال می‌یابد. اختلاف پتانسیل در علوم فیزیکی اختلاف پتانسیل اختلاف در پتانسیل بین دو نقطه در یک میدان برداری پایدار است. در مهندسی، این کمیت گاهاً به عنوان متغیرهای عرضی در برابر کمیت هایی مانند شار که متغیر عبوریاست، توصیف می شود. تولید نتیجه ی شار و اختلاف پتانسیل توان است که نرخ تغییرات کمیت پایدار انرژی است.در مایعات، اختلاف پتانسیل اختلاف در فشار است. در سیستم های دمایی اختلاف پتانسیل اختلاف در دما است. در مکانیک، اختلاف پتانسیل، اختلاف در پتانسیل گرانشی بین دو نقطه است. در مهندسی برق، اختلاف پتانسیل ولتاژ است، یعنی اختلاف بین نقاط ابتدایی و انتهایی یک پتانسیل الکترواستاتیک. تعاریف الکتریکی یک اختلاف پتانسیل بین دو نقطه منجر به ایجاد یک نیرو می شود که یک نیروی الکتروموتیو یا emf خوانده می شود. این نیرو مایل است تا الکترون ها یا دیگر بارهای حامل را از یک نقطه به نقطه دیگر انتقال دهد. اگر یک هادی الکتریکی در یک میدان مغناطیسی به صورت عمود بر میدان حرکت کند، بین دو سرش یک اختلاف پتانسیل ایجاد می شود.اختلاف پتانسیل بین دو نقطه یک مدار الکتریکی برابر اختلاف در پتانسیل های الکتریکی آن دو نقطه تعریف می شود. اختلاف پتانسیل به صورت مقدارکار انجام شده برای انتقال واحد بار الکتریکی از نقطه دوم به نقطه اول یا به طور برابر، مقدار کاری که واحد بار می تواند در انتقال از نقطه اول به نقطه دوم انجام دهد، است. در سیستم واحد های ««SI، اختلاف پتانسیل، پتانسیل الکتریکی و نیروی الکتروموتیو توسط ««ولت که نشان دهنده واژه معروف ولتاژ و نماد V است، اندازه گیری می شود. یک ولت که پس از الساندور ولتا نامگذاری شد، به صورت یک ژول از انرژی برای انجام کار روی یک کلمب از بار تعریف شده است.اختلاف پتانسیل بین دو نقطه a و b انتگرال خط میدان الکتریکی "E" است: Va- اگر یک مدار الکتریکی را به یک چرخه آب در یک شبکه لوله ها که در غیاب جاذبه زمین توسط پمپ ها به گردش در می آید، تشبیه کنیم، آنگاه اختلاف پتانسیل معادل فشار بین دو نقطه است. اگر اختلاف پتانسیلی بین دو نقطه وجود داشته باشد، آنگاه جریان آب از نقطه اول به نقطه دوم قادر به انجام کار خواهد بود، همانند راه اندازی یک توربین.ولتاژ دارای خاصیت جمع پذیری است، یعنی ولتاژ بین A و C برابر ولتاژ بین A و B به علاوه ولتاژ بین B و C است. دو نقطه در یک مدار الکتریکی که توسط یک هادی (ایده آل) بدون مقاومت به هم متصل شده اند، دارای اختلاف پتانسیل صفر خواهند بود. اما با این وجود بین دیگر نقاط هم ممکن است که اختلاف پتانسیل صفر وجود داشته باشد. اگر چنین نقاطی را توسط یک هادی به هم متصل کنیم جریانی عبور نخواهد کرد. ولتاژهای مختلف در یک مدار را می توانیم توسط قانون مداری کیرشهف محاسبه کنیم



خرید و دانلود تحقیق درمورد دید کلی نیروگاه هسته


دانلودتحقیق درباره ی برق منطقه ای و نیروگاه برق

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 52

 

بسم الله الرحمن الرحیم

عنوان کارآموزی : برق منطقه ای و نیروگاه برق

استاد راهنما : آقای مهندس برخورداری

محقق : محمد بامشاد

دانشگاه : آزاد واحد آشتیان

خرداد 1385

فهرست

تاریخچه صنعت برق ایران .........................................................3

نیروگاه ها ( Power Stations) ..................................................8

نیروگاه های ذغال- سوختی ( Coal-Fired Power Stations )...........9

نیروگاه های نفت- سوختی ( Oil-Fired Power Stations )...............9

نیروگاه های هسته ای ( Nuclear Power Stations ) ......................9

نیروگاه های برق- آبی ( Hydroelectric Power Stations ) ............10

تاثیر خواص تولید و انتقال ........................................................... 10

تبدیل انرژی با استفاده از آب ........................................................ 12

توربینهای گازی ....................................................................... 13

نیروگاه های تولیدکننده برق ......................................................... 13

ساختار نیروگاه های اتمی جهان .................................................... 16

سیستمهای توزیع.........................................................................20

پدیده کرونا................................................................................23

انرژی الکتریکی..........................................................................26

انواع نیروگاههای برق ............................................................... 28

برقگیر ...................................................................................32

خطوط انتقال و توزیع ( برق منطقه ای) ..........................................33

تجهیزات سویچگر ......................................................................35

اصول کار ترانسفورماتور ...........................................................37

انواع زمین کردن ......................................................................39

ولتاژهای کمکی .........................................................................40

اینترلاکها .................................................................................41

کابل وکابل کشی..........................................................................44

شین وشین بندی ........................................................................48

نیروگاه سیکل ترکیبی(چرخه سیکل ترکیبی) ....................................50

تاریخچه صنعت برق ایران

 مقدمه

در سال 1871 میلادی ( 1250 هجری شمسی ) ماشین گرام اختراع شد . این اختراع گامی اساسی در راه ایجاد صنعت برق تجاری بود ، زیرا پس از آن تبدیل انرژی مکانیکی (و هر نوع انرژی دیگری که بتوان از آن کار مکانیکی به دست آورد ) به انرژی برقی ممکن گردید یازده سال پس ازآن، درسال 1882 میلادی ( 1261 هجری شمسی ) توماس ادیسون نخستین موسسه برق تجاری خود را برای تامین روشنایی در یکی از خیابانهای نیویورک افتتاح کرد بیان دو واقعه مهم بالا برای درک رابطه زمانی بین تاریخ پیدایش صنعت برق در جهان و در ایران خالی از فایده نیست . چنانکه خواهد آمد ، اولین مولد برق در ایران ، سه سال بعد از موسسه برق توماس ادیسون به کار افتاد

از 1300 تا 1310

از اوایل سالهای 1300 به بعد ، با آگاهی و علاقه مند شدن بخش خصوصی به مزایای برق ، رفته رفته در شهرهای بزرگ و کوچک ایران ، تاسیساتی برای تولید و توزیع و فروش برق ایجاد شد. این گونه فعالیتها عموما" درمقیاسهای کوچک ومحدود وبه طور کلی منفک از یکدیگر انجام می گرفت و البته نیاز به هماهنگی هم در شرایط آن روزهای نخستین احساس نمی شد درهمین دوران برخی ازکارخانه های صنعتی جدیدالتاسیس هم دارای تجهیزات برق اختصاصی شدند که داد و ستدهایی نیز با موسسات برق شهری داشتند

در 1310

برای نخستین بار ، شبانه روزی کردن برق در تهران در میان دولتمردان آن زمان مطرح شد و اقدامات اولیه برای تحقق آن صورت گرفت

در 1316

پس از شش سال و با گذراندن نشیب و فراز های بسیار ، بلاخره در تاریخ 25 /6 / 1316 نیروگاه بخاری ساخت کارخانه اشکودای چکسلواکی با قدرت 4x1600= 6400 کیلو وات در محل کنونی شرکت برق منطقه ای تهران نصب شد و به بهره برداری رسید با وجود آن که در تهران به علت وسعت شهر و موقعیت سیاسی و اجتماعی آن ، سرمایه گذاری دولتی در کار برق رسانی پیش از همه شهرهای دیگر آغاز شد ، بخش خصوصی هم در امور برق رسانی در تهران فعالیت قابل توجهی داشت به نحوی که در سال 1341 یعنی سال تاسیس سازمان برق ایران تعداد شرکتهای خصوصی که هر یک در بخشی از شهر تهران فعالیت داشتند به 32 شرکت رسیده بود

از 1327 تا 1334

برنامه هفت ساله اول عمرانی کشور به اجرا در آمد که در آن سهمی هم برای توسعه صنعت برق در کشور با هدف تامین مصارف خانگی شهرها و فراهم کردن رفاه اجتماعی منظور شده بود. دراین دوران،سازمان برنامه تعدادی مولدهای دیزلی 50و 100و 150 کیلو واتی را خریداری کرد و با بهره 3 درصد به شهرداریها و شرکتهای برق خصوصی فروخت و چون دریافت کنندگان کمک سازمان برنامه می بایست تواناییهای لازم را برای تقبل 50 درصد از سرمایه گذاریها داشته باشند ، طبعا" اعطای کمکها ، به امکانات مالی شهرها و موسسه های وام گیرنده بستگی داشت . به هر صورت در پایان برنامه اول،جمع قدرت نامی نصب شده در کشور به 40 مگاوات و میزان انرژی تولیدی سالانه به حدود 200 میلیون کیلو وات ساعت رسید

از 1334 تا 1341

در این سالها برنامه هفت ساله عمرانی دوم کشور اجرا شد . سهم برق در این برنامه ، با هدف افزایش تولید برق ، کاهش هزینه های تولید و پایین آوردن سطح عمومی نرخها درنظر گرفته شده بود دراین برنامه بنابر توصیه کارشناسان خارجی و داخلی، برای توسعه تاسیسات برق چهار حوزه فعالیت به شرح زیر منظور گردید - منطقه خوزستان - منطقه تهران - شهرهای بزرگ - شهر های کوچک بدین ترتیب می توان گفت که اندیشه فراتررفتن از محدوده هر شهر در کار توسعه صنعت برق،در برنامه دوم شکل گرفت. شروع به کاراحداث نیروگاههای برق آبی مهم کشور شامل سد دز (با ظرفیت اولیه 130 مگاوات ) ، سد کرج (با ظرفیت 91 مگا وات) و سد سفیدرود (با ظرفیت اولیه 35 مگاوات) همچنین نیروگاه حرارتی طرشت (به قدرت 50 مگاوات) ازدستاوردهای این دوره است

در 1341

برنامه سوم عمرانی کشورآغاز شد. با پذیرش نقش زیر بنایی صنعت برق،در این برنامه نیز اعتبارات قابل توجهی برای این صنعت تخصیص داده شد در این برنامه که 5/5 سال به طول انجا مید(تا آخرسال 1346)،در مجموع،مبلغ 21میلیارد ریال در صنعت برق هزینه گردید که به طورکلی سه بخش را در بر می گرفت تامین برق مراکز عمده مصرف شامل شهرهای تهران، اصفهان، شیراز، مشهد، تبریز، رشت - همدان و ساری تامین برق 17 شهر متوسط کشورشامل شهرهای آمل، چالوس،اردبیل،مراغه، لاهیجان،ارومیه، یزد - بهشهر، بوشهر، قزوین ،کرج، بابلسر و کرمانشاه تامین برق شهرهای کوچک -در همین برنامه ، تشکیل سازمان برق ایران به منظور اشراف کلی واعمال مدیریت بر برنامه ریزی و اجرای طرحهای تولید و ایجا د موسسات تولید ، انتقال و توزیع برق و هدایت سرمایه گذاریها دربخش برق پیش بینی شده بود این سازمان درتاریخ 13دی ماه1341 رسما" تشکیل یافت و تا پایان سال 1344 که عملا" دروزارت آب وبرق ادغام شد به انجام وظایف خود ادامه داد

در 1343

قانون تاسیس وزارت آب و برق در تاریخ 16/1/1343 به دولت ابلاغ شد در بخش برق ، وظایف زیر برعهده این وزارت خانه قرار می گرفت تهیه و اجرای برنامه ها و طرحهای تولید و انتقال نیرو به منظور تاسیس مراکز تولید برق منطقه ای -



خرید و دانلود دانلودتحقیق درباره ی برق منطقه ای و نیروگاه برق