لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
چکیده :
وظیفه سیستم تعلیق در یک خودرو جلوگیری از انتقال تکانها و نوسانات ناشی از سطح جاده به بدنه خودرو و به منظور راحتی سرنشین و رانندگی مطمئن می باشد .
جهت کسب بهترین نتیجه ، سیستم تعلیق می بایستی نرم یا انعطاف پذیر باشد که بدین ترتیب امکان حرکت بیشتری برای حرکت چرخها فراهم شود از سوی دیگر برای پایداری بیشتر خودرو، در تماس باقی ماندن چرخها با سطح جاده و نیز کنترل نوسانات درهنگام حرکت بر روی سطوح ناهموار ضروری میباشد .
در سیستمهای متداول تعلیق مکانیکی ، برآورده کردن تمامی این شرایط مشکل می باشد .
در خودروی زانتیا فنر لول و کمک فنر ، با یک گوی هیدرونیوماتیکی جایگزین شده است.
اساس کار سیستم هیدرونیوماتیک ، همانطور که از نام آن پیداست .بر پایه دو جزء اصلی آن یعنی یک گاز و یک مایع قرار دارد و این نکته مهم را به خاطر داشته باشید که یک گاز قابل تراکم بوده ، در حالی که یک مایع غیر قابل تراکم است .
در سیستم هیدرونیوماتیک زانتیا ، از نیتروژن به عنوان گاز و از روغن LHM به عنوان مایع سیستم استفاده شده است . کلمه LHM مخفف (Liquid Hydraulic Mineral) به معنای روغن مایع هیدرولیک معدنی می باشد .
LHM یک روغن هیدرولیک سبز رنگ است که آب را به خود جذب نمی کند .
یک دیافراگم از جنس لاستیک مصنوعی گاز را از مایع در داخل گوی تعلیق جدا کرده و گوی توسط یک پیستون و سیلندر به چرخ متصل می گردد . این گاز همانند یک فنر در سیستمهای معمولی مکانیکی عمل می کند .
هنگامی که باری بر روی خودرو قرار می گیرد ، گاز مشابه فنر تراکم شده و حجم آن کاهش می یابد و هنگامی که بار برداشته می شود ، گاز منبسط شده و سیستم به حالت اولیه خود باز میگردد.
چنانچه بخواهیم ارتفاع خودرو پس از قرا ر دادن بار بر روی آن ثابت باقی بماند می بایست مقداری روغن اضافی با فشار بالا به سیستم وارد شود . بنابراین با کم یا زیاد کردن مقدار روغن سیستم می توان ارتفاع خودرو را درحد مطلوب نگه داشت تا بدین ترتیب ملزومات یک رانندگی مطمئن و راحت تامین گردد.
قسمتی که در خودرو این وظیفه را بر عهده دارد قسمت تصحیح کننده ارتفاع (Height Corrector) نام دارد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
دانستنیها درباره سیستم تعلیق
همانطور که قبلا ذکر شد ، بر خلاف تفکر عامه ، کمک فنر وزن خودرو را ساپورت نمی کند بلکه وظیفه اصلی آن کنترل نوسانات فنرها و حرکات سیستم تعلیق و نگه داشتن چرخ به صورت چسبیده به جاده می باشد . این کار با تبدیل انرژی جنبشی حاصل از نوسانات فنر و سیستم تعلیق و تبدیل آن به انرژی گرمایی ( حرارتی ) در کمک فنر انجام می گردد .برای ورود به بحث نحوه عملکرد یک کمک فنر ، ابتدا به زبان ساده و بدور از جزئیات به بررسی اساس کار آن پرداخته و سپس به تشریح کلی و تحصصی عملکرد ، اجزا و انواع آن خواهیم پرداخت ؛ یک کمک فنر شامل پیستونی است که در سطح مقطعش سوراخهای ریزی ( این سوراخها را Orifice می نامند ) تعبیه شده و به یک میله فولادی ( Piston Rod ) متصل است ، این پیستون درون یک محفظه بسته ( تیوپ ) فلزی که حاوی یک سیال هیدرولیکی ( عموما روغن ) است ، حرکت می نماید . اطراف محل حرکت میله به داخل و خارج محفظه به وسیله یک کاسه نمد کاملا آب بندی شده و سیال تحت فشار ، امکان خروج از محفظه را دارا نیست .زمانی که نیرویی بر یک کمک فنر وارد شود ، کمک فنر به اصطلاح در سیکل فشرده شدن قرار گرفته و پیستون می خواهد به سمت پایین ، درون محفظه حرکت نماید ، اما از آنجا که سیال قابلیت فشرده شدن ندارد در مقابل این نیرو مقاومت می کند و چون برای رهایی از این فشار منفذی جز سوراخهای پیستون وجود ندارد ، برای دفع فشار وارده سیال از سوراخهای ریز درون پیستون عبور کرده و به پشت ( بالای )پیستون خواهد رفت ، این حرکت نیز بدلیل ریز بودن Orifice ها به کندی و با تولید حرارت انجام می گردد . همین کاهش سرعت جلوی نوسان فنر را گرفته و تعادل خودرو را برقرار می نماید . برای باز کردن کمک فنر فشرده شده ( سیکل بازشدن ) نیز عملیاتی مشابه سیکل فشرده شدن انجام می شود با این تفاوت که این بار سیال از بالای پیستون می خواهد به زیر پیستون منتقل شود .میزان مقاومتی که یک کمک فنر از خود نشان می دهد بستگی به سرعت سیستم تعلیق ( دست اندازهای جاده ) همچنین تعداد و سایز Orifice ها دارد. اما ساختمان کمک فنرهای امروزی تا حدی پیچیده تر از آن چیزی است که در بالا ذکر شد ، تقریبا تمامی کمک فنرهای مدرن امروزی از نوع حساس به سرعت ( Velocity Sensitive ) می باشند ، بدین معنا که در سرعتهای بالای سیستم تعلیق ( جاده های پر دست انداز ) ، کمک فنر مقاومت بیشتر و برعکس در سرعتهای پایین مقاومت کمتری از خود نشان می دهد که این امر نرمی و راحتی رانندگی را بسیار بیشتر می نماید . اما در سیستمی که در بالا بطور ساده بررسی شد یک مشکل بزرگ به چشم می خورد ؛ حجم سیال پایین پیستون ، در هنگامی که پیستون تا انتها بالا آمده ، با حجم سیال بالای پیستون در زمانی که پیستون تا انتها پایین رفته مساوی نیست ، دلیل آن هم وجود میله کمک فنر در بالای پیستون می باشد .اما این مشکل نیز به روشهای مختلفی در انواع کمک فنرهای موجود حل شده . حال با توجه به توضیحات ارائه شده در بالا به بررسی نحوه عملکرد یک کمک فنر متداول امروزی خواهیم پرداخت :همانطور که گفته شد کمک فنرها بر اساس جابجایی سیال در دو طرف پیستونی که در یک محفظه ( تیوپ ) حرکت می نماید ، در دو سیکل فشرده شدن و بازگشت ( کشش ) کار می کنند .سیکل فشرده شدن ( Compression Cycle ) :در هنگام فشرده شدن یا همان حرکت رو به پایین کمک فنر ، مقداری از سیال از طریق Orifice ها از قسمت B به قسمت A رفته و مقداری نیز از طریق سوپاپ فشردگی ( Compression Valve ) که در کف محفظه کمک فنر قرار دارد به تیوپ ذخیره ( Reserve Tube ) وارد می شود ، دلیل وجود تیوپ ذخیره اختلاف حجم دو قسمت A و B بدلیل وجود میله کمک فنر در قسمت B می باشد ، از اینرو مقدار سیالی که در قسمت B قرار دارد قابل جایگزینی در قسمت A کمک فنر نمی باشد . پس در اثر فشار وارده ، سوپاپ فشردگی باز شده و مقداری از سیال وارد تیوپ ذخیره که در گرداگرد محفظه اصلی و جدای از آن قرار دارد ، وارد می شود .همانگونه که در ابتدا ذکر شد کمک فنرهای امروزی مجهز به سیستم حساس به سرعت می باشند ، این سیستم برای کنترل جریان سیال در سرعتهای محتلف سیستم تعلیق دارای قطعاتی اضافه در پیستون و سوپاپ فشردگی می باشد ، این قطعات ساده که شامل چند دیسک ( واشر ) ، یک فنر و ... می باشد باعث می شوند تا کمک فنر به نسبت سرعت ضربه اعمال شده در ۳ مرحله از خود واکنش نشان دهد ؛ اگر سرعت پایین باشد ، دیسکها در مقابل جریان روغن مقاومت می نماید ، این امر باعث عبور جریان آرامی به صورت نشتی از Orifice ها ، از قسمت B به قسمت A خواهد شد . در سرعتهای بیشتر ، فشار جریان روغن افزایش یافته پیستون را به سمت قسمت B فشار می دهد که باعث باز شدن اندک دیسکهای موجود در پیستون از روی کف پیستون می گردد و سیال با سرعت کم از درون Orifice ها عبور می کند ، اما در سرعتهای بسیار زیاد ، دیسکها تحت فشار وارده باز مانده و سیال نیز با سرعت زیاد از درون Orifice ها عبور می نماید ، اما همزمان با پیستون ، سوپاپ فشردگی موجود در محفظه نیز که عملکرد و ساختمانی مشابه با پیستون دارد ، در همان ۳ مرحله ، حجمی از سیال که قابل جایگیری در قسمت A نیست ( بدلیل وجود میله ) را تحت فشار وارده به تیوپ ذخیره در گرداگرد محفظه اصلی منتقل می نماید .سیکل باز شدن ( Extension Cycle یا Rebound ) :باز شدن یا کشش کمک فنر تحت نیروی پتانسیل ذخیره شده در فنر جمع شده ، انجام می گیرد و در اصل این فنر می باشد که با باز شدن خودش کمک فنر را نیز باز کرده و به حالت اولیه اش بر می گرداند . در این سیکل زمانیکه پیستون به سمت بالا کشیده می شود طی همان ۳ مرحله و بر حسب سرعت حرکت سیستم تعلیق ، سیال موجود در قسمت A از طریق Orifice ها به قسمت B منتقل شده و از آنجا که مقدار سیال موجود در قسمت A برای جایگزینی در قسمت B ناکافی است باید مقدار سیالی که در سیکل فشردگی در تیوپ ذخیره ، جمع آوری شده ، وارد عمل شود . از آنجاییکه در این زمان فشار سیال موجود در تیوپ ذخیره بالاتر از فشار سیال موجود در قسمت B می باشد ، باعث باز نمودن سوپاپ فشردگی در کف کمک فنر می گردد و در پی آن سیال از تیوپ ذحیره جریان یافته و وارد قسمت B می گردد تا این قسمت را بطور کامل پر نماید ( باز شدن سوپاپ در این مرحله نیز حساس به سرعت و ۳ مرحله ای است ).انواع کمک فنرها دو تیوپه تک تیوپه با مخزن بیرونیدو تیوپه :در این مدل از کمک فنر ، که همان نوع بررسی شده در بالاست ، یک تیوپ اصلی وجود دارد که پیستون در آن حرکت می نماید و تیوپ دوم که تیوپ ذخیره نام دارد ، در گرداگرد تیوپ اصلی قرار گرفته تا سیال مازاد را در خود جای دهد . کمک های دو تیوپه انواع متنوعی دارند ، که برخی از لحاظ تکنولوژی منحصر به یک یا چند کارخانه بوده و دارای قیمتهای بالا و کارآییهای خاصی نیز می باشند ، اما انواع متداول آن به شرح زیر می باشند :دو تیوپه گازی :گسترش کمک فنرهای گازی باعث ایجاد برتری عمده ای در رانندگی با خودروهای مجهز به این نوع کمک فنر گردیده . این نوع از کمک فنر به مشکلات موجود در کنترل و هدایت خودروهایی که مجهز به شاسی و بدنه یکپارچه هستند یا فاصله چرخهایشان کم است یا نیاز به فشار بالای باد تایرها دارند ، خاتمه بخشیده . این کار تنها با افزودن مقداری گاز نیتروژن با فشار کم در تیوپ ذخیره انجام می گیرد . این در حالی است که تصور عامه بر این است که در کمک های گازی تنها از نوعی گاز استفاده می شود و از روغن خبری نیست . اما چنین نیست ، در این نوع کمک فنر ، گاز ( نیتروژن ) تنها حجم بسیار کمی از حجم مواد موجود در کمک را شامل می شود . فشار نیتروژن درون تیوپ ذخیره نیز ما بین ۱۰۰ تا ۱۵۰ psi می باشد .یکی دیگر از محاسن نیتروژن جلوگیری از ایجاد کف در کمک فنر است ، این کف ( Foam ) که حاصل ترکیب شدن روغن با هوا ( در کمک فنرهای دو تیوپه هیدرولیکی بجای نیتروژن ، هوا وجود دارد ) است ، قابل فشرده شدن می باشد ، از اینرو باعث اخلال در کار کمک شده و نرمی و راحتی رانندگی را از بین می برد همچنین واکنشهای کمک فنر را با تاخیر مواجه می کند . اما در انواع گازی ، نیتروژن تحت فشار قابلیت ترکیب شدن با روغن را دارا نیست . در صورتی هم که مقادیر کمی هوا در پروسه تولید یا در حین کارکرد کمک وارد آن شده باشد ، بدلیل وجود فشار نیتروژن تنها به صورت حباب در روغن پخش می شود . دیگر مزیت کمک فنرهای گازی ، بازگشت جزئی آنها پس از فشرده شدن است ، این امر که بدلیل بیشتر بودن سطح مقطع زیر پیستون نسبت به سطح بالای پیستون ( بدلیل وجود میله ) و وجود فشار بالای نیتروژن وارد بر سطح بزرگتر ( زیر پیستون ) اتفاق می افتد ، باعث بالا رفتن ضریب فنر شده ، و تا حدی از پایین رفتن سر خودرو هنگام ترمز گیری ، پایین رفتن عقب خودرو در هنگام شتاب گیری و چپ شدن و انحراف خودرو جلوگیری می نماید.دو تیوپه هیدرولیکی :عینا مشابه نوع گازی می باشند ، با این تفاوت که در آنها بجای نیتروژن تحت فشار کم ، از هوا در فشار معولی استفاده می شود ، که مشکلاتی نظیر ایجاد کف در آنها اجتناب ناپذیر است ( نوع هیدرولیکی ، نسل اول کمک فنرهای دو تیوپه محسوب می شوند ، که همینک جای خود را به انواع گازی سپرده اند ) .دو تیوپه Foam Cell :در این نوع بجای اینکه اجازه داده شود گاز نیتروژن در تماس با سیال هیدرولیکی ( روغن ) قرار گیرد ، سلولهایی از نیتروژن اشباع شده بکار می رود ، این نوع نیز همانند نوع گازی ، از ایجاد کف هوا و روغن جلوگیری می نماید ، اما در صورتی که در دماهای بسیار بالا قرار گیرد ( کارکرد در جاده های با دست انداز بسیار زیاد در مدت زیاد ) پس از سرد شدن دیگر کیفیت اولیه خود را باز نخواهد یافت .یکی از اشکالات کمک های دو تیوپه ، نداشتن قابلیت نصب شدن به صورت زاویه دار و یا سر و ته می باشد ، این امر باعث می شود ، در مواردی که سازنده با کمبود جا مواجه است امکان استفاده از این نوع کمک را نداشته باشد ، دیگر اشکال کمک های دو تیوپه نیز دفع نشدن کافی گرما به خارج می باشد ، چرا که تیوپ ذخیره مانعی بر سر خروج گرمای تولیدی در پیستون بوده و گرما نیز باعث کاهش ویسکوزیته روغن می گردد ، که این امر کارآیی کمک فنر را کاهش می دهد ( این مشکل در نوع گازی کمتر بوجود می آید ) . کمک های دو تیوپه در اکثر خودروهای سواری ، وانتها ، SUV ها و کامیونهای سبک بکار می رود .تک تیوپه :در این نوع از کمک فنر همانطور که از نامش پیداست ، تیوپ ذخیره وجود ندارد ، در درون تیوپ اصلی ۲ پیستون وجود دارد ؛ پیستون متحرک و پیستون جدا کننده ( معلق ) ، پیستون متحرک که به میله کمک فنر متصل است دقیقا مشابه انواع دو تیوپه عمل می نماید ،اختلاف اصلی اینجاست که در این نوع از سوپاپ فشردگی خبری نیست و بجای آن یک پیستون جدا کننده ، محفظه حاوی روغن را از محفظه گاز جدا می نماید ، محفظه زیرین حاوی گاز با فشار ۳۶۰ psi می باشد . در حین کارکرد در سیکل بازشدن ، هنگامی که فشاری بر پیستون متحرک وارد نشود بر اثر فشار نیتروپن زیرین ، بالا آمده و فضای خالی را پر می نماید ، در سیکل فشرده شدن نیز تحت فشار ، پیستون پایین می رود تا کمک تا انتها فشرده شود .این نوع کمک فنر قابلیت نصب در تمامی حالتها را داراست ، همچنین بدلیل فشار بالای نیتروژن ، بر خلاف دیگر انواع کمک فنر قابلیت ساپورت مقدار کمی از وزن خودرو را نیز دارد . در این نوع بدلیل نبود تیوپ ذخیره مشکل دفع حرارت تولیدی نیز وجود ندارد ، در صورت بروز گرما نیز نه تنها کارآیی آن کاهش نمی یابد بلکه در پی افزایش فشار نیتروژن ( در اثر گرما ) بهبود نیز می یابد . همچنین بدلیل نبود تماس بین روغن و گاز یا هوا مشکل تشکیل کف نیز وجود ندارد ، اما عیب این نوع کمک فنر آسیب پذیری آن است چرا که بدلیل نبود تیوپ ذخیره ، در صورت برخورد شیئی خارجی با پوسته کمک و ایجاد فرورفتگی ، پیستون از حرکت باز می ماند . این نوع کمک فنر در بسیاری از خودروهای سواری ، وانتها ، SUV ها و کامیونهای سبک استفاده می شود ، اما قیمت بالاتری نسبت به انواع تک تیوپه دارد .با مخزن بیرونی :این نوع که بهترین نوع کمک فنر محسوب می شود ، برای کارهای برجسته ای چون مسابقات اتومبیلرانی و موتورسیکلت رانی بکار می رود و قیمت بالایی نیز دارد . در این نوع ، از یک کمک فنر تک تیوپه سبک و کوچک استفاده می شود که بوسیله یک لوله به مخزنی که در قسمتی جدای از کمک فنر واقع شده و حاوی سیال و گاز می باشد وصل می شود ، درون مخزن یک پیستون جداکننده و یک سوپاپ فشردگی قرار دارد ، از اینرو می توان این نوع را ترکیبی از دو نوع قبلی یعنی دو تیوپه و تک تیوپه دانست .اشغال فضای کمتر در پشت چرخ ، بدلیل پرتابل بودن مخزن دوم ( در برخی موارد به تیوپ اصلی چسبانده شده ، اما در اکثر موارد جدا می باشد ) ، خنک شدن بهتر و قابل تنظیم بودن ، از مزایای این نوع کمک فنرها محسوب می شود .چند نکته:مهندسین خودرو برای بدست آوردن کاراکترهایی چون بالانس ، تعادل و پایداری خودرو در شرایط مختلف ، میزان باز شدن دیسک های پیستون و سوپاپ فشردگی را به نسبت نوع خودرو ، وزن آن و شرایط کارکرد ، تنظیم می نمایند . این میزان باز شدن را Valving Value می نامند و با تغییر فنر موجود در پیستون و سوپاپ فشردگی قابل تغییر می باشد ، از اینرو در صورتی که قصد خرید کمک فنری غیر از نوع استاندارد خودرویتان دارید ، حتما به مقدار Valving Value کمک فنر جدید توجه نمایید تا با قطعه اصلی یکسان باشد . برخی کمک فنرها به صورت زاویه دار نصب می شو ند که این امر باعث کاهش تاثیر کمک فنر می شود ، اما در مواردی که با کمبود جا مواجه باشند ( چه از نظر کمبود فضا برای قرارگیری در حالت عمودی و چه از نظر ارتفاع باز شدن ) کج کردن زاویه کمک ، اجتناب ناپذیر است . این امر بیشتر در خودروهایی که از فنرهای تخت استفاده می کنند دیده می شود
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
در تعلیق میان بودن و نبودن
گربه شرودینگر
طبق قواعد مکانیک کوانتوم گربه تا زمانی که کسی در جعبه را باز نکرده و مشاهده ای انجام نداده است در حال زنده و مرده قرار دارد
جیم ویلسون
محققین گمان می برند به زودی می توانند راه حلی برای یکی از غامض ترین مسائل فیزیک جدید بیابند: یافتن راهی برای اعدام گربه شرودینگر. گربه خیالی شرودینگر از سال ۱۹۳۵ تاکنون با دانشمندان لجبازی کرد و آنان را سردرگم کرده است. هیچ کس تنفر گربه دوستان را در سال ۱۹۳۵ از یاد نمی برد چرا که در آن سال از یک گربه برای انجام آزمایشی جهت بیان وضعیت های دشواری که در تئوری کوانتوم به وجود می آید استفاده شد. اروین شرودینگر (Schrodinger Erwin) فیزیکدان اتریشی تئوری کوانتوم را ارائه کرد و در توسعه آن نقش بسیار موثری ایفا کرد. تئوری کوانتوم که اغلب از آن به عنوان یکی از موفق ترین تئوری های علمی نام می برند ـ چرا که بدون آن فاقد لیزر، سلاح های هسته ای و بسیاری از اختراعات دیگر بودیم ـ برای ما توضیح می دهد که طبیعت در سطوح زیر اتمی چگونه رفتار می کند. در سطوح زیراتمی قواعد فیزیک کلاسیک که هر روزه آن ها را تجربه می کنیم، اعتبار و کارآیی خود را از دست می دهند. برای مثال می توان گفت ذرات زیر اتمی در یک آن می توانند در دو مکان مختلف باشند، دیگر آنکه به نظر می رسد می توان اطلاعات را سریع تر از سرعت نور منتقل کرد.
قواعد حاکم بر دنیای کوانتوم آنچنان عجیب است که حتی آلبرت اینشتین هم دست هایش را به علامت تسلیم بالا برد و گفت: «اگر فیزیک کوانتوم، صحیح باشد، آن وقت باید اذعان کرد قوانین جهان بسیار عجیب است. » حتی خود شرودینگر هم از تفسیر یافته های خود ناخرسند بود و با تاسف بسیار به یکی از همکاران خود گفته است: «از این که در مورد تئوری کوانتوم کار می کند چندان راضی نیست. »مسئله ای که اینشتین، شرودینگر و فیزیکدانان پس از آن ها را تا این حد متحیر کرد تقابل این مشاهدات با واقعیت ها بود.
مطابق تئوری کوانتوم، ذرات فقط وقتی وجود دارند که بتوان آن ها را «مشاهده» کرد. هر چند که تجربیات هر روزه ما چیزی خلاف این را بیان می کند. در ابتدای کار توصیف شرودینگر از تابع موج ـ مفهومی ریاضی که موقعیت و حرکت های ممکن ذرات را بیان می کند ـ بسیار عجیب به نظر می رسید. نه سال بعد وی آزمایش گربه را طراحی کرد تا بتواند توسط این آزمایش اختلاف بین واقعیت های ملموس توسط انسان و واقعیت های دنیای کوانتوم را که خود خالق آن بود بیان کند. در این «آزمایش ذهنی» که گاهی اوقات از آن به عنوان آزمایشی خیالی نیز نام می برند، شرودینگر گربه ای را درون یک جعبه در بسته قرار داد. در این جعبه اسلحه ای کشنده که ماشه ای حساس دارد و یک اتم رادیواکتیو هم قرار دارند. احتمال آنکه اتم رادیواکتیو طی مدت یک ساعت از خود پرتوی ساطع کند ۵۰ درصد است. اگر اتم رادیواکتیو تجزیه شود، انرژی آزاد شده طی این فرآیند، ماشه اسلحه را خواهد کشید. می توان گفت بعد از گذشت یک ساعت با برداشتن در جعبه می توان دریافت آیا گربه زنده است یا مرده.
اما شرودینگر نظر دیگری دارد. وی می گوید عجله نکنید. طبق قواعد مکانیک کوانتوم، گربه تا زمانی که کسی در جعبه را باز نکرده و مشاهده ای انجام نداده است، در حال زنده و مرده قرار دارد.
این مفهوم در مکانیک کوانتوم به عنوان اصل بر هم نهی کوانتومی quantum) (SuperPosition نامیده می شود.
این امر با نحوه عملکرد جهان در مقیاسی که برای بشر قابل درک است، مغایرت دارد. شاید احمقانه به نظر برسد اما شرودینگر خاطرنشان می سازد، وجود اصل بر هم نهی از لحاظ ریاضی ضروری است، تا تئوری کوانتوم بتواند پیش گویی های دقیق خود را از عملکرد جهان در سطح زیراتمی ارائه دهد و طی بیش از نیم قرن گربه مرده و زنده شرودینگر با فیزیکدان لجبازی می کرد و بنابراین لازم بود به طور دقیق دریابیم که چگونه حوزه کوانتوم با جهان قابل درک توسط انسان مرتبط می شود.
شخص غیرمطلع و کم حوصله ممکن است در مورد سرنوشت نهایی گربه شرودینگر بگوید: «ساده است، در جعبه را بردارید و نگاهی به داخل آن بیاندازید تا دریابید گربه هنوز زنده است یا مرده. » اما فیزیکدانان معتقدند این کار هم نمی تواند جواب نهایی را در اختیار ما قرار دهد، چرا که مطابق قواعد مکانیک کوانتوم خود عمل «مشاهده» باعث می شود که گربه به یکی از حالت های «زنده» یا «مرده» تبدیل شود.
در بهار سال ۱۹۹۶ تیمی از دانشمندان فرانسوی «ENS» در پاریس گام های بلندی را برای نزدیک کردن حوزه های بزرگ مقیاس که برای بشر قابل درک است با سیستم های در مقیاس کوانتومی برداشتند. آنان روشی را پیشنهاد کردند که توسط آن بتوان بدون برداشتن در جعبه از سرنوشت گربه مطلع شد. در طرح آنان ذره ای زیر اتمی که نقش موش را بازی خواهد کرد از مقابل گربه عبور می کند و آنان می توانند نتیجه این عمل را مشاهده کنند. جعبه ای که گربه در آن قرار دارد حفره کوچکی در خود دارد که از جنس آینه ابررسانا است. در شروع آزمایش یک اتم از میان میدان انرژی با فرکانس ریزموج عبور می کند. در نتیجه اتم ضربه ای به گربه داخل جعبه وارد می سازد. اتم دومی که پس از آن وارد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 32 صفحه
قسمتی از متن .doc :
دانشگاه آزاد اسلامی
واحد کرج
دانشکده الاهیات
موضوع تحقیق:
تعلیق اجرای مجازات
استاد:
جناب آقای میر شفیعی
محقق:
رقیه جهانی
فهرست مطالب
عنوان صفحه
مبحث اول – تعلیق مجازات
گفتار اول – شرایط تعلیق اجرای مجازات
الف- شرایط ماهوی
1- محکومیت تعزیری و یا بازدارنده
2- فقدان محکومیت قطعی به برخی از مجازاتها
3- استحقاق محکوم
ب- شرایط شکلی
1- مقارن بودن صدور حکم محکومیت با قرار تعلیق اجرای مجازات
2- اعلام ضمانت اجرای تخلف از مقررات تعلیق
3- تعیین مدت معین
گفتار دوم – قلمرو تعلیق اجرای مجازاتها
الف- قلمرو تعلیق در مجازاتهای اصلی
1- محکومیت به حبس
2- محکومیت به شلاق
3- محکومیت به جزای نقدی
ب- قلمرو تعلیق در مجازاتهای تکمیلی و تبعی و تتمیمی
ج- جرائم ممنوع التعلیق
گفتار سوم – آثار تعلیق مراقبتی مجازات
الف- تعلیق اجرای مجازات
1- تاثیر تعلیق در مورد محکومیت
2- تاثیر تعلیق در مورد محکومیت به جزای نقدی و شلاق
3- تعلیق و خسارت مدعی خصوصی
4- چه اقداماتی جهت شخصی شدن تعلیق محکومیت باید صورت گیرد
ب- تعلیق تکالیف خاص به محکوم علیه
ج- خاتمه تعلیق
1- انقضای مدت تعلیق
2- فسخ تعلیق
3- شرایط فسخ تعلیق
مقدمه
در شرایط فعلی حقوق جزا لازم اعمال مجازات به مجرمین وجود مسئولیت کیفری باشد. بدیهی است اگر فردی فاقد مسئولیت کیفری باشد به هیچ وجه نمی توان نسبت به او مجازاتی را اعمال نمود. ارتکاب جرم و تحمیل مجازات مستلزم تحقق ارکان سه گانه جرم می باشد. بر اساس اصل قانونی بودن حقوق جزا که از اصول مقبول در نظامهای حقوقی است. اعمال و رفتار افراد هر اندازه زننده و غیر اخلاقی و مضر به حال فرد یا اجتماع باشد تا
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
سیستم های تعلیق خودرو چگونه کار می کنند؟
(ترجمه از sidewinder )
هنگامی که مردم در مورد کارایی اتومبیل فکر می کنند، معمولاً کلماتی نظیر: اسب بخار، گشتاور و شتاب صفر تا صد به ذهن شان خطور می کند. ولی اگر راننده نتواند خودرو را کنترل کند، همه قدرتی که توسط موتور ایجاد می گردد، بدون استفاده است. به همین دلیل، مهندسین خودرو تقریباً از هنگامی که به فناوری موتورهای احتراق داخلی چهار زمانه دست پیدا کردند، توجهشان به سیستم تعلیق معطوف گردید.
کار تعلیق خودرو، در به حداکثر رسانیدن اصطکاک بین لاستیک و سطح جاده، برای فراهم آوردن هدایت پایدار، دست فرمان خوب و اطمینان از اینکه سرنشینان در راحتی به سر می برند، خلاصه می شود. در این مقاله ما به کاوش چگونگی کارکرد سیستم تعلیق می پردازیم، و اینکه در طول سال ها چگونه متحول شده، و اینکه طراحی سیستم های تعلیق در آینده به کدام جهت سوق پیدا می کند.
اگر جاده ها کاملاً صاف بودند و بدون هیچ دست اندازی، ما نیازی به سیستم تعلیق نداشتیم. ولی جاده ها از صاف بودن فاصله زیادی دارند. حتی جاده هایی هم که به تازگی آسفالت شده اند، دارای ناصافی هایی جزئی هستند که می توانند بر چرخ های خودرو تاثیر بگذارند. این ناصافی ها بر چرخ ها نیرو وارد می کنند و طبق قوانین حرکت نیوتن، همه نیروها جهت و اندازه دارند. یک دست انداز باعث می شود تا چرخ به صورت عمودی بر سطح جاده بالا و پایین برود. البته نیرو به بزرگی و کوچکی دست انداز بستگی دارد. در عین حال، چرخ خودرو هنگامی که از نا هم سطحی عبور می کند، یک شتاب عمودی را نیز به دست می آورد.
بدون یک نظام مداخله کننده، همه انرژی عمودی چرخ، به شاسی که در همان جهت در حال حرکت است انتقال می یابد. در چنین شرایطی، ممکن است که چرخ ها به طور کامل ازجاده جدا شده و سپس، تحت نیروی جاذبه، مجدداً با سطح جاده برخورد کنند. چیزی که شما نیاز دارید، سیستمی است که انرژی چرخ را (که دارای شتاب عمودی است) در حال عبور از دست انداز، جذب کرده و به شاسی و بدنه اجازه دهد تا به راحتی حرکت کنند.
مطالعه نیروهای موجود در یک خودروی متحرک را دینامیک خودرو می نامند، و برای درک بهتر ضرورت وجود یک سیستم تعلیق، در وحله اول، نیاز به دانستن بعضی مفاهیم می باشد. اکثر مهندسان اتومبیل، دینامیک خودروی متحرک را از دو دیدگاه بررسی می کنند:
● سواری – توانایی خودرو برای به نرمی عبور کردن از یک جاده پر دست انداز.
● دست فرمان – امنیت خودرو در شتاب، ترمز و در پیچ ها و دورها.
این دو خصیصه را می توان به صورت عمیق تری در سه بخش مهم توضیح داد – ایزولاسیون جاده، نگهدارندگی جاده و پیچ. جدول زیر این اجزاء را توضیح داده و به این می پردازد که مهندسان چگونه سعی بر حل این مشکلات، به صورت جداگانه و بسته به نوع خودشان دارند:
بخش
تعریف
هدف
راه حل
ایزولاسیون جاده
توانایی خودرو برای جذب یا جداسازی شوک جاده از قسمت سرنشین.
به بدنه خودرو این اجازه را بدهد تا به راحتی روی جاده های خراب حرکت کند.
انرژی را از دست اندازها گرفته و آن را آزاد کند، بی آن که بر خودرو تکان اضافی وارد سازد.
نگهدارندگی جاده
درجه ای که خودرو در آن تماس خود با سطح جاده را در طی تغییرات مختلف جهت و آن هم در یک خط مستقیم، تنظیم می نماید. (مثال: هنگامی که راننده ترمز می کند، وزن خودرو از لاستیک های عقب به لاستیک های جلو منتقل می گردد. به خاطر نزدیک شدن نوک ماشین به سطح جاده، این نوع از حرکت را "شیرجه" می نامند. اثر مخالف –نشست- در هنگام شتاب گرفتن رخ می دهد، و وزن خودرو از لاستیک های جلو به عقب هدایت می شود.
نگهداشتن لاستیک ها در تماس با زمین، زیرا این اصطکاک بین لاستیک ها و جاده است که بر توانایی خودرو برای فرمان گرفتن، ترمز کردن و شتاب گرفتن تاثیر می گذارد.
به حداقل رسانیدن انتقال وزن خودرو از طرفی به طرف دیگر و از جلو به عقب، که این انتقال وزن، از چسبندگی لاستیک ها به جاده می کاهد.
پیچ
توانایی یک خودرو برای طی یک مسیر پیچ دار.
به حداقل رساندن چرخش خودرو، که بر اثر وارد شدن نیروی گریز از مرکز به مرکز ثقل خودرو در حین دور زدن، و سپس بلند کردن یک طرف و پایین آوردن طرف مقابل.
انتقال وزن خودرو در هنگام دورزدن از طرف بالای خودرو به طرف پایین تر.
سیستم تعلیق یک خودرو، با تمام قطعات مختلفش، زمینه تمامی این راه حل ها را فراهم می آورد. بگذارید به قسمت هایی از یک سیستم تعلیق استاندارد نگاهی بیندازیم. کار را از شاسی شروع کرده و به ترتیب پایین می رویم و به اجزای مشخصی که سیستم تعلیق را تشکیل می دهند، می پردازیم.
شاسی:
سیستم تعلیق یک خودرو در حقیقت بخشی از شاسی است که شامل تمام سیستم های مهمی که در زیر بدنه قرار دارند، می شود.
این سیستم ها شامل بخش های زیر می شوند:
● شاسی(فریم)- قطعه ساختاری و حامل بار که بدنه موتوردار خودرو را حمل می کند، پس در نتیجه توسط سیستم تعلیق پشتیبانی می شود.
● سیستم تعلیق – تشکیلاتی که وزن را تحمل می کند، شوک و فشار را جذب کرده و کاهش می دهد و تماس لاستیک را کنترل می کند.
● سیستم هدایت – مکانیزمی که راننده را قادر می سازد تا وسیله را هدایت کرده و جهت بدهد.
● چرخ ها و لاستیک ها – اجزایی که حرکت خودرو را، با درگیری (اصطکاک) با سطح جاده، میسر می سازند.
پس تعلیق، یکی از سیستم های اصلی در خودرو می باشد.
با مرور این شمای کلی در ذهن، نوبت پرداخت به سه قطعه بنیادین هر سیستم تعلیق می رسد: فنرها، کمک فنرها و میل موج گیر.
فنرها:
سیستم فنرهای امروزی بر پایه ی یک طرح از چهار طرح کلی می باشند: