لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 18
آشنائی با پروتکل FTP
امروزه از پروتکل های متعددی در شبکه های کامپیوتری استفاده می گردد که صرفا" تعداد اندکی از آنان به منظور انتقال داده طراحی و پیاده سازی شده اند . اینترنت نیز به عنوان یک شبکه گسترده از این قاعده مستثنی نبوده و در این رابطه از پروتکل های متعددی استفاده می شود. برای بسیاری از کاربران اینترنت همه چیز محدود به وب و پروتکل مرتبط با آن یعنی HTTP است ، در صورتی که در این عرصه از پروتکل های متعدد دیگری نیز استفاده می گردد. FTP نمونه ای در این زمینه است .
پروتکل FTP چیست ؟ تصویر اولیه اینترنت در ذهن بسیاری از کاربران، استفاده از منابع اطلاعاتی و حرکت از سایتی به سایت دیگر است و شاید به همین دلیل باشد که اینترنت در طی سالیان اخیر به سرعت رشد و متداول شده است . بسیاری از کارشناسان این عرصه اعتقاد دارند که اینترنت گسترش و عمومیت خود را مدیون سرویس وب می باشد .فرض کنید که سرویس وب را از اینترنت حذف نمائیم . برای بسیاری از ما این سوال مطرح خواهد شد که چه نوع استفاده ای را می توانیم از اینترنت داشته باشیم ؟ در صورت تحقق چنین شرایطی ، یکی از عملیاتی که کاربران قادر به انجام آن خواهند بود ، دریافت داده ، فایل های صوتی ، تصویری و سایر نمونه فایل های دیگر با استفاده از پروتکل FTP (برگرفته از File Transfer Protocol ) است.
ویژگی های پروتکل FTP
پروتکل FTP ، اولین تلاش انجام شده برای ایجاد یک استاندارد به منظور مبادله فایل بر روی شبکه های مبتنی بر پروتکل TCP/IP است که از اوایل سال 1970 مطرح و مشخصات استاندارد آن طی RFC 959 در اکتبر سال 1985 ارائه گردید .
پروتکل FTP دارای حداکثر انعطاف لازم و در عین حال امکان پذیر به منظور استفاده در شبکه های مختلف با توجه به نوع پروتکل شبکه است .
پروتکل FTP از مدل سرویس گیرنده - سرویس دهنده تبعیت می نماید . برخلاف HTTP که یک حاکم مطلق در عرصه مرورگرهای وب و سرویس دهندگان وب است ، نمی توان ادعای مشابهی را در رابطه با پروتکل FTP داشت و هم اینک مجموعه ای گسترده از سرویس گیرندگان و سرویس دهندگان FTP وجود دارد .
برای ارسال فایل با استفاده از پروتکل FTP به یک سرویس گیرنده FTP نیاز می باشد . ویندوز دارای یک برنامه سرویس گیرنده FTP از قبل تعبیه شده می باشد ولی دارای محدودیت های مختص به خود می باشد . در این رابطه نرم افزارهای متعددی تاکنون طراحی و پیاده سازی شده است:ulletProof FTP ، WS FTP Professional، FTP Explorer و Smart FTP نمونه هائی در این زمینه می باشند .
پروتکل FTP را می توان به عنوان یک سیستم پرس وجو نیز تلقی نمود چراکه سرویس گیرندگان و سرویس دهندگان گفتگوی لازم به منظور تائید یکدیگر و ارسال فایل را انجام می دهند. علاوه بر این، پروتکل فوق مشخص می نماید که سرویس گیرنده و سرویس دهنده، داده را بر روی کانال گفتگو ارسال نمی نمایند . در مقابل ، سرویس گیرنده و سرویس دهنده در خصوص نحوه ارسال فایل ها بر روی اتصالات مجزا و جداگانه ( یک اتصال برای هر ارسال داده ) با یکدیگر گفتگو خواهند کرد ( نمایش لیست فایل های موجود در یک دایرکتوری نیز به عنوان یک ارسال فایل تلقی می گردد ) .
پروتکل FTP امکان استفاده از سیستم فایل را مشابه پوسته یونیکس و یا خط دستور ویندوز در اختیار کاربران قرار می دهد .
سرویس گیرنده در ابتدا یک پیام را برای سرویس دهنده ارسال و سرویس دهنده نیز به آن پاسخ خواهد داد و در ادامه ارتباط غیرفعال می گردد . وضعیت فوق با سایر پروتکل هائی که به صورت تراکنشی کار می کنند ، متفاوت می باشد ( نظیر پروتکل HTTP ) . برنامه های سرویس گیرنده زمانی قادر به شبیه سازی یک محیط تراکنشی می باشند که از مسائلی که قرار است در آینده محقق شوند ، آگاهی داشته باشند . در واقع ، پروتکل FTP یک دنباله stateful از یک و یا چندین تراکنش است.
سرویس گیرندگان ، مسئولیت ایجاد و مقداردهی اولیه درخواست ها را برعهده دارند که با استفاده از دستورات اولیه FTP انجام می گردد. دستورات فوق ، عموما" سه و یا چهار حرفی می باشند (مثلا" برای تغییر دایرکتوری از دستور CWD استفاده می شود ). سرویس دهنده نیز بر اساس یک فرمت استاندارد به سرویس گیرندگان پاسخ خواهد داد ( سه رقم که به دنبال آن از space استفاده شده است به همراه یک متن تشریحی ) . سرویس گیرندگان می بایست صرفا" به کد عددی نتیجه استناد نمایند چراکه متن تشریحی تغییر پذیر بوده و در عمل برای اشکال زدائی مفید است ( برای کاربران حرفه ای ) .
پروتکل FTP دارای امکانات حمایتی لازم برای ارسال داده با نوع های مختلف می باشد . دو فرمت متداول، اسکی برای متن ( سرویس گیرنده با ارسال دستور TYPE A ،موضوع را به اطلاع سرویس دهنده می رساند ) و image برای داده های باینری است ( توسط TYPE I مشخص می گردد) . ارسال داده با فرمت اسکی در مواردی که ماشین سرویس دهنده و ماشین سرویس گیرنده از استانداردهای متفاوتی برای متن استفاده می نمایند ، مفید بوده و یک سرویس گیرنده می تواند پس از دریافت داده آن را به فرمت مورد نظر خود ترجمه و استفاده نماید . مثلا" در نسخه های ویندوز از یک دنباله carriage return و linefeed برای نشان دادن انتهای خط استفاده می گردد در صورتی که در سیستم های مبتنی بر یونیکس صرفا" از یک linefeed استفاده می شود . برای ارسال هرنوع داده که به ترجمه نیاز نداشته باشد،می توان از ارسال باینری استفاده نمود.
اتخاذ تصمیم در رابطه با نوع ارسال فایل ها در اختیار سرویس گیرنده است ( برخلاف HTTP که می تواند به سرویس گیرنده نوع داده ارسالی را اطلاع دهد ) . معمولا" سرویس گیرندگان ارسال باینری را انتخاب می نمایند و پس از دریافت فایل ، ترجمه لازم را انجام خواهند داد . ارسال باینری ذاتا" دارای کارآئی بیشتری است چراکه سرویس دهنده و سرویس گیرنده نیازی به انجام تراکنش های on the fly نخواهند داشت . ارسال اسکی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
ارتباطات تحریکپذیر زمانی در پروتکل شبکهCANا ( Time Triggered CAN)
چکیده :شبکههای صنعتی یکی از مباحث بسیار مهم در اتوماسیون میباشد. شبکهی CAN به عنوان یکی از شبکههای صنعتی ، رشد بسیار روز افزونی را تجربه کرده است. در این میان ، عدم قطعیت زمان ارسال پیامها در این پروتکل شبکه ، باعث میشود که کاربرد این شبکه در کاربردهای حیاتی با اشکال مواجه شود. یکی از راهحلهای برطرف کردن این مشکل ، استفاده از تکنیک تحریک زمانی است که در ایت مقاله مورد بررسی قرار میگیرد.کلید واژهها : شبکه صنعتی ، تحریک زمانی ، CAN ارتباطات تحریکپذیر زمانی در پروتکل شبکهی CAN 1) مقدمه در محیطهای صنعتی ، کارخانجات ، خطوط تولید و امثالهم ، اتصال میکروکنترلرها ، سنسورها (Sensor) و محرکها (Actuator) با چندین نوع سیستم ارتباطی متفاوت به یکدیگر ، نوعی هنر معماری در الکترونیک و کامپیوتر است. امروزه ارتباطات از نوع تحریکپذیر زمانی بهطور گستردهای در پروتکل ارتباطات برپایه شبکه با پروتکل CAN (Controller Area Network) استفاده میشود. مکانیسم داوری (Arbitrating) در این پروتکل اطمینان میدهد که تمام پیامها بر اساس اولویت شناسه (Identifier) منتقل میشوند و پیامی با بالاترین اولویت به هیچ عنوان دچار آشفتگی نخواهد شد. در آینده ، بسیاری از زیرشبکههای (SubNet) مورد استفاده در کاربردهای حیاتی ، بهعنوان مثال در بخشهایی مثل سیستمهای کنترل الکترونیکی خودرو (X-By-Wire) ، به سیستم ارتباطی جامعی نیاز دارند که دارای قطعیت ارسال و دریافت در هنگام سرویسدهی باشد. به عبارتی ، در ماکزیمم استفاده از باس که به عنوان محیط انتقال این نوع شبکه بهکار میرود ، باید این تضمین وجود داشته باشد که پیامهایی که به ایمنی (Safety) سیستم وابسته هستند ، به موقع و به درستی منتقل میشوند. علاوه بر این باید این امکان وجود داشته باشد که بتوان لحظهی ارسال و زمانی را که پیام ارسال خواهد شد را با دقت بالایی تخمین زد.در سیستم با پروتکل CAN استاندارد ، تکنیک بدست آوردن باس توسط گرههای شبکه بسیار ساده و البته کارآمد است. همانگونه که در قبل توضیح دادهشده است ، الگوریتم مورد استفاده برای بدست آوردن تسلط بر محیط انتقال ، از نوع داوری بر اساس بیتهای شناسه است. این تکنیک تضمین میکند که گرهای که اولویت بالایی دارد ، حتی در حالتیکه گرههای با اولویت پایینتر نیز قصد ارسال دارند ، هیچگاه برای بدست آوردن باس منتظر نمیماند. و با وجود این رقابت بر سر باس ، پیام ارسالی نیز مختل نشده و منتقل میشود. در همین جا نکتهی مشخص و قابل توجهی وجود دارد. اگر یک گرهی با اولویت پایین بخواهد پیامی را ارسال کند باید منتظر پایان ارسال گرهی با اولویت بالاتر باشد و سپس کنترل باس را در اختیار گیرد. این موضوع یعنی تاخیر ارسال برای گرهی با اولویت پایینتر ، ضمن این که مدت زمان این تاخیر نیز قابل پیشبینی و محاسبه نخواهد بود و کاملا به ترافیک ارسال گرههای با اولویت بالاتر وابسته است. به عبارت سادهتر : ● گره یا پیام با اولویت بالاتر ، تاخیر کمتری را برای تصاحب محیط انتقال در هنگام ارسال پیشرو خواهد داشت.● گره یا پیام با اولویت پایینتر ، تاخیر بیشتری را برای بدستگرفتن محیط انتقال در هنگام ارسال ، تجربه خواهد کرد. یک راه حل برطرف کردن نیازهای ذکرشده در بالا ، استفاده از شبکهی استاندارد CAN با اضافهکردن تکنیک تحریک زمانی (Time Trigger) به آن میباشد. استفاده از تکنیک تحریک زمانی در CAN ، طبق توضیحاتی که داده خواهد شد ، باعث اجتناب از این تاخیر میشود و باعث استفادهی مفیدتر و کارآمدتر از پهنای باند شبکه ، به کمک ایجاد قطعیت در زمانهای انتظار و ارسال ، میشود. به عبارت دیگر ، مزایای این شبکه با استفاده از تکنیک تحریک زمانی عبارت خواهد بود از : ● کاهش تاخیرهای غیر قابل پیشبینی در حین ارسال● تضمین ارتباط قطعی و تاخیرهای قابل پیشبینی● استفادهی مفیدتر و کارآمد از پهنای باند شبکهبا توجه به مکانیسمهای پیشبینی شده در TTCAN ، این پروتکل زمانبندی پیامهایی با تحریک زمانی (TT) را به خوبی پیامهایی با تحریک رویداد (Event Trigger) را که قبلا در این پروتکل قرار داشت ، مدیریت میکند. این تکنیک اجازه میدهد که سیستمهایی که دارای عملگرهای بلادرنگ هستند نیز بتوانند از این شبکه استفاده کنند. همچنین این تکنیک انعطاف بیشتری را برای شبکههایی که قبلا از CAN استفاده میکردند ، ایجاد میکند. این پروتکل برای استفاده در سیستمهایی که ترافیک دیتا بصورت مرتب و متناوب در شبکه رخ میدهد ، بسیار مناسب و کارآمد میباشد.در این تکنیک ، ارتباطات بر پایهی یک زمان محلی بنا شده است. زمان محلی توسط پیامهای متناوب یک گره که بهعنوان گرهی مدیر زمان (Time Master) تعیین شده است ، هماهنگ و تنظیم میشود. این تکنیک اجازهی معرفی یک زمان سراسری و با دقت بالا را بصورت یکپارچه (Global) را ، در کل سیستم فراهم میکند. بر پایهی این زمان ، پیامهای متفاوت توسط یک سیکل ساده ، در پنجرههایی قرار میگیرند که متناسب با زمان پیام چیده شده است. یکی از مزایای بزرگ این تکنیک در مقایسه با شبکهی CAN با روش زمانبندی کلاسیک ، امکان ارسال پیغامهای تحریک شوندهی زمانی با قطعیت و در پنجرههای زمانی است. اگر فرستندهی فریم مرجع دچار خرابی شود (Fail) ، یک گرهی از پیش تعریف شدهی دیگر بهطور اتوماتیک وظیفهی گرهی مرجع را انجام میدهد. در اینحالت ، گرهی با درجهی پایینتر جایگزین گرهی با درجهی بالاتر که دچار خرابی شده است ، میشود. حال اگر گرهی با درجهی بالاتر ، تعمیر شده و دوباره به سیستم باز گردد ، بهصورت اتوماتیک تلاش میکند تا بهعنوان گرهی مرجع انتخاب شود. توابعی بهصورت پیشفرض در تعاریف و خصوصیات TTCAN قرار داده شده است تا سیستم از این تکنیک خروج و بازگشت خودکار ، پشتیبانی کند. در ادامهی این مقاله ، جزییات این پروتکل مورد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 60
پروتکل مدیریت گروه اینترنت (IGMP)
IGMP ، که در RFC 3376 تعریف شده ، توسط میزبانها و مسیریاب ها برای مبادلة اطلاعات عضویت Multicast بر روی LAN استفاده می شود . IGMP از ماهیت پخشی LAN استفاده می کند تا تکنیکی کارآمد برای تبادل اطلاعات بین چندین میزبان و مسیریابها را فراهم نماید . در حالت کلی ، IGMP دو عملکرد اصلی را حمایت می کند :
1ـ میزبان ها پیغامهایی به مسیر یاب ها می فرستند تا مشترک یک گروه Multicaset تعریف شده توسط یک آدرس Multicaset شوند یا اشتراک خود را از آن حذف نمایند .
2ـ مسیریاب ها به صورت دوره ای بررسی می نمایند کدام گروههای Multicaset ، مورد نظر کدام میزبانها می باشند .
IGMP در حال حاضر در روایت 3 قرار دارد . در IGMPV1 ، میزبانها می توانند به گروه Multicaset ملحق شوند و مسیریاب ها تایمری را برای حذف اشتراک اعضای گروه استفاده می کنند . IGMPV2 باعث می شود اشتراک یک میزبان به طور مشخص از یک گروه حذف شود . اولین دو روایت ، ضرورتاً از مدل عملیاتی زیر استفاده نموده اند :
گیرنده ها باید مشترک گروههای Multicaset گردند .
مبدأها نیازی به مشترک شدن در گروه های Multicaset ندارند .
هر میزان می تواند ترافیک را به هر گروه Multicaset بفرستد.
این روش بسیار کلی است اما نقاط ضعفی نیز دارد :
1ـ گسترش گروههای Multicaset آسان است . حتی اگر فیلترهایی در سطح کاربرد برای حذف بسته های ناخواسته وجود داشته باشد ، این بسته ها هنوز منابع عمده ای را در شبکه و درگیرنده ای که باید آنها را پردازش کند ، مصرف می کنند .
2ـ ایجاد درخت های توزیع Multicaset مشکل ساز است . دلیل آن ، مشخص نبودن محل مبدأها می باشد .
3ـ یافتن آدرس های Multicaset منحصر به فرد سراسری مشکل است . همیشه این امکان وجود دارد که گروههای Multicaset دیگری ، همان آدرس Multicaset را بکار ببرند .
IGMPv3 این نقاط ضعف را اینگونه مورد توجه قرار می دهد :
1ـ دادن اجازه به میزبانها برای مشخص نمودن لیست میزبانهایی که از آنها ترافیک یافت می شوکد . ترافیک از میزبانهای دیگر ،در مسیریاب ها مسدود می شود .
2ـ دادن امکان به میزبانها برای مسدود نمودن بسته هایی که مبدأ آنها ترافیک ناخواسته می فرستد .
ادامة این بخش ، IGMPv3 را مورد بررسی قرار می دهد .
قالب پیغام IGMP
همة پیغامهای IGMP در قالب datagram های IP فرستاده می شود . روایت فعلی ، دو نوع پیغام تعریف می کند : درخواست عضویت و گزارش عضویت .
پیغام درخواست عضویت توسط مسیریاب Multicaset فرستاده می شود . سه نوع زیر نوع دارد : یک درخواست عمومی ، برای مشخص نمودن اینکه کدام
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
آشنائی با پروتکل های SLIP و PPP
مبادله اطلاعات بر روی اینترنت با استفاده از پروتکل TCP/IP انجام می شود . با این که پروتکل فوق یک راه حل مناسب در شبکه های محلی و جهانی را ارائه می نماید ، ولی به منظور ارتباطات از نوع Dial-up طراحی نشده است .ارتباط Dail-up ، یک لینک نقطه به نقطه ( Point-To-Point ) با استفاده از تلفن است . در چنین مواردی یک روتر و یا سرویس دهنده، نقطه ارتباطی شما به شبکه با استفاده از یک مودم خواهد بود. سرویس دهنده دستیابی راه دور موجود در مراکز ISP ، مسئولیت ایجاد یک ارتباط نقطه به نقطه با سریس گیرندگان Dial-up را برعهده دارد . در ارتباطات فوق ، می بایست از امکانات خاصی به منظور ارسال IP و سایر پروتکل ها استفاده گردد . با توجه به این که لینک ایجاد شده بین دو نقطه برقرار می گردد ، آدرس دهی مشکل خاصی را نخواهد داشت. SLIP ( اقتباس شده از Serial Line Internet Protocol ) و PPP ( اقتباس شده از Point-To-Point ) پروتکل هائی می باشند که امکان استفاده از TCP/IP بر روی کابل های سریال نظیر خطوط تلفن را فراهم می نمایند ( SLIP و PPP : دو روش متفاوت به منظور اتصال به اینترنت ). با استفاده از پروتکل های فوق ، کاربران می توانند توسط یک کامپیوتر و مودم به اینترنت متصل شوند . از پروتکل SLIP در ابتدا در سیستم عامل یونیکس استفاده می گردید ولی امروزه تعداد بیشتری از سیستم های عامل نظیر لینوکس و ویندوز نیز از آن حمایت می نمایند . در حال حاضر استفاده از پروتکل SLIP نسبت به PPP بمراتب کمتر است .
PPP نسبت به SLIP دارای مزایای متعددی است :
امکان مبادله اطلاعات به صورت همزمان و غیر همزمان . در پروتکل SLIP صرفا" امکان مبادله اطلاعات به صورت همزمان وجود دارد .
ارائه امکانات لازم به منظور تصحیح خطاء . تصحیح خطاء در پروتکل SLIP عموما" مبتنی بر سخت افزار استفاده شده به منظور برقراری ارتباط ( نظیر مودم ) و یا استفاده از قابلیت های پروتکل TCP/IP است .
ارائه امکانات لازم برای فشرده سازی .پروتکل SLIP در اغلب بخش های آن چنین ویژگی را دارا نمی باشد . در این رابطه نسخه هائی از SLIP به منظور فشرده سازی نظیر Compressed SLIP و یا CSLIP طراحی شده است ولی متداول نمی باشند .
ارائه امکانات لازم به منظور نسبت دهی آدرس ها به صورت پویا و اتوماتیک .پروتکل SLIP می بایست به صورت دستی پیکربندی گردد ( در زمان Dial-up و یا تنظیم اولیه Session ) .
امکان استفاده از چندین پروتکل بر روی لینک های PPP وجود دارد ( نظیر IP و یا IPX ) . در پروتکل SLIP صرفا" امکان استفاده از پروتکل IP وجود خواهد داشت .
وجه اشتراک پروتکل های PPP و SLIP
هر دو پروتکل قابل روتنیگ نمی باشند . با توجه به نوع ارتباط ایجاد شده که به صورت نقطه به نقطه است و صرفا" دو نقطه در ارتباط درگیر می شوند ،ضرورتی به استفاده از روتینگ وجود نخواهد داشت .
هر دو پروتکل قادر به کپسوله نمودن سایر پروتکل هائی می باشند که در ادامه برای روتر و سایر دستگاه ها ارسال می گردند . در مقصد، اطلاعات مربوط به پروتکل های SLIP و یا PPP برداشته شده و پروتکل های ارسالی توسط لینک سریال نظیر IP ، در طول شبکه فرستاده می گردد .
یک کامپیوتر با استفاده از یک ارتباط SLIP و یا PPP قادر به شبیه سازی یک اتصال مستقیم به اینترنت است . در این رابطه به امکانات زیر نیاز می باشد :
یک کامپیوتر و مودم
یک account از نوع SLIP و یا PPP از ISP مربوطه
نصب نرم افزارهای TCP/IP و SLIP/PPP بر روی کامپیوتر کاربر ( نرم افزارهای فوق معمولا" در زمان استقرار سیستم عامل بر روی کامپیوتر نصب خواهند شد ).
یک آدرس IP . آدرس فوق ممکن است به صورت دائم و یا پویا ( استفاده از سرویس دهنده DHCP ) به کامپیوتر کاربر نسبت داده شود.
نحوه عملکرد یک اتصال SLIP و یا PPP
مودم موجود بر روی کامپیوتر اقدام به شماره گیری یک کامپیوتر از راه دور در یک ISP می نماید .
نرم افزار SLIP/PPP درخواست یک اتصال SLIP/PPP را می نماید .
پس از برقراری ارتباط ، ISP مربوطه به کامپیوتر کاربر یک آدرس IP را اختصاص خواهد داد ( در مواردی که از یک سرویس دهنده DHCP استفاده می گردد ) .
نرم افزار TCP/IP بر روی کامپیوتر کاربر ، کنترل و مدیریت مبادله اطلاعات بین کامپیوتر کاربر و اینترنت را برعهده خواهد گرفت .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
آشنائی با پروتکل DNSDNS از کلمات Domain Name System اقتباس و یک پروتکل شناخته شده در عرصه شبکه های کامپیوتری خصوصا" اینترنت است . از پروتکل فوق به منظور ترجمه اسامی کامپیوترهای میزبان و Domain به آدرس های IP استفاده می گردد. زمانی که شما آدرس www.srco.ir را در مرورگر خود تایپ می نمائید ، نام فوق به یک آدرس IP و بر اساس یک درخواست خاص ( query ) که از جانب کامپیوتر شما صادر می شود ، ترجمه می گردد .تاریخچه DNS DNS ، زمانی که اینترنت تا به این اندازه گسترش پیدا نکرده بود و صرفا" در حد و اندازه یک شبکه کوچک بود ، استفاده می گردید . در آن زمان ، اسامی کامپیوترهای میزبان به صورت دستی در فایلی با نام HOSTS درج می گردید . فایل فوق بر روی یک سرویس دهنده مرکزی قرار می گرفت . هر سایت و یا کامپیوتر که نیازمند ترجمه اسامی کامپیوترهای میزبان بود ، می بایست از فایل فوق استفاده می نمود . همزمان با گسترش اینترنت و افزایش تعداد کامپیوترهای میزبان ، حجم فایل فوق نیز افزایش و امکان استفاده از آن با مشکل مواجه گردید ( افزایش ترافیک شبکه ). با توجه به مسائل فوق ، در سال 1984 تکنولوژی DNS معرفی گردید .
پروتکل DNS DNS ، یک "بانک اطلاعاتی توزیع شده " است که بر روی ماشین های متعددی مستقر می شود ( مشابه ریشه های یک درخت که از ریشه اصلی انشعاب می شوند ) . امروزه اکثر شرکت ها و موسسات دارای یک سرویس دهنده DNS کوچک در سازمان خود می باشند تا این اطمینان ایجاد گردد که کامپیوترها بدون بروز هیچگونه مشکلی ، یکدیگر را پیدا می نمایند . در صورتی که از ویندوز 2000 و اکتیو دایرکتوری استفاده می نمائید، قطعا" از DNS به منظور ترجمه اسامی کامپیوترها به آدرس های IP ، استفاده می شود . شرکت مایکروسافت در ابتدا نسخه اختصاصی سرویس دهنده DNS خود را با نام ( WINS ( Windows Internet Name Service طراحی و پیاده سازی نمود . سرویس دهنده فوق مبتنی بر تکنولوژی های قدیمی بود و از پروتکل هائی استفاده می گردید که هرگز دارای کارائی مشابه DNS نبودند . بنابراین طبیعی بود که شرکت مایکروسافت از WINS فاصله گرفته و به سمت DNS حرکت کند . از پروتکل DNS در مواردی که کامپیوتر شما اقدام به ارسال یک درخواست مبتنی بر DNS برای یک سرویس دهنده نام به منظور یافتن آدرس Domain می نماید ، استفاده می شود .مثلا" در صورتی که در مرورگر خود آدرس www.srco.ir را تایپ نمائید ، یک درخواست مبتنی بر DNS از کامپیوتر شما و به مقصد یک سرویس دهنده DNS صادر می شود . ماموریت درخواست ارسالی ، یافتن آدرس IP وب سایت سخاروش است .
پروتکل DNS و مدل مرجع OSI پروتکل DNS معمولا" از پروتکل UDP به منظور حمل داده استفاده می نماید . پروتکل UDP نسبت به TCP دارای overhead کمتری می باشد. هر اندازه overhead یک پروتکل کمتر باشد ، سرعت آن بیشتر خواهد بود . در مواردی که حمل داده با استفاده از پروتکل UDP با مشکل و یا بهتر بگوئیم خطاء مواجه گردد ، پروتکل DNS از پروتکل TCP به منظور حمل داده استفاده نموده تا این اطمینان ایجاد گردد که داده بدرستی و بدون بروز خطاء به مقصد خواهد رسید .
فرآیند ارسال یک درخواست DNS و دریافت پاسخ آن ، متناسب با نوع سیستم عامل نصب شده بر روی یک کامپیوتر است .برخی از سیستم های عامل اجازه استفاده از پروتکل TCP برای DNS را نداده و صرفا" می بایست از پروتکل UDP به منظور حمل داده استفاده شود . بدیهی است در چنین مواردی همواره این احتمال وجود خواهد داشت که با خطاهائی مواجه شده و عملا" امکان ترجمه نام یک کامپیوتر و یا Domain به آدرس IP وجود نداشته باشد . پروتکل DNS از پورت 53 به منظور ارائه خدمات خود استفاده می نماید . بنابراین یک سرویس دهنده DNS به پورت 53 گوش داده و این انتظار را خواهد داشت که هر سرویس گیرنده ای که تمایل به استفاده از سرویس فوق را دارد از پورت مشابه استفاده نماید . در برخی موارد ممکن است مجبور شویم از پورت دیگری استفاده نمائیم . وضعیت فوق به سیستم عامل و سرویس دهنده DNS نصب شده بر روی یک کامپیوتر بستگی دارد.
ساختار سرویس دهندگان نام دامنه ها در اینترنت امروزه بر روی اینترنت میلیون ها سایت با اسامی Domain ثبت شده وجود دارد . شاید این سوال برای شما تاکنون مطرح شده باشد که این اسامی چگونه سازماندهی می شوند ؟ ساختار DNS بگونه ای طراحی شده است که یک سرویس دهنده DNS ضرورتی به آگاهی از تمامی اسامی Domain ریجستر شده نداشته و صرفا" میزان آگاهی وی به یک سطح بالاتر و یک سطح پائین تر از خود محدود می گردد . شکل زیر بخش های متفاوت ساختار سلسله مراتبی DNS را نشان می دهد :
internic ، مسئولیت کنترل دامنه های ریشه را برعهده داشته که شامل تمامی Domain های سطح بالا می باشد ( در شکل فوق به رنگ آبی نشان داده شده است) . در بخش فوق تمامی سرویس دهندگان DNS ریشه قرار داشته و آنان دارای آگاهی لازم در خصوص دامنه های موجود در سطح پائین تر از خود می باشند ( مثلا" microsoft.com ) . سرویس دهندگان DNS ریشه مشخص خواهند کرد که کدام سرویس دهنده DNS در ارتباط با دامنه های microsoft.com و یا Cisco.com می باشد .هر domain شامل یک Primary DNS و یک Secondary DNS می باشد . Primary DNS ، تمامی اطلاعات مرتبط با Domain خود را نگهداری می نماید. Secondary DNS به منزله یک backup بوده و در مواردی که Primary DNS با مشکل مواجه می شود از آن استفاده می گردد .