لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 55
مقدمه و تاریخچه
هیدرولیک علم استفاده از مایع محدود ، برای انتقال نیرو و حرکت و یا تبدیل منبع قدرت به نیروی قابل استفاده می باشد و هیدرولیک صنعتی یعنی انتقال دادن و فرمان دادن به نیروها و حرکات توسط مایع .
از زمانهای قدیم ، هیدرولیک مورد استفاده بشر بوده و مصریها ظاهراً در این کار پیشقدم بوده اند و آنها وسیلهای ساخته یودند که توسط آن بتوانند آب رودخانه نیل را به ارتفاع بالاتری ببرند و مزارع خود را آبیاری کنند .
کلمه هیدرولیک (Hydroulics) یک کلمه یونانی است و از کلمه Hydros به مفهوم آب گرفته شده . ارشمیدس مهندس و ریاضیدان قدیم یونان ، مطالعات زیادی در هیدرولیک داشت و وسیلهای برای پمپاژ آب اختراع کرد که هم اکنون آن را مارپیچ ارشمیدس می نامند .
در قرن شانزدهم میلادی دانشمند ایتالیایی به نام تریچلی ، سپس صد سال بعد پاسکال دانشمند فرانسوی نیز به وسیله نیروی هیدرولیک و استفاده از آن پرداختند ، بطوریکه هم اکنون قانون موسوم به پاسکال پایه هیدرولیک جدید است ، به دنبال پاسکال دانشمند و طراحان و مهندسین در طی سالهای بعد تاکنون در پیشبرد این علم همت گماشتند و هم اکنون در اغلب شاخه های علوم و فنون جدید دامنه کاربرد این علم گسترده تر شده و استفاده از اصول و مبانی هیدرولیک مهندسی را بر آن داشته تا از قدرت هیدرولیک ، جهت کنترل پروسسهای صنعتی و اتوماسیون کارخانجات ، استفادههای شایانی بنمایند و گسترش و اهمیت این علم بدان جا رسید که علم و صنعت و تکنولوژی بدون این علم قابل تصویر نیست .
سیستم های کنترل هیدرولیکی در صنعت جدید مورد استفاده فراوان پیدا کرده ، اینگونه کنترل کننده ها بیشتر در جاهایی که عمل کننده ها (Actvators) احتیاج به قدرت زیادی جهت تغییرات در پروسس دارند ، بکار می روند . قسمت اصلی این کنترل کننده ها بخش سر و موتور آن می باشد . تغییر مکانی که ناشی از پارامتر ورودی است ، پیستون ها از مقابل شیارهای متصل به پیستون بزرگتر عمل کننده کنار رفته و پیستون و عمل کننده حرکت خواهد کرد .
هیدرولیک علمی است که کاربرد آن در صنایع سبک و سنگین قابل شایان است که می توان با اعمال نیروی ناچیز دست عکس العمل چندصد برابر را داشته که مثال ساده آن را در اهرمها ، جکهای
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
هیدرولیک :
توسعه علم هیدرولیک زمانی شروع شد که پاسکال دانشمند فرانسوی قوانین مربوط به فشار را کشف کرد(1650 میلادی) و هیدرولیک را به عنوان یک علم نوین پایه گذاری نمود. از آن تاریخ به بعد دوران شکوفایی هیدرولیک پدید آمد و این علم به نحو چشمگیری وارد بازار گردید. امروزه هیدرولیک در ساختمان ماشین آلات صنعتی، کشاورزی، راهسازی، هواپیمایی، کشتی سازی، اتوموبیل سازی، ماشینهای ابزار، تاسیسات صنایع سنگین، معدن و . . . در مقیاس وسیعی استفاده میشود و روز به روز نیز افزایش میابد.
هیدرولیک فن آوری تولید، کنترل و انتقال قدرت توسط سیال تحت فشار است. بطور کلی یک سیستم هیدرولیک چهار کار اساسی انجام میدهد:
تبدیل انرژی مکانیکی به قدرت سیال تحت فشار بوسیله پمپها
انتقال سیال تا نقاط مورد نظر توسط لوله ها و شلنگها
کنترل فشار، جهت و جریان سیال توسط شیرها
انجام کار توسط عملگرها
قانون پاسکال:
قانون پاسکال پایه هیدرولیک نوین است. این قانون بیان میکند که فشار وارده به هر نقطه از یک مایع محدود بطور مساوی در تمام جهات منتقل شده و با نیروی مساوی بر رو سطوح مساوی اثر میکند.
قوانین پایه در هیدرولیک:
سیال تحت فشار همواره مسیر با مقاومت کمتر را برای عبور انتخاب میکند
پمپ تولید دبی میکند نه فشار
فشار تنها در برابر مقاومت یک مانع ایجاد میشود
اصول کلیدی فوق اگرچه ساده به نظر میرسند ولی پایه واساس علم هیدرولیک میباشند. با داشتن درک صحیحی از این قوانین به راحتی میتوان حرکت سیال در خطوط انتقال را دنبال و عملکرد سیستم را تحلیل نمود
فشار :
فشار نتیجه مقاومت در مقابل حرکت سیال میباشد. برای محاسبه ریاضی فشار، نیرو را بر سطح تقسیم مینمایند. واحد فشار "بار" میباشد. در هیدرولیک عملی معمولا کیلوگرم بر سانتی متر مربع برابر یک بار است. برای مثال اگر نیروی مقاوم در یک سیلندر هیدرولیک با قطر پیستون 20cm برابر 5000kgf باشد، فشار ایجاد شده در پشت سیلندر از رابطه زیر حساب میشود:
Pressure (bar)=Force( kgf)/Area (cm2)
diameter=10cm >> Area=314cm2 >> pressure= 5000/314=15.9 bar
تعیین فشار کاری سیستم
برای تعیین سطح فشار در یک سیستم هیدرولیک باید در نظر داشت که با بالا بردن فشار میتوان از المانهای هیدرولیکی کوچکتری برای رسیدن به تناژ مورد نظر، استفاده نمود. همچنین قطر لوله ها را میتوان کوچکتر انتخاب نمود. در نتیجه، هزینه ساخت سیستم کاهش می یابد. از طرف دیگر با افزایش فشار، دمای روغن در سیستم زودتر افزایش میابد، نشتی ها بیشتر و اصطکاک و سایش نیز افزایش میابد. در نتیجه فاصله انجام سرویس ها باید کوتاهتر شود. همچنین نویز و پیکهای فشاری نیز افزایش یافته و خواص مطلوب دینامیکی سیستم کاهش می یابد.
فشارهای نامی در هیدرولیک (bar )
1
10
100
1000
1.6
16
160
1600
2.5
25
250
2500
4
40
400
4000
6
63
630
6300
فشار کاری سیستمهای هیدرولیک متداول(bar)
20-75
ماشینهای ابزار
100-500
پرسها
200-400
ماشینهای تزریق پلاستیک
50-350
کشتی سازی
50-250
هواپیما سازی
100-150
ماشین آلات کشاورزی
100-250
ماشینهای راهسازی
100-300
وسایل نقلیه تجاری
100-400
نورد کاری
واحد PSI
از واحدهای متداول فشارPSI میباشد. یک PSI معادل یک پوند نیرو بر اینچ مربع میباشد.
برای تبدیل PSI به bar ، مقدار فشار مورد نظر را در 0.068 ( تقریبا 0.07 )ضرب نمائید. برای مثال 1000PSI معادل 68bar میباشد.
برای تبدیل bar به PSI ، مقدار فشار را در 14.7 ضرب نمائید. برای مثال 100bar معادل 1470PSI میباشد.
احتیاج روز افزون صنایع به تکنیک مهندسی کنترل و پیدایش و توسعه وسائل و ابزاریکه مورد کاربرد این چنین سیستمهای کنترلی قرار میگیرد، ایجاب میکند آن وسایل و قطعات از نقطه نظر نحوه کار و وظیفه شان در سیستم دارای علائم واحد و یا استاندارد شده ای باشند، که هم طراحان بتوانند سریعتر و راحت تر طرح خود را پیاده کنند و هم پرسنل مرتبط با چنین سیستمهایی بتوانند طرح مزبور را سریع تر و راحت تر بخوانند و با دستگاه کار کنند.
مجموعه یک صفحه ای از نمادهای المانهای پرکاربرد هیدرولیک
سیلندرهای هیدرولیک جریان سیال تحت فشار را به حرکت خطی میله پیستون تبدیل میکنند و دارای انواع یککاره و دو کاره میباشند. در نوع یککاره برگشت به موضع اولیه توسط فنر یا نیروی ثقلی بار صورت میپذیرد ولی در نوع دو کاره عمل رفت و برگشت تحت کنترل سیال هیدرولیکی انجام میشود.
در انتخاب سیلندرهای هیدرولیک موارد ذیل باید در نظر گرفته شود:
حداکثر فشار کاری سیستم
قطر پیستون و میله پیستون
نیروی سیلندر
حداکثر نیروی سیلندر
طول کورس سیلندر
حداکثر سرعت سیلندر
نحوه نصب سیلندر
وجود ضربه گیر
نوع و کاربرد سیلندر
مشکلات اساسی در ارتباط با سیلندرهای هیدرولیک
بارگذاری غیر محوری
نصب نامناسب
کمانش در میل پیستون
محاسبات نادرست در شتابگیری و کاهش سرعت بار
بارهای ضربه ای سنگین
نشتی های داخلی و خارجی
تقویت فشار ناخواسته
سرعت و ترتیب حرکت نادرست
محاسبات نیرو و سرعت سیلندر
برای دستیابی به تناژ مورد نظر ابتدا سطح فشار کاری باید تعیین گردد. برای مثال فشار 120bar در صنعت متداول میباشد. با توجه به فشار کاری و نیروی مورد نیاز، سطح مقطع سیلندر از رابطه ذیل تعیین میگردد.
F (kgf)=P(bar)XA(cm2)
برای مثال برای دستیابی به 5 تن نیرو در فشار 120bar داریم:
5000= 120xA >> A= 41.7 cm2 >> D= 7.3 cm >> D=8 cm (سایز موجود سیلندر)
سرعت حرکت سیلندر متناسب با دبی ورودی به آن تعیین میگردد. با توجه به نیاز سیستم ، سرعت حرکت را طراح مشخص مینماید. معمولا تامین سرعتهای بیش از 0.1m/sec و کمتر از 0.01m/sec نیاز به تمهیدات خاص در سیستم دارد. سرعت سیلندر از رابطه ذیل حساب میشود:
V(m/sec)=Q(lit/sec)/6XA(cm2)
برای مثال برای سرعت سیلندر با قطر 8cm و دبی ورودی 20lit/sec داریم:
A=50.24 >> V= 20/6X50.24 = 0.066 m/sec= 6.6 cm/sec
در صورتیکه سرعت محاسبه شده مطلوب طراح نباشد لازم است مقدار دبی کاهش یابد. برای مثال با ورود 10lit/sec روغن به این سیلندر، سرعت نیز نصف میشود و تا 3.3cm/sec کاهش میابد.
مدار کنترل سرعت سیلندرهای هیدرولیک
Meter In and Meterout circuit
Bleed-off circuit
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
مقدمه ای بر سیستمهای هیدرولیک و نیوماتیک ( هیدرولیک در ماشین آلات )
حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستمهای مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد:
1.طراحی ساده 2.قابلیت افزایش نیرو 3. سادگی و دقت کنترل
4. انعطاف پذیری 5. راندمان بالا 6.اطمینان
در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستمهای مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستمهای مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده میکنند.
در این سیستمها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود.
استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستمهای انعطاف پذیری تبدیل میکند که در آنها از محدودیتهای مکانی که برای نصب سیستمهای دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستمها دارد.
اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستمها خواهیم پرداخت.
برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند .
بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت میشوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود.
اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است.
قانون پاسکال:
1. فشار سرتاسر سیال در حال سکون یکسان است .(با صرف نظر از وزن سیال)
2. در هر لحظه فشار استاتیکی در تمام جهات یکسان است.
3. فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد.
همانطور که در شکل 1 می بینید یک نیروی ورودی نیوتنی میتواند نیروی مورد نیاز چهار سیلندر دیگر را تامین کند.
شکل (1)
یا در شکل 2 داریم :
شکل (2)
کار سیستمهای نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستمهای نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد.
اکنون بعد از آشنایی مختصر با طرز کار سیستمهای هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم.
اجزای تشکیل دهنده سیستم های هیدرولیکی:
1- مخزن : جهت نگهداری سیال
2- پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا 3- موتور های احتراق داخلی به کار انداخته می شوند.
4- شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال
5- عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی).
شکل 3 یک سیستم هیدرولیکی را نشان میدهد.
شکل(3)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
مقدمه ای بر سیستمهای هیدرولیک و نیوماتیک ( هیدرولیک در ماشین آلات )
حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستمهای مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد:
1.طراحی ساده 2.قابلیت افزایش نیرو 3. سادگی و دقت کنترل
4. انعطاف پذیری 5. راندمان بالا 6.اطمینان
در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستمهای مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستمهای مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده میکنند.
در این سیستمها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود.
استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستمهای انعطاف پذیری تبدیل میکند که در آنها از محدودیتهای مکانی که برای نصب سیستمهای دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستمها دارد.
اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستمها خواهیم پرداخت.
برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند .
بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت میشوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود.
اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است.
قانون پاسکال:
1. فشار سرتاسر سیال در حال سکون یکسان است .(با صرف نظر از وزن سیال)
2. در هر لحظه فشار استاتیکی در تمام جهات یکسان است.
3. فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد.
همانطور که در شکل 1 می بینید یک نیروی ورودی نیوتنی میتواند نیروی مورد نیاز چهار سیلندر دیگر را تامین کند.
شکل (1)
یا در شکل 2 داریم :
شکل (2)
کار سیستمهای نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستمهای نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد.
اکنون بعد از آشنایی مختصر با طرز کار سیستمهای هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم.
اجزای تشکیل دهنده سیستم های هیدرولیکی:
1- مخزن : جهت نگهداری سیال
2- پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا 3- موتور های احتراق داخلی به کار انداخته می شوند.
4- شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال
5- عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی).
شکل 3 یک سیستم هیدرولیکی را نشان میدهد.
شکل(3)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
هیدرولیک :
توسعه علم هیدرولیک زمانی شروع شد که پاسکال دانشمند فرانسوی قوانین مربوط به فشار را کشف کرد(1650 میلادی) و هیدرولیک را به عنوان یک علم نوین پایه گذاری نمود. از آن تاریخ به بعد دوران شکوفایی هیدرولیک پدید آمد و این علم به نحو چشمگیری وارد بازار گردید. امروزه هیدرولیک در ساختمان ماشین آلات صنعتی، کشاورزی، راهسازی، هواپیمایی، کشتی سازی، اتوموبیل سازی، ماشینهای ابزار، تاسیسات صنایع سنگین، معدن و . . . در مقیاس وسیعی استفاده میشود و روز به روز نیز افزایش میابد.
هیدرولیک فن آوری تولید، کنترل و انتقال قدرت توسط سیال تحت فشار است. بطور کلی یک سیستم هیدرولیک چهار کار اساسی انجام میدهد:
تبدیل انرژی مکانیکی به قدرت سیال تحت فشار بوسیله پمپها
انتقال سیال تا نقاط مورد نظر توسط لوله ها و شلنگها
کنترل فشار، جهت و جریان سیال توسط شیرها
انجام کار توسط عملگرها
قانون پاسکال:
قانون پاسکال پایه هیدرولیک نوین است. این قانون بیان میکند که فشار وارده به هر نقطه از یک مایع محدود بطور مساوی در تمام جهات منتقل شده و با نیروی مساوی بر رو سطوح مساوی اثر میکند.
قوانین پایه در هیدرولیک:
سیال تحت فشار همواره مسیر با مقاومت کمتر را برای عبور انتخاب میکند
پمپ تولید دبی میکند نه فشار
فشار تنها در برابر مقاومت یک مانع ایجاد میشود
اصول کلیدی فوق اگرچه ساده به نظر میرسند ولی پایه واساس علم هیدرولیک میباشند. با داشتن درک صحیحی از این قوانین به راحتی میتوان حرکت سیال در خطوط انتقال را دنبال و عملکرد سیستم را تحلیل نمود
فشار :
فشار نتیجه مقاومت در مقابل حرکت سیال میباشد. برای محاسبه ریاضی فشار، نیرو را بر سطح تقسیم مینمایند. واحد فشار "بار" میباشد. در هیدرولیک عملی معمولا کیلوگرم بر سانتی متر مربع برابر یک بار است. برای مثال اگر نیروی مقاوم در یک سیلندر هیدرولیک با قطر پیستون 20cm برابر 5000kgf باشد، فشار ایجاد شده در پشت سیلندر از رابطه زیر حساب میشود:
Pressure (bar)=Force( kgf)/Area (cm2)
diameter=10cm >> Area=314cm2 >> pressure= 5000/314=15.9 bar
تعیین فشار کاری سیستم
برای تعیین سطح فشار در یک سیستم هیدرولیک باید در نظر داشت که با بالا بردن فشار میتوان از المانهای هیدرولیکی کوچکتری برای رسیدن به تناژ مورد نظر، استفاده نمود. همچنین قطر لوله ها را میتوان کوچکتر انتخاب نمود. در نتیجه، هزینه ساخت سیستم کاهش می یابد. از طرف دیگر با افزایش فشار، دمای روغن در سیستم زودتر افزایش میابد، نشتی ها بیشتر و اصطکاک و سایش نیز افزایش میابد. در نتیجه فاصله انجام سرویس ها باید کوتاهتر شود. همچنین نویز و پیکهای فشاری نیز افزایش یافته و خواص مطلوب دینامیکی سیستم کاهش می یابد.
فشارهای نامی در هیدرولیک (bar )
1
10
100
1000
1.6
16
160
1600
2.5
25
250
2500
4
40
400
4000
6
63
630
6300
فشار کاری سیستمهای هیدرولیک متداول(bar)
20-75
ماشینهای ابزار
100-500
پرسها
200-400
ماشینهای تزریق پلاستیک
50-350
کشتی سازی
50-250
هواپیما سازی
100-150
ماشین آلات کشاورزی
100-250
ماشینهای راهسازی
100-300
وسایل نقلیه تجاری
100-400
نورد کاری
واحد PSI
از واحدهای متداول فشارPSI میباشد. یک PSI معادل یک پوند نیرو بر اینچ مربع میباشد.
برای تبدیل PSI به bar ، مقدار فشار مورد نظر را در 0.068 ( تقریبا 0.07 )ضرب نمائید. برای مثال 1000PSI معادل 68bar میباشد.
برای تبدیل bar به PSI ، مقدار فشار را در 14.7 ضرب نمائید. برای مثال 100bar معادل 1470PSI میباشد.
احتیاج روز افزون صنایع به تکنیک مهندسی کنترل و پیدایش و توسعه وسائل و ابزاریکه مورد کاربرد این چنین سیستمهای کنترلی قرار میگیرد، ایجاب میکند آن وسایل و قطعات از نقطه نظر نحوه کار و وظیفه شان در سیستم دارای علائم واحد و یا استاندارد شده ای باشند، که هم طراحان بتوانند سریعتر و راحت تر طرح خود را پیاده کنند و هم پرسنل مرتبط با چنین سیستمهایی بتوانند طرح مزبور را سریع تر و راحت تر بخوانند و با دستگاه کار کنند.
مجموعه یک صفحه ای از نمادهای المانهای پرکاربرد هیدرولیک
سیلندرهای هیدرولیک جریان سیال تحت فشار را به حرکت خطی میله پیستون تبدیل میکنند و دارای انواع یککاره و دو کاره میباشند. در نوع یککاره برگشت به موضع اولیه توسط فنر یا نیروی ثقلی بار صورت میپذیرد ولی در نوع دو کاره عمل رفت و برگشت تحت کنترل سیال هیدرولیکی انجام میشود.
در انتخاب سیلندرهای هیدرولیک موارد ذیل باید در نظر گرفته شود:
حداکثر فشار کاری سیستم
قطر پیستون و میله پیستون
نیروی سیلندر
حداکثر نیروی سیلندر
طول کورس سیلندر
حداکثر سرعت سیلندر
نحوه نصب سیلندر
وجود ضربه گیر
نوع و کاربرد سیلندر
مشکلات اساسی در ارتباط با سیلندرهای هیدرولیک
بارگذاری غیر محوری
نصب نامناسب
کمانش در میل پیستون
محاسبات نادرست در شتابگیری و کاهش سرعت بار
بارهای ضربه ای سنگین
نشتی های داخلی و خارجی
تقویت فشار ناخواسته
سرعت و ترتیب حرکت نادرست
محاسبات نیرو و سرعت سیلندر
برای دستیابی به تناژ مورد نظر ابتدا سطح فشار کاری باید تعیین گردد. برای مثال فشار 120bar در صنعت متداول میباشد. با توجه به فشار کاری و نیروی مورد نیاز، سطح مقطع سیلندر از رابطه ذیل تعیین میگردد.
F (kgf)=P(bar)XA(cm2)
برای مثال برای دستیابی به 5 تن نیرو در فشار 120bar داریم:
5000= 120xA >> A= 41.7 cm2 >> D= 7.3 cm >> D=8 cm (سایز موجود سیلندر)
سرعت حرکت سیلندر متناسب با دبی ورودی به آن تعیین میگردد. با توجه به نیاز سیستم ، سرعت حرکت را طراح مشخص مینماید. معمولا تامین سرعتهای بیش از 0.1m/sec و کمتر از 0.01m/sec نیاز به تمهیدات خاص در سیستم دارد. سرعت سیلندر از رابطه ذیل حساب میشود:
V(m/sec)=Q(lit/sec)/6XA(cm2)
برای مثال برای سرعت سیلندر با قطر 8cm و دبی ورودی 20lit/sec داریم:
A=50.24 >> V= 20/6X50.24 = 0.066 m/sec= 6.6 cm/sec
در صورتیکه سرعت محاسبه شده مطلوب طراح نباشد لازم است مقدار دبی کاهش یابد. برای مثال با ورود 10lit/sec روغن به این سیلندر، سرعت نیز نصف میشود و تا 3.3cm/sec کاهش میابد.
مدار کنترل سرعت سیلندرهای هیدرولیک
Meter In and Meterout circuit
Bleed-off circuit