لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 10 صفحه
قسمتی از متن .doc :
درباره نظریه مولکولى تکامل
ژاک لوسین مونو (J.monod) در سال ۱۹۱۰ در پاریس به دنیا آمد و در سال ۱۹۳۱ همانجا از دانشگاه فارغ التحصیل شد. در سال ۱۹۳۴ استادیار جانورشناسى شد و چند سال اول پس از فارغ التحصیلى درباره منشاء حیات به تحقیق پرداخت. طى جنگ جهانى دوم در سازمان مقاومت فعالیت داشت و پس از آن به انستیتو پاستور پیوست. در سال ۱۹۵۳ رئیس گروه زیست شیمى سلولى شد. در سال ۱۹۵۸ درباره ساخت آنزیم در باکترى جهش یافته با فرانسوا ژاکوپ (F.Jacob) و آرتور پاردى (A.Pardee) به همکارى پرداخت. این کار به تدوین نظریه تبیین فعالیت ژن و چگونگى روشن و خاموش شدن ژن ها در مواقع لزوم، توسط مونو و ژاکوب انجامید.
در سال ۱۹۶۰ آنها اصطلاح «اپرون» را براى گروهى از ژن ها معرفى کردند که با یکدیگر پیوند نزدیکى دارند و هر یک از آنها مرحله اى متفاوت از یک مسیر زیست شیمیایى را کنترل مى کند. سال بعد آنها وجود مولکولى به نام RNA ى پیامبر را فرض کردند که اطلاعات ژنتیکى لازم براى ساخت پروتئین را از اپرون به ریبوزوم ها، یعنى جایى که پروتئین ساخته مى شود، مى برد. مونو و ژاکوب به خاطر این کار جایزه نوبل پزشکى یا فیزیکى سال ۱۹۶۵ را گرفتند، جایزه اى مشترک با آندره لوف (A.Lwoff) که او هم روى ژنتیک باکترى کار مى کرد. در سال ۱۹۷۱ مونو مدیر انستیتو شد و در همان سال کتاب پرفروش «تصادف و ضرورت» را به چاپ رساند. او در این کتاب استدلال مى کند که حیات در اثر تصادف پدید آمده و در نتیجه پیامد ناگزیر فشار هاى ناشى از انتخاب طبیعى به وضعیت کنونى درآمده است.
این کتاب با همین عنوان توسط حسین نجفى زاده ترجمه و در سال ۱۳۵۹ توسط خود وى منتشر شده است. ژاک مونو در سال ۱۹۷۶ درگذشت.متن زیر ترجمه بخشى از فصل دوم کتاب «مسائل انقلاب علمى» (۱۹۷۴) به ویراستارى هار (R.Harre) است. این متن تحت عنوان «درباره نظریه مولکولى تکامل» طى روز هاى آینده در همین ستون عرضه خواهد شد.
آنچه مى خواهم امروز درباره اش صحبت کنم وضعیت کنونى نظریه تکامل است. اجازه دهید بى حاشیه بگویم هنگامى که از نظریه تکامل حرف مى زنم، دقیقاً از نظریه تکامل موجودات زنده درون چارچوب عمومى نظریه داروینى سخن مى گویم، نظریه اى که امروزه هنوز زنده است. در واقع این نظریه خیلى زنده تر از آن است که بسیارى از زیست شناسان ممکن است گمان کنند؛نظریه تکامل نظریه اى بسیار شگفت انگیز است. در ابتدا یادآورى این نکته لازم است که نظریه تکامل به علت مضامین عمومى آن از بسیارى جهات مهمترین نظریه علمى است که تاکنون تدوین شده. تردیدى نیست که هیچ نظریه علمى دیگرى چنین مضامین فلسفى، ایدئولوژیک و سیاسى عظیمى دربر نداشته است.
علاوه بر این نظریه تکامل از نظر جایگاه نیز بسیار شگفت انگیز است، زیرا با نظریه هاى فیزیکى کاملاً تفاوت دارد. هدف بنیادى نظریه هاى فیزیکى کشف قوانین عام )جهانى( است، قوانینى که در مورد تمام اشیاى جهان صدق مى کنند، با این امید که بتوان براساس این قوانین- یعنى براساس اصول نخستین- نتایجى استنباط کرد که پدیده هاى سرتاسر عالم را تبیین کنند. هنگامى که یک فیزیکدان به پدیده اى خاص توجه مى کند، امیدوار است بتواند نشان دهد که او مى تواند این پدیده را در قوانین عام، از اصولى نخستین، نتیجه بگیرد. در عوض نظریه تکامل هدف متفاوتى دارد. گستره کاربرد این نظریه جهانى نیست، بلکه تنها گوشه کوچکى از این جهان است، یعنى جهان موجودات زنده آن طور که ما امروزه آنها را در زمین مى شناسیم. هدف این نظریه را مى توان توضیح وجود تقریباً دو میلیون گونه جانور و در حدود یک میلیون گونه گیاه، به اضافه تعداد نا معلومى گونه باکترى تعریف کرد که امروزه بر سطح زمین زندگى مى کنند.این گوشه بسیار کوچکى از جهان است و هیچ معلوم نیست که آیا وجود این اشیاى بسیار خاص- موجودات زنده- را مى توان، یا هرگز بتوان از اصول نخستین استنباط کرد. من همین جا مى گویم که به دلایل بسیار عمیقى که سعى خواهم کرد تبیین کنم، باور ندارم انجام چنین کارى هرگز امکان پذیر باشد.ویژگى شگفت انگیز دیگر نظریه تکامل آن است که هرکسى فکر مى کند آن را مى فهمد؛ منظورم فلاسفه، دانشمندان علوم اجتماعى و نظایر آنها است. در حالى که در واقع تعداد اندکى عملاً آن را آن طور که هست، یا حتى آن طور که داروین بیانش کرده بود، مى فهمند. یا حتى از آن هم کمتر، طورى که ما اکنون مى توانیم در زیست شناسى آن را بفهمیم. در واقع اولین بد فهمى بزرگ توسط خود اسپنسر (H.Spencer) انجام
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
به نام خدا
Effects of molecular weight and deacetylation degree of chitin / chitosan on wound healing
اثر وزن مولکولی و DD کیتین و کیتوسان روی فرآیند ترمیم زخم
خلاصه :
در این مقاله اثر کیتین و کیتوسان روی فرآیند ترمیم زخم ها و برش های خطی در موش ها بررسی شده است . تحکام شکاف زخم در گروههای کیتوسان (cos),D-glucosamine (GLcNAc)] N-acetyl –D-glucosamine و Chiti – aligosaccharide (NACOS) و کیتین ) بیشتر بود .
فعالیت آنزیم های کلاژناز هم در گروه های کیتوسان بیشتر از گروههای کتین است .
میزان تغییرات در مورد تجمع و استحکام و فعالیت آنزیم های کلاژ ناز در نمونه های مختلف زیاد نبود.
دریافته های بافت شناسی رشته های کلاژن به صورت عمود بر خط برش در گروه های (NACOS,COS) رشد کردند و در گروههای کیتوسان تعدادی فیبروبلاست فعال شده در اطراف زخم دیده شد.
در DD های بالا استحکام خط برش ترمیم یافته بیشتر است مچنین سمیزان فیبروبلاست های ظاهر شده اطراف زخم .
مقدمه :
کیتین و کیتوسان تعدادی خواص بیولوژیکی مفید در کاربرد هایی نظیر : 1- پوشش زخم ها 2- زیست سازگاری بالا 3-قابلیت زیست ستخریب پذیری 4- عامل انعقاد خون 5- عامل ضد عفونت 6- عامل تسریع در ترمیم زخم در این تحقیق روی اثر کیتین و کیتوسان روی ترمیم زخم کار شده و بهایننتیجه رسیده که این موارد ست های ترمیم و سلول های (PMN) Polymorphonuclear و فیبروبلاست ها و سلول های اندوتلیال رگ ها را فعال می کنند .
وقتی کیتین و کیتوسان در بدن استفاده می شوند توسط آنزیم های کیتیناز و کیتوساناز خریب می شوند و متعاقباٌ به متومر و الیگومر هایشان تبدیلمی شوند .
در تحقیقات گذشته ثابت شده که نه تنها کیتین و کیتوسان بلکه ایگومرها و منومرهای آنها نیز روی مهاجرت سلول های ساندوتلیان و فیبروبلاست ها اثر دارد و منومرها و الیگومرهای آنهابر روی ترمیم زخم ها در محیط in-vivo موثرند . هر چند که رابطة بین خواص شیمیایی و کیتین و کیتوسان و ترمیم زخم هستند شناخته نشده است .
در تحقیق حاضر کیتین و کیتوسان با وزن های مولکولی مختلف و DD های مختلف آماده شده اند و اثر آنهاروی ترمیم زخم های برشی ایجاد شده در موشها آزمایش شده . و همچنین استحکام زخم ترمیم شده و میزان آنزیم کلاژناز در بافت هم اندازه گیری شده که این دو عنوان شاخص برای ترمیم زخم هستند .
آزمایشات :
در این تحقیق تین و کیتوسان توسط شرکت Sunfive + ژاپن ساخته شه است
کیتین ( باوزن مولکولی 300KD ) و کیتوسان ( با وزن مولکولی 80KD ) ا میانگین سایز 5/3 میکرو متر بوسیله اکسید اتیلن استریل شدند و در محلول بافر فسفات ( PBS با PH=7/2 ) با غلظت 10 میلی گرم بر میلی لیتر معلق می شوند .
کیتین و کیتوسان به ترتیب شامل DD های کمتر از 10 درصد و بیشتر از 80 درصد هستند .
NACOS و COS به ترتیب از ترکیب [GLcNAcNAc5] و [GLCN1, GLCN6] بدست آمده اند .
الیگومرها و منومرها در محلول PBS با غلظت 10 میلی گرم بر میلی لیتر حلشدند و از فیلترهای با روزنه های 45/0 میکرو متر عبور کرده و استریل شدند .
هر نموه با غلظت 1/0 تا 10 میلی گرم بر میلی لیتر با PBS تنظیم شد.
چهار نمونه مختلف deacetylation شده کیتین (dac) ( با 14% و 23% و 63% و 96% ) یک وزن مولکولی یکسان (50KD) بوسیله شرکت Sunfive تهیه شده و بصورت پودری با میانگین سایز 6 تا 8 میکرومتر استرل شده و به همان روش تنظیم کیتین و کیتوسان تنظیم شده است .
پودر ها با DD 100% رابا (DAC100) نشان می دهند .
وزن مولکولی هم در این تحقیق توسط روش viscosity تعیین شده
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 42
شبیه سازی مولکولی به روشهایی گفته میشود که با در نظر گرفتن مولکولهای یک سیستم و مدل بر هم کنش آنها و محاسبه موقعیتها و سرعتهای آن ذرات در هر لحظه از زمان و استفاده از روابط مکانیک آماری خواص ماکروسکوپی سیستم را محاسبه میکند. شبیه سازیهای کامپیوتری نقش ارزشمندی در پاسخ دقیق به مسائل آماری دارند که فقط بوسیله روشهای تقریبی قابل حل هستند. بدین ترتیب شبیه سازی کامپیوتری روشی برای آزمایش نظریههای مختلف مکانیک آماری است علاوه بر این نتایج شبیه سازیهای کامپیوتری را میتوان در حد نتایج آزمایشهای واقعی دانست.
روش شبیه سازی ملکولی به عوض تلاشی جهت استنتاج رفتار میکروسکوپی از مشاهدات آزمایشگاهی، دیدگاه سازندهای را دنبال میکند که در آن سعی میشود با استفاده از سیستمهای مدل رفتار میکروسکوپی بازسازی شود. بدین ترتیب این گونه روشها میتوانند به منظور آزمایش مدلهای ارائه شده مولکولی به کار روند و یا با استفاده از مدلهای تایید شده برای محاسبه خواص مدل مورد استفاده قرار گیرند. این نقش دوگانه شبیه سازی به صورت پلی میان مدلها و پیش بینیهای نظری از یک سو و مدلها و نتایج آزمایشگاهی از سوی دیگر است. تفاوت بین شبیه سازی کامپیوتری و سایر محاسبات در نحوه استفاده از کامپیوتر است. در شبیه سازی، کامپیوتر تنها یک محاسبهگر نیست بلکه آزمایشگاهی مجازی که در آن یک سیستم بررسی میشود .
شکل 2- 1- صفحه 5 کتاب آن
به همین دلیل از تکنیکهای شبیه سازی کامپیوتری به عنوان آزمایشهای کامپیوتری نیز یاد میشود. شبیه سازی کامپیوتری ارتباط مستقیمی بین جزئیات میکروسکوپی یک سیستم (جرم اتمها، بر هم کنشهای بین آنها، شکل هندسی مولکولها و .....) و خواص ماکروسکوپی قابل اندازهگیری (معادله حالت، ضرایب انتقالی، پارامترهای نظم ساختاری و ....) برقرار میسازد که این کمیتها علاوه بر اهمیت آکادمیک در صنعت نیز از اهمیت خاصی برخوردار میباشند. انجام این آزمایشات تحت شرایط دما و فشار بسیار بالا میتواند با دشواری همراه باشد. در صورتی که انجام این گونه آزمایشات بوسیله شبیه ساز کامپیوتری کار بسیار سادهتری است. تعیین جزئیات ساختار و حرکت مولکولها به عنوان مثال در واکنشهای کاتالیستی ناهمگن، انتقال یون سریع یا واکنشهای آنزیمی بوسیله روشهای آزمایشگاهی بسیار سخت است در حالی که به سادگی میتوان این نتایج را از شبیه سازی کامپیوتری استخراج نمود. سرعت زیاد بعضی از رخدادها در واکنشها یا سیستمهای شیمیایی هر چند که تشخیص آزمایشگاهی آنها را با مشکل روبرو میکند. در شبیه سازی مولکول یک نقطه سادگی محسوب میگردد. یعنی رخدادهایی با سرعت بیشتر با سهولت بیشتری شبیه سازی میگردد. گستره وسیعی از پدیدههای میتواند بوسیله شبیه سازی کامپیوتری مورد مطالعه قرار گیرد.
3- 1- شبیه سازی تعیینی و تصادفی
یک شبیه سازی در مقیاس مولکولی از سه قسمت اصلی تشکیل شده است:
الف) ساختن مدل مولکولی
ب) محاسبه مسیرهای مولکولی
ج) تجزیه و تحلیل این مسیرها برای بدست آوردن مقادیر عددی خواص مورد نظر
وظیفه واقعی شبیه سازی مولکولی قسمت دوم است. بر اساس شیوه محاسبه موقعیتهای مولکولی rN در قسمت دوم میتوان روشهای شبیه سازی را از هم تفکیک نمود. روشهای شبیه سازی دینامیک مولکولی بر پایه حل معادلات حرکت مولکولی به منظور تولید پیکربندیهای جدید استوار میباشد در نتیجه شبیه سازیهای دینامیک مولکولی را میتوان برای بدست آوردن خواص وابسته به زمان مورد استفاده قرار داد. در حالی که روش مونت کارلو بر پایه احتمالات است. بدین صورت که یک پیکربندی آزمایشی بطور تصادفی تولید میگردد. سپس این پیکربندی سیستم بوسیله معیارهایی برای مقبولیت یا عدم مقبولیت آن بوسیله محاسبه تغییر انرژی و خواص دیگر در پیکربندی آزمایشی ارزیابی میگردد. و سرانجام با مقایسه کل پیکربندیهای تولید شده و پیکربندیهای پذیرفته شده یا رد شده و استفاده از میانگین گیرهای مجموعهای خواص مولکولی محاسبه میگردد.
در بعضی روشهای دیگر موقعیتها با استفاده از یک روش ترکیبی بدست میآید. به گونهای که مانند روش مونت کارلو تا حدی بصورت تصادفی است و از طرف دیگر مانند MD دارای خاصیت تعیینی است. روشهای مختلف را میتوان بر اساس میزان خاصیت «تعیینی» آنها در تولید موقعیتهای مولکولی به صورت زیر مرتب کرد.
شکل صفحه 19- پایان نامه دکتر یگانگی
در شبیه سازی دینامیک مولکولی، موقعیتهای مولکولی rN از حل عددی معادلات حرکت بدست میآیند. بنابراین موقعیتها از نظر زمانی به همدیگر متصل هستند. در روشهای دیگر شبیه سازی موقعیتهای مولکولی از نظر زمانی به یکدیگر وابسته نیستند. به عنوان مثال در شبیه سازی «مونت کارلو» موقعیتها به صورت تصادفی تولید میشوند به طوری که ساختاری مولکولی rN فقط به ساختار قبلی بستگی دارد. وقتی که نتیجه یک واقعه تصادفی در یک رشته فقط به نتیجه واقعه قبلی بستگی داشته باشد به آن رشته یک «زنجیر مارکوف» میگویند. در بعضی روشهای دیگر موقعیتها با استفاده از یک روش ترکیبی بدست میآید. به گونهای که مانند روش مونت کارلو تا حدی به صورت تصادفی است و از طرف دیگر مانند MD دارای خاصیت تعیینی است. روشهای مختلف را میتوان بر اساس میزان خاصیت «تعیینی» آنها در تولید موقعیتهای مولکولی به صورت زیر مرتب کرد.
2- 3- 1- شبیه سازی مونت کارلو MC
روش تصادفی خالص مونت کارلو به سیستم با تعداد مولکول ثابت N در حجم ثابت V که در دمای ثابت T نگه داشته میشود، صورت میگیرد. فرآیند شبیه سازی از روش عمومی مونت کارلو برای محاسبه انتگرالهای چند بعدی استخراج شده است. انتگرالها در اینجا متوسطهای مکانیک آماری روی.
در زیر الگوریتم کلی برای روش مونت کارلو و دینامیک مولکولی ارائه گردیده است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
درباره نظریه مولکولى تکامل
ژاک لوسین مونو (J.monod) در سال ۱۹۱۰ در پاریس به دنیا آمد و در سال ۱۹۳۱ همانجا از دانشگاه فارغ التحصیل شد. در سال ۱۹۳۴ استادیار جانورشناسى شد و چند سال اول پس از فارغ التحصیلى درباره منشاء حیات به تحقیق پرداخت. طى جنگ جهانى دوم در سازمان مقاومت فعالیت داشت و پس از آن به انستیتو پاستور پیوست. در سال ۱۹۵۳ رئیس گروه زیست شیمى سلولى شد. در سال ۱۹۵۸ درباره ساخت آنزیم در باکترى جهش یافته با فرانسوا ژاکوپ (F.Jacob) و آرتور پاردى (A.Pardee) به همکارى پرداخت. این کار به تدوین نظریه تبیین فعالیت ژن و چگونگى روشن و خاموش شدن ژن ها در مواقع لزوم، توسط مونو و ژاکوب انجامید.
در سال ۱۹۶۰ آنها اصطلاح «اپرون» را براى گروهى از ژن ها معرفى کردند که با یکدیگر پیوند نزدیکى دارند و هر یک از آنها مرحله اى متفاوت از یک مسیر زیست شیمیایى را کنترل مى کند. سال بعد آنها وجود مولکولى به نام RNA ى پیامبر را فرض کردند که اطلاعات ژنتیکى لازم براى ساخت پروتئین را از اپرون به ریبوزوم ها، یعنى جایى که پروتئین ساخته مى شود، مى برد. مونو و ژاکوب به خاطر این کار جایزه نوبل پزشکى یا فیزیکى سال ۱۹۶۵ را گرفتند، جایزه اى مشترک با آندره لوف (A.Lwoff) که او هم روى ژنتیک باکترى کار مى کرد. در سال ۱۹۷۱ مونو مدیر انستیتو شد و در همان سال کتاب پرفروش «تصادف و ضرورت» را به چاپ رساند. او در این کتاب استدلال مى کند که حیات در اثر تصادف پدید آمده و در نتیجه پیامد ناگزیر فشار هاى ناشى از انتخاب طبیعى به وضعیت کنونى درآمده است.
این کتاب با همین عنوان توسط حسین نجفى زاده ترجمه و در سال ۱۳۵۹ توسط خود وى منتشر شده است. ژاک مونو در سال ۱۹۷۶ درگذشت.متن زیر ترجمه بخشى از فصل دوم کتاب «مسائل انقلاب علمى» (۱۹۷۴) به ویراستارى هار (R.Harre) است. این متن تحت عنوان «درباره نظریه مولکولى تکامل» طى روز هاى آینده در همین ستون عرضه خواهد شد.
آنچه مى خواهم امروز درباره اش صحبت کنم وضعیت کنونى نظریه تکامل است. اجازه دهید بى حاشیه بگویم هنگامى که از نظریه تکامل حرف مى زنم، دقیقاً از نظریه تکامل موجودات زنده درون چارچوب عمومى نظریه داروینى سخن مى گویم، نظریه اى که امروزه هنوز زنده است. در واقع این نظریه خیلى زنده تر از آن است که بسیارى از زیست شناسان ممکن است گمان کنند؛نظریه تکامل نظریه اى بسیار شگفت انگیز است. در ابتدا یادآورى این نکته لازم است که نظریه تکامل به علت مضامین عمومى آن از بسیارى جهات مهمترین نظریه علمى است که تاکنون تدوین شده. تردیدى نیست که هیچ نظریه علمى دیگرى چنین مضامین فلسفى، ایدئولوژیک و سیاسى عظیمى دربر نداشته است.
علاوه بر این نظریه تکامل از نظر جایگاه نیز بسیار شگفت انگیز است، زیرا با نظریه هاى فیزیکى کاملاً تفاوت دارد. هدف بنیادى نظریه هاى فیزیکى کشف قوانین عام )جهانى( است، قوانینى که در مورد تمام اشیاى جهان صدق مى کنند، با این امید که بتوان براساس این قوانین- یعنى براساس اصول نخستین- نتایجى استنباط کرد که پدیده هاى سرتاسر عالم را تبیین کنند. هنگامى که یک فیزیکدان به پدیده اى خاص توجه مى کند، امیدوار است بتواند نشان دهد که او مى تواند این پدیده را در قوانین عام، از اصولى نخستین، نتیجه بگیرد. در عوض نظریه تکامل هدف متفاوتى دارد. گستره کاربرد این نظریه جهانى نیست، بلکه تنها گوشه کوچکى از این جهان است، یعنى جهان موجودات زنده آن طور که ما امروزه آنها را در زمین مى شناسیم. هدف این نظریه را مى توان توضیح وجود تقریباً دو میلیون گونه جانور و در حدود یک میلیون گونه گیاه، به اضافه تعداد نا معلومى گونه باکترى تعریف کرد که امروزه بر سطح زمین زندگى مى کنند.این گوشه بسیار کوچکى از جهان است و هیچ معلوم نیست که آیا وجود این اشیاى بسیار خاص- موجودات زنده- را مى توان، یا هرگز بتوان از اصول نخستین استنباط کرد. من همین جا مى گویم که به دلایل بسیار عمیقى که سعى خواهم کرد تبیین کنم، باور ندارم انجام چنین کارى هرگز امکان پذیر باشد.ویژگى شگفت انگیز دیگر نظریه تکامل آن است که هرکسى فکر مى کند آن را مى فهمد؛ منظورم فلاسفه، دانشمندان علوم اجتماعى و نظایر آنها است. در حالى که در واقع تعداد اندکى عملاً آن را آن طور که هست، یا حتى آن طور که داروین بیانش کرده بود، مى فهمند. یا حتى از آن هم کمتر، طورى که ما اکنون مى توانیم در زیست شناسى آن را بفهمیم. در واقع اولین بد فهمى بزرگ توسط خود اسپنسر (H.Spencer) انجام
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
بکارگیری محاسبه مولکولی با استاندارد رمزگذاری دادهها
لئونارد ام. المان، یاول دبلیو، کی، روتمود، سام روئیس، اریک وینفری
آزمایشگاه برای علم مولکولی
دانشگاه کالیفرنیای جنوبی و
بخش علم کامپیوتری
دانشگاه کالیفرنیای جنوبی
محاسبه و انتخاب سیستمهای عصبی
موسسه تکنولوژی کالیفرنیا
اخیراً، بونه، دال ووس ولیپتون، استفاده اصلی از محاسبه مولکولی را در جمله به استاندارد رمزگذاری (دادهها) در اتحاد متحده توضیح دادند (DES). در اینجا، ما یک توضیح از چنین حملهای را با استفاده از مدل استیگر برای محاسبه مولکولی ایجاد نموده ایم. تجربه ما پیشنهاد میکند که چنین حملهای ممکن است با دستگاه table-top ایجاد شود که بصورت تقریبی از یک گرم PNA استفاده میکند و ممکن است که حتی در حضور تعداد زیادی از اشتباهها موفق شود:
مقدمه :
با کار آنها در زمینه DES بته، رانودرس ولیبتون [Bor]، اولین نمونه از یک مشکل علمی را ایجاد نمودند که ممکن بود برای محاسبه مولکولی آسیبپذیر باشد. DES یکی از سیستمهای Cryptographic می باشد که به صورت گسترده مورد استفاده قرار میگیرد آن یک متن رمزی 64 بیتی را از یک متن ساده 46 بیتی و تحت کنترل یک کلید 56 بیتی ایجاد مینماید.
در حالیکه این بحث وجود دارد که هدف خاص سختافزار الکترونیکی [Wi] یا سویر کامیپوترهای همسان بصورت گسترده، این امری میباشد که DES را به یک میزان زمانی منطقی بشکند، اما به نظر میرسد که دستگاههای متوالی قدرتمند امروزی قادر به انجام چنین کاری نیستند. ما کار را با بوته ان ال دنبال کردیم که مشکل شکست DES را موردتوجه قرار داده بود و اخیراً مدل قویتری را برای محاسبه مولکولی پیشنهاد داده بود [Ro]. در حالیکه نتایج ما امید بخش بود، اما باید بر این امر تأکیدی نمودیم که آسانی این امر نیز باید سرانجام در آزمایشگاه تصمیم گرفته شود.
در این مقاله، به اصطلاح ما محله متن ساده- متن رمزدار مورد توجه قرار میگیرد و امید این است که کلیدی که برای عملکرد encryption (رمزدار کردن) مورد استفاده قرار میگیرد، مشخص شود. سادهترین نظریه برای این امر، تلاش بر روی تمام کلیدهای 256 میباشد که رمزسازی را برای یک متن ساده تحت هر یک از این کلیدها انجام دهیم تا متن رمزدار را پیدا نمائیم. به طور مشخص، حملات کار امر مشخص نمی باشد و در نتیجه یک نیروی کامل برای انجام آن در اینجا لازم است.
ما، کار خود را با توضیح الگوریتم آغاز کردیم تا حمله متن رمزدار- متن ساده را به منظور شکستن DES در یک سطح منطقی بکار بریم. این به ما اجازه میدهد تا عملکردهای اصلی را که برای اجرا در یک دستگاه استیکر (Sticker) نیاز داریم و بعنوان یک نقشه مسیر برای آنچه که باید دنبال کنیم عمل میکنند تشخیص دهیم.
(2) الگوریتم مولکولی : بصورت تقریبی، بار رشتههای حافظهای DNA همان یکسان 256 [Ro] شروع کنید که هر یک دارای طول نئوکلیتد 11580 میباشد. ما فکر میکنیم که هر رشته حافظه دارای 5792 قطر پشت سر هم باشد (به مناطق [Ro] برگردید) B0,B1,B2,…B578 هر یک طول به میزان 20 نئوکلتید دارد. در یک مدل استیکر که اینجا وجود ادر 579 استیکر وجود ارد S0, S1, …S578 که هر یک برای تکمیل هر قطعه میباشد (ما به رشتههای حافظه با استیکرهای S بعنوان پیچیدگیهای حافظهای میباشد برمیگردیم) زیرا، ما به این امر توجه میکنیم که هر رشته نماینده یک حافظه 579 بیتی باشد، در بعضی از مواقع از Bi استفاده میکنیم که به بیتی که نماینده Bi میباشد، برمیگردد. قطعه B0 هرگز تنظیم میشود و بعداً در اجرای الگوریتم استفاده میشود (بخش فرعی 1-3) قطعههای B1 تا B56 رشتههای حافظهای می باشد که برای ذخیره یک کلید مورد استفاده قرار میگیرد، 64 قطعه بعدی، B57….B120 سرانجام بر اساس متن رمزگذاری کدگذاری میشود و بقیه قطعهها برای نتایج واسطه ودر مدت محاسبه مورد استفاده قرار میگیرد. دستگاه استیکر که رشتههای حافظه را پردازش میکند، متون رمزدار را محاسبه میکند که تحت کنترل یک ریز پردازنده انجام می گیرد. به این علت که در تمام نمونهها، متن ساده یکسان است؛ ریز پردازنده کوچک ممکن است که آن را ذخیره سازد، ما نیاز نداریم که متن ساده را در رشتههای حافظه نشان دهیم. هماکنون یک جفت متن رمزدار- متن ساده را در نظر بگیرید، الگوریتم اجرا شده در سه مرحله می باشد.
(1) مرحله ورودی: رشتههای حافظه را به اجرا درآورید تا پیچیدگیهای حافظه ای را ایجاد نماید که نماینده تمام 256 کلید میباشد .
(2) مرحله رمزی کردن : در هر پیچیدگی حافظه، متن رمزدار محاسبه کنید که با رمز کردن متن ساده و تحت کلید پیچیدگی همسان است.
(3) مرحله بازدهی: پیچیدگی حافظه ای که متن رمزدار آن با متن رمزدار مورد نظر تطبیق دارد، انتخاب نمایند و کلید تطبیقی با آن را بخوانید.
قسمت عمده کار در مدت مرحله دوم صورت میگیرد که رمزگذاری دادههای DES صورت میگیرد، بنابراین ما این مراحل را در زیر مختصر کردهایم. هدف ما بر روی این امر است که شرح دهیم چگونه DES در یک کامپیوتر مولکولی اجرا میشود و برای این امر، نشان دادن دقیق همه جزئیات در DES لازم نیست (برای جزئیات [Na] را ببینید)
ما به جای این جزئیات بر روی عملکردهای ضروری که برای DES نیاز است، توجه داریم که آن چگونگی عملکردها رانشان می دهد که با یکدیگر مرتبط می شوند تا یک الگوریتم کامل را ایجاد نمایند.
DES، یک رمزنویسی با 16 دروه است در هر دوره، یک نتیجه واسطه 32 بیتی جدید ایجاد میشود آن به این صورت طرحریزی شده است R1….R16. ما R16, R15 را در جایگاههای B57 تا B160 ذخیره میکنیم (مجاور با کلید)