دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

شبکه های عصبی مصنوعی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 114

 

 

دانشگاه آزاد اسلامی

واحد خمین

عنوان پروژه:شبکه های عصبی مصنوعی

Artificial Neural Networks

نام استاد:جناب آقای مهندس حسین بیات

دانشجو:فهیمه عارف نیا

شماره دانشجویی:84821088

تابستان 1387

« با نام ویاد او»

بزرگوار است آن خدایی که پادشاهی به دست اوست و او بر هر چیزی تواناست.

آن خدایی که مرگ و زندگی را تقدیر کرد تا شما را آزمایش کند که کدام یک از شما به عمل نیکو ترید و او غالب و بس آمرزنده است.

آن خدایی که آسمانها را مطابق یکدیگر یکی بالای دیگری بیافرید.

هیچ خلل و فسادی در آفرینش خدای بخشنده نمی بینی،

پس دیدۀ خویش را بگردان،

آیا هیچ نقصانی در مصنوعات او می بینی؟

پس دیده را دوباره برگردان تا چشم تو در حالیکه از دیدن وا مانده باشد به سویت سر افکنده باز گردد.

« سوره ملک »

فهرست مطالب

فصل اول

مقدمه...................................................................................................................................................7

هوش مصنوعی..................................................................................................................................7

به سوی آینده.....................................................................................................................................8

تاریخچه..............................................................................................................................................9

تعریف..................................................................................................................................................9

تاریخچه و تعاریف سیستم‌های خبره...........................................................................................13

بعضی از تعاریف سیستم های خبره............................................................................................14

تاریخچه سیستم های خبره............................................................................................................14

الگوریتم ژنتیک.................................................................................................................................16

تابع سازگاری(FitnessFunction)..........................................................................................20

Mutation(جهش ژنتیکی)............................................................................................................21

مقدمه ای بر سیستم های فازی وکنترل فازی.............................................................................25

سیستم‌های فازی چگونه سیستم‌هایی هستند؟.............................................................................26

سیستم‌های فازی کجا و چگونه استفاده می‌شوند؟......................................................................27

زمینه‌های تحقیق عمده در تئوری فازی.........................................................................................27

تاریخچه مختصری از تئوری و کاربردهای فازی........................................................................28

فصل دوم

شبکه های عصبی...........................................................................................................................32

مقدمه............................................................................................................................................... 32

ساختار مغز.....................................................................................................................................33

ساختار نرون.................................................................................................................................34

چگونه مغز انسان می آموزد ؟.....................................................................................................37

معنای شبکه های عصبی...............................................................................................................38

قوانین هب.......................................................................................................................................40

از سلول های عصبی انسانی تا سلول های عصبی مصنوعی.................................................41

رویای جایگزینی ویژگی های مغز در یک سیستم مصنوعی چقدر ممکن گردیده؟..................................41



خرید و دانلود  شبکه های عصبی مصنوعی


تحقیق در مورد طبقه بندی بیماریهای عصبی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 12 صفحه

 قسمتی از متن .doc : 

 

طبقه بندی بیماریهای عصبی-عضلانی بر اساس معیار های بالینی، آنالیزهای ملکولی

 و ایمونوهیستوشیمی در بیماران ایرانی

چکیده

هدف: بیماریهای عصبی عضلانی  یک گروه هتروژنوس از بیماریهای وراثتی است. بیش از 150 نوع از این گروه از بیماریها تاکنون شناسایی شده است. اگر چه اختلالات عضلانی کودکان یکی از علل اصلی ناتوانی می‌باشد، پیشرفتهای چشمگیری در زمینه علل ژنتیکی این بیماریها صورت گرفته است،که در زمینه پیشگیری و تشخیص آن بسیار مهم می‌باشد. معیارهایی که برای طبقه بندی این بیماریها استفاده می‌شود عبارتند از: سن بروز بیماری، میزان پیشرفت بیماری و نوع وراثت.

بیماریهای عصبی عضلانی به چهار دسته طبقه بندی می‌شوند:

میوپاتیها (بیماریهای دیستروفی عضلانی)؛ نوروپاتی‌ها (بیماری شارکوت ماری توث) بیماریهای محل اتصال عصب و عضله (سندرم میاستنی مادرزادی)، بیماریهای نورون حرکتی(آتروفی عضلانی نخاعی).

هدف از این مطالعه طبقه بندی بیماریهای عصبی عضلانی بر اساس معیارهای بالینی و آنالیزهای مولکولی و ایمنو هیستو شیمی در بیماران ایرانی مراجعه کننده به مرکز تحقیقات ژنتیک است. از آنجایی که بیماریهای عصبی – عضلانی دومین معلولیت شایع می‌باشد لزوم بررسی بیشتر در مورد این گروه از بیماریها، در جمعیت ایران ضروری می‌باشد. بدین ترتیب این مطالعه برای اولین بار بر روی بیماران ایرانی صورت گرفت  که پس از اخذ فرم رضایت نامه بررسی‌های ذکر شده انجام گردید.

روش بررسی: در مجموع در این تحقیق 143 بیمار مشکوک به نقصهای عصبی عضلانی ارجاع شده به مرکز تحقیقات ژنتیک تحت معاینه بالینی و انجام آزمایشات آنزیم‌های عضلانی و الکترومیوگرافی قرار گرفتند و پس از آن بر حسب مورد آزمایشات ملکولی و ایمونوهیستوشیمی انجام گرفت.

یافته‌ها: 82  بیمار با دیستروفی عضلانی میوتونیک، 19 بیمار با  دیستروفی عضلانی دوشن و بکر، 6 بیمار دیستروفی میوتونیک مادرزادی(CMD)، 3 بیمار FSHD، 10 بیمار آتروفی عضلانی نخاعی (SMA)،2 بیمار دیستروفی میاستنی مادرزادی (CMS) و21 بیمار مشکوک به دیستروفی عضلانی کمربند لگنی- شانه‌ای (LGMD) بودند.

در مورد سایر موارد نیاز به بررسی مولکولی بیشتر و بررسی دقیق تر برحسب علایم بود که در این تحقیق جای نمی‌گرفت.

نتیجه‌گیری: در مواردی که دیستروفی میوتونیک نوع I علیرغم ظن بالینی تایید نگردید، بررسی نوع II دیستروفی میوتونیک ضروری می‌باشد.

در بیماران مبتلا به دیستروفی عضلانی کمربند لگنی- شانه ای که 5 آنتی بادی مورد بررسی طبیعی بودند. بررسی آنالیز Multiplex western-blot توصیه می گردد.

همچنین برای موارد دیستروفی عضلانی مادرزادی غیر از بررسی مروزین،‌ بررسی سایر پروتئین های درگیر و نیز انجام آزمایشات ملکولی جهت تعیین موتاسیون لازم می‌باشد.

کلید واژه‌ها: بیماریهای عصبی/ عضلانی / میوپاتی / نوروپاتی / آنالیز ایمونوهیستوشیمی / آنالیز ملکولی

کیمیا کهریزی

ماندانا حسن زاد

 الهه کیهانی

مجتبی عظیمیان

فریدون لایقی

افشین وجدانی روشن

یوسف شفقتی

جان آندونی اورتیزبرا

دانیل هنتای

INSERM ، پاریس- فرانسه

حسین نجم آبادی

مرکز تحقیقات ژنتیک دانشگاه علوم بهزیستی و توانبخشی- تهران- ایران 

 

مقدمه

بیماریهای عصبی عضلانی یک گروه از اختلالات هتروژن پیشرونده هستند و دارای هتروژنیتی قابل ملاحظه ای می‌باشند. بر اساس اطلاعات موجود از هر 3000 تا 4000 نوزادی که متولد می‌شوند یک‌نفر دچار یکی از بیماریهای عصبی – عضلانی (نوروماسکولار) می‌باشد. ویژگی مبتلایان این است که معمولاً دستگاه عصبی مرکزی و توان ذهنی طبیعی،‌اما بخش حرکتی بدن گرفتار است. نشانه های عمده در این بیماران عبارتست از: ضعف عضلات در دستها و پاها و گاهی تنه و عضلات خارجی چشم ،مشکل در برخاستن، ایستادن، راه رفتن و بالا رفتن از پله ها ،خستگی زودرس ،ضعف و نارسایی عضلات قلب و تنفس در مراحل پیشرفته. تقریباً می توان گفت که اکثر بیماریهای عصبی- عضلانی ارثی- ژنتیکی هستند . جهش‌های ژنی و اختلال در پروتئین‌هایی که بخصوص درعضلات  وجود دارند، ‌مسئول بروز علائم می‌باشند. الگو های توارثی در انواع مختلف این بیماریها با یکدیگر متفاوتند، ممکن است غالب جسمی، مغلوب جسمی، وراثت وابسته به جنس یا میتوکندریایی باشد. بنابراین بررسی دقیق افراد مبتلا در یک خانواده برای شناخت الگوی وراثتی بیماری و تشخیص بیماران می تواند بسیار مفید باشد.

بیماریهای بافت عضلانی را به هر علت که باشند، میوپاتی می نامند. میوپاتی ها انواع گوناگونی دارند که یک گروه از آنها را دیستروفی تشکیل می دهد. دیستروفیهای عضلانی شایعترین بیماریهای عضلات می باشند که از زمانهای قدیم، بشر به آنها مبتلا بوده است. 

به دلیل پیچیدگی علائم و تشابه نشانه‌ها در انواع متفاوت این بیماریها، تشخیص قطعی چندان آسان نیست. بررسی‌های آزمایشگاهی شامل سنجش آنزیم‌های عضلانی، اندازه گیری سرعت هدایت امواج عصبی در اعصاب محیطی، ثبت امواج پتانسیل حرکتی در عضلات، اندازه گیری حجم توده عضلانی طبیعی و غیر طبیعی با سونوگرافی یا سی تی اسکن، و در نهایت برای تشخیص قطعی،‌ بیوپسی از عضلات مبتلا می‌باشد. امروزه با رنگ‌آمیزی اختصاصی با روش ایمونوهیستوشیمی و به کارگرفتن آنتی بادی های مونوکلونال برای ترکیبات پروتئینی متنوع موجود در بافت عضله، می توان دقیقاً‌ زمینه پاتوژنتیک و علت بیماریهای عضلانی را شناسایی کرد، سپس برای تعیین جهش‌های مربوطه در فرد بیمار و خانواده او گام برداشت. چنانچه جهش مسئول بیماری در یک خانواده شناسایی شود، امکان تشخیص قبل از تولد و پیشگیری از تولد مورد دیگری از بیماری فراهم خواهد شد.

بیماریهای عصبی عضلانی به چهار دسته طبقه بندی می شوند:

1- میوپاتی‌ها که شامل دیسترونی‌های عضلامی می‌شوند: 1- بیماریهای دیستروفی عضلانی 2- نوروپاتی ها 3- بیماریهای محل اتصال عصب و عضله، 4- بیماریهای نورون حرکتی. از انواع دیستروفی‌های عضلانی می‌توان به دیستروفی عضلانی دوشن و بکر اشاره نمود. از انواع  اختلالات  محل اتصال عصب عضله می‌توان به سندرم میاستنی مادرزادی اشاره نمود و از اختلالات نورون حرکتی می‌توان به آتروفی عضلانی– نخاعی و از انواع نوروپاتی میتوان به CMT شارکوت ماری توث اشاره نمود.

ازانواع میوپاتی‌ها (دیستروفیهای عضلانی)، به دیستـروفی میوتونیک میتوان اشاره نمود، نمای بالینی بیماری بسته به سن شروع بیماری دارد. نوع مادرزادی و ابتدای دوره کودکی (سن کمتر از 10 سال) و نوع نوجوانی و بزرگسالی (کلاسیک)، سن 50-10 سال و  دیستروفی میوتونیک خفیف، سن بالای 50 سال (1و2).

علایم بالینی دیستروفی میوتونیک مادرزادی عبارت است از: مرده زایی یا ضعف عضلانی منتشر (شامل صورت)، هیپوتونی و نارسایی بلع، تنفس و مکیدن، فقدان رفلکس‌های تاندونی و پا چنبری (Club foot). علایم دیستروفی میوتونیک در مادر افزایش بیش از 45 تکرار سه تایی CTG در ژن دیستروفی میوتونیک روی کروموزوم 19، علائم بالینی دردیستروفی میوتونیک ابتدای کودکی و دیستروفی میوتونیک نوجوانی- بزرگسالی و دیستروفی میوتونیک خفیف متفاوت است.

دیستروفی عضلانی دوشن نمونه دیگری از انواع میوپاتی است. علایم بالینی در دیستروفی عضلانی دوشن معمولاً قبل از 5 سالگی ظاهر می‌شوند. علایم بالینی شامل ضعف دوطرفه پیشرونده عضلات است. عضلات پروگزیمال بیش از دیستال درگیر می‌شوند و در ابتدا فقط عضلات اندام تحتانی است. هیپرتروفی ساق پا اغلب وجود دارد. فاسیکولاسیون و اختلال حسی در این بیماران وجود ندارد. قبل از سن 13 سالگی نیاز به وسایل کمکی در راه رفتن دارند. حداقل 10 برابر افزایش در مقادیر SCK (کراتی تین کیناز سرم) وجود دارد (سطح آن مرتبط با سن و میزان حرکت بیمار می‌باشد) (3، 2، 1).

دیستروفی عضلانی بکر نمونه دیگری از میوپاتی‌ها است، علایم بالینی شامل آتروفی و ضعف عضلانی پیشرونده قرینه، درگیری انتهای فوقانی اندام بیشتر از انتهای تحتانی و در ابتدا فقط اندام تحتانی است. ضعف عضلات چهار سر ران تا مدتها تنها علامت است. هیپرتروفی ساق پا اغلب وجود دارد. برخی بیماران کرامپ عضلانی که با حرکت شروع می‌شود، دارند. خشکی فلکسـورهای آرنـج در سیـر بعـدی بیماری رخ می دهد. دیستروفی نوع بکر با درد عضلانی و کرامپ، عدم تحمل فعالیت و میوگلوبینوری، افزایش کراتین کیناز (CK) بدون علامت، کاردیومیوپاتی و اختلالات شناختی نیز ممکن است تظاهر کند. و در صورت فاسیکولاسیون و اختلال حسی، تشخیص بکر رد می‌شود. تا قبل از 16 سالگی نیاز به صندلی چرخدار ندارند. فعالیت کراتین کیناز سرمی (SCK)  بیش از 5 برابر نرمال است(5، 4).

دیستروفی عضلانی کمربند لگنی شانه‌ای(LGMD)  از انواع هتروژن دیستروفی‌های عضلانی محسوب می‌گردد، که درگیری اولیه عضلات لگنی و شانه‌ای بطور پیشرونده از علائم غالب آن می‌باشد. سیر بالینی بیماری با هوش طبیعی و گوناگونی فراوان که از فرم شدید با سن شروع دیرتر و سیر کند تر خود را نشان می‌دهد.

حداقل 15 ژن برای دیستروفی عضلانی کمربند لگنی شانه ای (LGMD) شناسایی شده است که 5 نوع آن اتوزومال غالب و 10 نوع بقیه اتوزومال نهفته می باشند.فرم غالب بیماری



خرید و دانلود تحقیق در مورد طبقه بندی بیماریهای عصبی


مقاله درمورد شبکه های عصبی Neural Network

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 16

 

شبکه های عصبی Neural Network

شبکه‌های عصبی مصنوعیArtificial Neural Network

چکیده:شبکه‌های عصبی مصنوعی از مباحث جدیدی است که دانشمندان علوم کامپیوتر به آن علاقمند شده‌اند و برای پیشرفت هرچه بیشتر علوم کامپیوتر وقت و هزینه بسیاری را صرف آن کرده و می‌کنند. این موضوع با ایده گرفتن از سیستم عصبی بدن انسان و با هدف شبیه‌سازی هرچه بیشتر کامپیوتر به انسان شکل گرفت و تا حال به خوبی پیشرفته است. از جمله کاربردهای این بحث می‌توان از شناسایی الگوها, پردازش تصویر و رویت, هوش مصنوعی, کنترل رباتها و موارد بسیار دیگر نام برد. ما در این مقاله پس از مقدمه به مسائل در خور شبکه‌های عصبی مصنوعی و نیز کاربردهای آن خواهیم پرداخت, در ادامه Perceptron ها را که یکی از مهمترین الگوریتم‌های شبکه‌های عصبی مصنوعی می‌باشد معرفی می‌کنیم.

1- مقدمه1-1- ایده پیدایش شبکه‌های عصبی مصنوعیآیا کامپیوتر میتواند همان نوع از محاسباتی را که یک فرد هوشمند انجام میدهد به کار گیرد؟بسیاری از دانشمندان عقیده داشته ودارند که این بحث باید مورد توجه قرار گیرد. شبکه‌های عصبی در حل مسائل یک جهت جدید و متمایز نسبت به کامپیترهای عمومی می‌گشود. کامپیوترهای عمومی از یک الگوریتم استفاده می‌کنند یعنی برای حل مسائل از یک سری دستورات از پیش تعیین شده پیروی می‌کنند مگر در مواقع ویژه‌ای که کامپیوتر نیاز به یک‌سری اطلاعات برای حل مسئله دارد. و همین مسئله توانایی پردازش را از کامپیوترهای عمومی به مسائلی که ما قبلا فهمیده‌ایم و روش حل آنها را شناخته‌ایم محدود می‌کند و تنها سرعت عمل و قدرت در حل نمونه‌های بزرگتر را به همراه دارند. اما کامپیوترها باید به قدری مفید باشند که بتوانند کارهایی را انجام دهند که واقعا ما نمی‌دانیم چگونه باید آنها را انجام دهیم.1-2- بررسی سلولهای مغزی افرادتحقیق درباره سلولهای مغزی افراد و همچنین شناخت ‌‌Neuron ها یا رشته‌های مغزی وبیان یک راه نسبتا متفاوت که یک سیستم هوشمند را بنا می‌کند شروع شد. مغز بشر متشکل از میلیونها نرون عصبی منحصر بفرد است واین رشته‌های عصبی به اشکال و اندازه‌های مختلف تغییر می‌کنند.. هر نرون عموما یک هسته دارد و یک‌سری سلولهای عصبی Axon (آکسون)ـ که علائم خروجی را به سلولهای عصبی نرون دیگر حمل می‌کنندـ و Dendrite ها (شاخه‌های سلولهای عصبی). علائم در سلولهای عصبی میان شاخه‌های سلولهای عصبی ونواحی خروجی جریان دارند.در اینجا برای حالت برانگیزش باید آشفتگی از یک حدی تجاوز کند که آستانه یا سرحد نامیده می‌شود و پس از برانگیزش نرون‌ها پیامهایی برای نرون‌های دیگر می‌فرستند و خود را برای دریافت و پاسخ به اطلاعات عمومی آماده می‌کنند.

1-3- تاریخچهشبکه‌های عصبی دهها سال است که جلب توجه می‌کنند وتاکنون راه حلهایی برای استفاده از هوش بشری ارائه شده است. اولین نرون مصنوعی درسال 1943 توسط نروفیزیولوژیست وارن‌مک‌کالوک و منطق دان والتر‌پیتز تولید شد.در دهه 60 به دلایلی که خارج از بحث این مقاله است مردم به‌سوی شبکه‌های عصبی متمایل شدند و تنها در دهه 80 دانشمندان توانایی‌های واقعی شبکه‌های عصبی را دیدند.2- شبکه‌های عصبی مصنوعی2-1- شبکه‌های عصبی مصنوعیشبکه‌های عصبی شبیه به مغز انسان اطلاعاتی را پردازش می‌کنند. شبکه‌ از تعداد زیادی سلولهای عصبی(Neuron ها) تشکیل شده با پردازشی بسیار بزرگ و به‌هم پیوسته که در حل موازی مسائل ویژه مشغول به کارند.یادگیری شبکه‌های عصبی از طریق مثالهاست. آنها برای انجام یک کار خاص برنامه‌ریزی نشده‌اند. مثالها باید با دقت بسیار بالایی انتخاب شوند والا زمان مفید هدر خواهد رفت و یا حتی ممکن است شبکه به طور ناقص دایر شود و در اینجا راهی برای فهمیدن اینکه سیستم معیوب است یا خیر وجود ندارد مگر اینکه خطایی رخ دهد.شبکه‌های عصبی مصنوعی یک ترکیبی از مجموعه نرون‌هاست و البته نرونهای مصنوعی‌ای که بسیار شبیه به نرونهای زیستی کار می‌کنند. و بدین گونه است که ورودیهای زیادی با وزنهای مختلف می‌گیرد و یک خروجی که به ورودی وابسته است تولید می‌کند. نرونهای زیستی می‌توانند در حال برانگیزش باشند یا نباشند. ( وقتی یک نرون برانگیخته می‌شود ضربه علائم خروجی آن مقداری کمتر از 100 هرتز است)شبکه‌های عصبی استفاده وسیعی در شناسایی الگوها دارند زیرا از خودشان قابلیت آن را دارند که بطور عمومی به ورودی‌های غیر منتظره نیز پاسخ دهند. در طول ساخت نرونها می‌آموزند که چگونه الگوهای ویژه گوناگون را تشخیص دهند. اگر الگویی پذیرفته شود در حالی که در طول اجرا ورودی با خروجی مرتبط نباشد، نرون از مجموعه‌ای از الگوهایی که سابقا آموخته خروجیی را که شبیه به الگو می‌باشد وکمترین تفاوت را با ورودی دارد انتخاب می‌کند. این روال عموما فراخوانی می‌شود.مثال:وقتی که ورودی نرون 1111 باشد چهار ورودی بر حسب برانگیزش مرتب شده‌اند و وقتی ورودی‌های 0000 را داریم نرون برای برانگیزش مرتب نیست. قاعده عمومی این است که نرونها مایلند برانگیخته شوند وقتی که ورودی‌ها 0111 ، 1011 ، 1101 ، 1110 یا 1111 باشند و در صورتی که ورودی آنها 1000 ، 0001 ، 0010 ، 0100 یا 0000 باشند مایل به برانگیخته شدن نیستند.شناسایی الگوهای پیچیده سطح بالا می‌تواند به وسیله شبکه‌ای از نرونها انجام شود و بدین ترتیب نام آن را شبکه‌های عصبی مصنوعی گذاشتند. اکنون شبکه‌های عصبی کاربردهای زیادی دارند(درمنطق وکلام و شناسایی عکسها)البته شناسایی الگوهامی‌تواند به‌طور موفقیت آمیز بر روی کامپیوترهای عمومی انجام شود. این شبکه‌های عمومی که برای شناسایی الگوها استفاده می‌شوند Feed-Forward نامیده می‌شدند زیرا آنها یک بازخورد (Feed-Back) داشتند. آنها به‌طور ساده ورودی‌ها را با خروجی‌ها می‌آمیختند. اما شناسایی الگوها به تدریج کاملتر شد به‌طوریکه بر روی کامپیوترهای عمومی با سیستم خاص خودشان به‌سختی انجام می‌شد پس برای شناسایی الگوها شبکه‌های Feed-Forward کافی نبودند.در شبکه‌های عصبی خروجی هر نرون به ورودی نرونهای مجاورش متصل شده است. شبکه‌های عصبی نمی‌توانند معجزه کنند اما اگر به درستی استفاده شوند نتایج شگفت‌انگیزی خواهند داشت.2-2- مشخصات مسائل در خور شبکه‌های عصبی مصنوعی ANN(Artificial Neural



خرید و دانلود مقاله درمورد شبکه های عصبی Neural Network


دانلود تحقیق درباره سیستم عصبی حشرات (کشاورزی)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

سیستم عصبی حشرات

دستگاه عصبی Nervous system:

دستگاه عصبی در حشرات به صورت دو زنجیر عصبی در قسمت شکمی بدن قرار دارد . مراکز اصلی عصبی شامل سه قسمت است ، دستگاه عصبی مرکزی ، درونی یا احشائی ، وسطی یا جلدی .

1- دستگاه عصبی مرکزی Central Nervous system: یا زنجیر عصبی که از عصب ها و عقده های عصبی تشکیل یافته است. در ناحیه سر ، مغز(Brain) را تشکیل می دهد که به وسیله یک جفت رشته عصبی به نام گردنبند دورمری Circumoesophageal connectives به عقده زیر مری Suboesophageal ganglion متصل می گردد. زنجیر عصبی در ناحیه قفس سینه شامل سه جفت عقده عصبی است. معمولاً عقده پیش قفس سینه ای مشخص ولی عقده های میان و پس قفس به یکدیگر اتصال یافته اند . عقده های عصبی به وسیله یک رشته عرضی به نام پیوند Commissure و یک رشته طولی به نام طناب Cord به یکدیگر متصل می باشند . مغز از سه قسمت زیر تشکیل یافته است.

(1) مغز جلوئی یا مغز اول Protocerebron بزرگترین قسمت مغز می باشد و اعمال حسی چشم‌های ساده و مرکب را انجام می دهد و همچنین سلولهای عصبی ترشحی قسمت داخلی مغز، از نظر رشدی و تغییر جلد اهمیت دارند .

(2) مغز میانی یا مغز دوم Deutocerebron مرکز عصبی شاخکها می باشد.

(3)مغز عقبی یا مغز سوم Tritocerebron کهرشته های عصبی را به پیشانی ، لب بالا و قسمت جلوی لوله گوارش می فرستد.

مغز حشرات از توده سلولهای نر و پیل وسلولهای عصبی ارتباطی و تعداد کمی سلول های محرک تشکیل یافته و حجم آن بستگی به وضعیت تکاملی حشره دارد . چنانچه در سوسک Dytiscus حجم مغز و در زنبور عسل حجم بدن می باشد.

هرسلول عصبی یا نرون Neuron دارای یک جسم سلولی یا Neurocyte آکسون و انشعابات متعدد باریک به نام دندریت می باشد. نوروسیت های یک قطبی دارای یک آکسون و نوروسیت های دو قطبی و چند قطبی دارای دو یا چند آکسون هستند. سلولهای عصبی حساس معمولا دو یا چند قطبی هستند و نوروسیت آنها در سطح و یا نزدیک به سطح بدن قرار دارد و دندریت ها در سطح بدن و داخل غده ها و ماهیچه ها امتداد دارند. سلولهای عصبی محرک معمولا یک قطبی و نوروسیتها در مراکز عصبی و آکسون آنها در سطح جلد امتداد دارد.

عقده عصبی از یک توده متراکم رشته های عصبی به نام بافت نخاعی یا نروپیل در داخل و یک پرده به نام Epineural membrane تشکیل شده و دارای نوروسیتها و آکسون های سلولهای محرک ، انشعابات انتهائی سلولهای حساس در قسمت داخلی ، انشعابات تراشه ای و سلولهای پوششی در قسمت سطحی است.

عصب ، از آکسون های محرک یا حساس و یا هر دو نوع تشکیل یافته است.

عصب های مغز شامل: (1) عصب چشم های ساده میانی (2) عصب چشم های مرکب و چشم های ساده جانبی (3) عصب عقده پشت سر که رابط بین عقده پشت سر و قسمت عقبی مغز است. (4) عصب شاخکی (5) عصب جلدی (6) عصب جانبی که انشعابات آن به دهان و عقده پشت سر اتصال دارد (7) عصب لب و پیشانی (8) عصب زیر گلوئی که اعمال عصبی ماهیچه های منبسط کننده بخش جلوئی لوله گوارش را انجام می دهد.

2- دستگاه عصبی درونی یا احشائی Ventral Nervous system:

این دستگاه به نام سیستم سمپاتیک از سه قسمت زیر تشکیل شده است:

(1) دستگاه عصبی بخش جلوئی لوله گوارش Stomodaeal nervous system یا سیستم استوموگاستریک شامل سلولهای حساس و محرک ، عقده زیر مغذی یا عقده پشت سر ، عقده پیشانی و عصب های متعدد می باشد. این قسمت، عصب های متعدد می باشد. این قسمت، عصب های متعدد به بخش جلوئی لوله گوارش ، قلب و آئورت و اجسام آلاتا و گاهی ماهیچه های لب پائین و آرواره های بالا و در بعضی از حشرات به تمام بخش میانی لوله گوارش می فرستد.

(2) دستگاه سمپاتیک دمی Caudal sympathic system اعمال عصبی غدد تناسلی و قسمت انتهائی لوله گوارش را انجام می دهد.

(3) عصب های فرد شکمی Impaire ventral nerves رشته های عصبی به سوراخهای تنفسی و استیگمات ها می فرستد.

3- دستگاه عصبی سطحی یا جلدی Peripheral Nervous system: شامل سلولهای حساس دو یا چند قطبی و قسمتهایی انتهائی آکسون سلول ها محرک می باشد که معمولا در لایه اپیدرمی جلد و پوشش سطحی لوله گوارش و ماهیچه های سمپاتیک متمرکز هستند. دستگاه عصبی در حشرات، دارای ترشحات هرمونی است که از غده های بدون مجرای ترشحی به نام اجسام آلاتا Corpora allata و کاردیاکا C.cardiaca که در عقب مغز جلوئی لوله گوارش در محل اتصال مری قرار دارند و ترشحات که در عقب معز جلوئی قرار دارد ترشح می شوند، اجسام آلاتا در قسمت پشتی بخش جلوئی لوله گوارش در محل اتصال مری قرار دارند و ترشحات آنها به نام هورمون جوانی از نظر پدیده دگردیسی و رشد غدد تناسلی اهمیت دارد. اجسام کاردیاکا در قسمت میانی مغز جلوئی قرار دارند و ترشحات آنها احتمالا در تغییر جلد موثرند.

4- انعکاس – عبارت است از عکس العمل غیر ارادی است، که در آن یک نرون حساس ، یک نرون محرک و یک عقده عصبی دخالت دارند و بر دو نوع است: انعکاس ساده و انعکاس مرکب‌، در انعکاس ساده فقط یک عقده عصبی و در انعکاس مرکب چندین رشته و عقده عصبی دخالت دارند. تروپیسم و تاکتیسم عکس العمل حیوان در مقابل عوامل محرکه محیط خارج نظیر نور و حرارت و رطوبت می باشد که با تغییر جهت یا حرکت آن به سمت و یا جهت مقابل عامل محرک است . تروپیسم شامل گرایش یا تغییر سمت و تاکتیسم به مفهوم حرکت به سمت عامل تحریک و یا فرار از آن می باشد. گرایش و کشش به سمت نور، فتوتروپی یا فتو تاکسی گرایش و کشش به سمت حرارت ، ترموتروپی یا ترموتاکسی گفته می شود.



خرید و دانلود دانلود تحقیق درباره  سیستم عصبی حشرات (کشاورزی)


دانلود تحقیق درباره بهبود سرعت یادگیری شبکه های عصبی 27ص (علوم انسانی-روانشناسی)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

مقدمه

شبکه های عصبی چند لایه پیش خور1 به طور وسیعی د ر زمینه های متنوعی از قبیل طبقه بندی الگوها، پردازش تصاویر، تقریب توابع و ... مورد استفاده قرار گرفته است.

الگوریتم یادگیری پس انتشار خطا2، یکی از رایج ترین الگوریتم ها جهت آموزش شبکه های عصبی چند لایه پیش خور می باشد. این الگوریتم، تقریبی از الگوریتم بیشترین تنزل3 می باشد و در چارچوب یادگیری عملکردی 4 قرار می گیرد.

عمومیت یافتن الگوریتمBP ، بخاطر سادگی و کاربردهای موفقیت آمیزش در حل مسائل فنی- مهندسی می باشد.

علیرغم، موفقیت های کلی الگوریتم BP در یادگیری شبکه های عصبی چند لایه پیش خور هنوز، چندین مشکل اصلی وجود دارد:

- الگوریتم پس انتشار خطا، ممکن است به نقاط مینیمم محلی در فضای پارامتر، همگرا شود. بنابراین زمانی که الگوریتم BP همگرا می شود، نمی توان مطمئن شد که به یک جواب بهینه رسیده باشیم.

- سرعت همگرایی الگوریتم BP، خیلی آهسته است.

از این گذشته، همگرایی الگوریتم BP، به انتخاب مقادیر اولیه وزنهای شبکه، بردارهای بایاس و پارامترها موجود در الگوریتم، مانند نرخ یادگیری، وابسته است.

در این گزارش، با هدف بهبود الگوریتم BP، تکنیک های مختلفی ارائه شده است. نتایج شبیه سازیهای انجام شده نیز نشان می دهد، الگوریتم های پیشنهادی نسبت به الگوریتم استاندارد BP، از سرعت همگرایی بالاتری برخوردار هستند.

خلاصه ای از الگوریتم BP

از قانون یادگیری پس انتشار خطا (BP)، برای آموزش شبکه های عصبی چند لایه پیش خور که عموماً شبکه های چند لایه پرسپترون 5 (MLP) هم نامیده می شود، استفاده می شود، استفاده می کنند. به عبارتی توپولوژی شبکه های MLP، با قانون یادگیری پس انتشار خطا تکمیل می شود. این قانون تقریبی از الگوریتم بیشترین نزول (S.D) است و در چارچوب یادگیری عملکردی قرار می گیرد.

بطور خلاصه، فرایند پس انتشار خطا از دو مسیر اصلی تشکیل می شود. مسیر رفت6 و مسیر برگشت 7 .

در مسیر رفت، یک الگوی آموزشی به شبکه اعمال می شود و تأثیرات آن از طریق لایه های میانی به لایه خروجی انتشار می یابد تا اینکه

_________________________________

1. Multi-Layer Feedforward Neural Networks

2. Back-Propagation Algorithm

3. Steepest Descent (S.D)

4. Performance Learning

5. Multi Layer Perceptron

6. Forward Path

7. Backward Path

نهایتاً خروجی واقعی شبکه MLP، به دست می آید. در این مسیر، پارامترهای شبکه (ماتریس های وزن و بردارهای بایاس)، ثابت و بدون تغییر در نظر گرفته می شوند.

در مسیر برگشت، برعکس مسیر رفت، پارامترهای شبکه MLP تغییر و تنظیم می گردند. این تنظیمات بر اساس قانون یادگیری اصلاح خطا1 انجام می گیرد. سیگنال خطا، رد لایه خروجی شبکه تشکیل می گردد. بردار خطا برابر با اختلاف بین پاسخ مطلوب و پاسخ واقعی شبکه می باشد. مقدار خطا، پس از محاسبه، در مسیر برگشت از لایه خروجی و از طریق لایه های شبکه به سمت پاسخ مطلوب حرکت کند.

در شبکه های MLP، هر نرون دارای یک تابع تحریک غیر خطی است که از ویژگی مشتق پذیری برخوردار است. در این حالت، ارتباط بین پارامترهای شبکه و سیگنال خطا، کاملاً پیچیده و و غیر خطی می باشد، بنابراین مشتقات جزئی نسبت به پارامترهای شبکه به راحتی قابل محاسبه نیستند. جهت محاسبه مشتقات از قانون زنجیره ای2 معمول در جبر استفاده می شود.

فرمول بندی الگوریتم BP

الگوریتم یادگیری BP، بر اساس الگوریتم تقریبی SD است. تنظیم پارامترهای شبکه، مطابق با سیگنالهای خطا که بر اساس ارائه هر الگو به شبکه محاسبه می شود، صورت می گیرد.

الگوریتم بیشترین تنزل با معادلات زیر توصیف می شود:

(1)

(2)

به طوری WLji و bLj، پارامترهای نرون j ام در لایه iام است. α، نرخ یادگیری2 و F، میانگین مربعات خطا می باشد.

(3)

(4)

(5)

به طوریکه SLj(k)، حساسیت رفتار شبکه در لایه L ام است.

_________________________________

1. Error-Correctting Learning Rule

2. Chain Rule

3. Learning Rate

معایب الگوریتم استاندارد پس انتشار خطا1 (SBP)

الگوریتم BP، با فراهم آوردن روشی از نظر محاسباتی کارا، رنسانسی در شبکه های عصبی ایجاد نموده زیرا شبکه های MLP، با قانون یادگیری BP، بیشترین کاربرد را در حل مسائل فنی- مهندسی دارند.

با وجود، موفقیت های کلی این الگوریتم در یادگیری شبکه های عصبی چند لایه پیش خود، هنوز مشکلات اساسی نیز وجود دارد:

- اولاً سرعت همگرایی الگوریتم BP آهسته است.

همانطور که می دانیم، تغییرات ایجاد شده در پارامترهای شبکه (ماتریس های وزن و بردارهای بایاس)، پس از هر مرحله تکرار الگوریتم BP، به اندازه ، است، به طوریکه F، شاخص اجرایی، x پارامترهای شبکه و α، طول قدم یادگیری است.

از این، هر قدر طول قدم یادگیری، α، کوچکتر انتخاب گردد، تغییرات ایجاد شده در پارامترهای شبکه، پس از هر مرحله تکرار الگوریتم BP، کوچکتر خواهد بود، که این خود منجر به هموار گشتن مسیر حرت پارامترها به سمت مقادیر بهینه در فضای پارامترها می گردد. این مسئله موجب کندتر گشتن الگوریتم BP می گردد. بر عکس با افزایش طول قدم α، اگرچه نرخ یادگیری و سرعت یادگیری الگوریتم BP افزایش می یابد، لیکن تغییرات فاحشی در پارامترهای شکه از هر تکراربه تکرار بعد ایجاد می گردد، که گاهی اوقات موجب ناپایداری و نوسانی شدن شبکه می شود که به اصطلاح می گویند پارامترهای شبکه واگرا شده اند:

در شکل زیر، منحنی یادگیری شبکه برای جدا سازیالگوها در مسأله XOR، به ازای مقادیر مختلف نرخ یادگیری، نشان داده شده است. به ازای مقادیر کوچک، α، شبکه کند اما هموار، یاد نمی گیرد الگوهای XOR را از هم جدا نماید، ددر صورتی که به ازای 9/0= α شبکه واگرا می شود.

_________________________________

1. Standard Back-Propagation Algorithm

شکل (1). منحنی یادگیری شبکه برای نرخ های یادگیری مختلف در مسأله XOR

- ثانیاً احتمالاً به دام افتادن شبکه در نقاط مینیمم محلی وجود دارد.

در شبکه های MLP، میانگین مجوز خطا، در حالت کلی خیلی پیچیده است و از تعداد زیادی نقطه اکسترمم در فضای پارامترهای شبکه برخوردار می باشد. بنابراین الگوریتم پس انتشار خطا با شروع از روی یک سری شرایط اولیه پارامترهای شبکه، به نقطه مینیمم سراسری و با شروع از یک مجموعه شرایط اولیه دیگر به تقاط مینیمم محلی در فضای پارامترها همگرا می گردد، بنابراین زمانی که الگوریتم BP همگرا می شود، نمی توان مطمئن شد که به یک جواب بهینه رسیده باشیم.

- ثالثاً: همگرایی الگوریتم BP، به یقین مقادیر اولیه پارامترهای شبکه عصبی MLP وابسته است، بطوری که یک انتخاب خوب می تواند کمک بزرگی در همگرایی سریعتر الگوریتم BP فراهم آورد. برعکس انتخاب اولیه نادرست پارامترهای شبکه MLP، منجر به گیر افتادن شبکه در نقاط مینیمم محلی در فضای برداری پارامترهای شبکه می گردد که این خود منجر به این می شود که شبکه خیلی زودتر از معمول به موضعی بیفتد که منحنی یادگیری شبکه برای تعداد بزرگی از دفعات تکرار، تغییر نکند.

به عنوان مثال، فرض می کنیم مقدار اولیه پارامترهای شبکه خیلی بزرگ باشند، در حالی که می دانیم توابع تبدیل نرونها مخصوصاً در لایه های میانی از نوع زیگموئید هستند. در این حالت برای نرون i ام، اندازه ورودی تابع تبدیل (ni) خیلی بزرگ می باشد و خروجی نرون (ai) به مقدار 1± میل می کند. لذا مشتق بردار خروجی شبکه، a ، خیلی کوچک می باشد. فرض کنیم که باید مقدار واقعی ai، 1 باشد



خرید و دانلود دانلود تحقیق درباره بهبود سرعت یادگیری شبکه های عصبی     27ص (علوم انسانی-روانشناسی)