لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
بنام خدا
ریاضی به چه درد می خورد؟
هر قدر سطح علمی انسان بیشتر باشد فواید ریاضیات را بیشتر لمس کرده و از آن بهره بیشتری می برد، مثلاَ کسی که تا پایان دوران ابتدایی تحصیل کرده در همان سطح توانایی بهره گیری از ریاضیات را دارد، مگر آن هایی که تجربه های جدید علمی به تجربه های خود افزوده باشند؛ همین طور وقتی تحصیلات کسی تا پایان دوره راهنمایی است اولاَ بهره گیری او از ریاضیات بیشتر از کسی است که سواد ابتدایی دارد؛ ثانیاَ تا همان سطح تحصیلات خود از ریاضیات بهره می برد و الی آخر، لذا هر قدر سطح علمی انسانها بیشتر شود بهره ی بیشتری از ریاضیات عاید آنان می شود و دیدگاه وسیع تری نسبت به علم ریاضیات پیدا می کند و کاربردهای ریاضی را در عرصه علم ، تجربه و نوآوری بیشتر مشاهده می کند و نیاز به ریاضی را بیشتر احساس میکند؛ البته این مطلب بعد از پایان دوران عمومی تحصیلات، آنجا که علم به شاخه های مختلف تقسیم می شود به اندازه نیازی که شاخه علمی به ریاضیات دارد از ریاضیات بهره می برد.به عنوان مثال، علوم مهندسی بیشتر از سایر علوم با ریاضیات مانوس هستند و لذا بهره بیشتری از ریاضیات می برند و امروزه ثابت شده است که همه علوم حتی علوم پزشکی، ادبیات، معارف اسلامی قصد دارند که کارهای علمی خود را همچون ریاضیات قانونمند کرده یا ریاضی وار بیان کنند. به عبارت دیگر وقتی پزشکی عمل جراحی خود را به کمک رایانه در اطاق عمل یا در خارج ازکشور کنترل می کند و انجام میدهد در واقع استفاده تمام عیاری از ریاضیات کرده است یا وقتی شاعری کلمات و حروف را از بین دنیایی از حروف و کلمات انتخاب می کند و آن را به صورت شعر یا نظم در می آورد در واقع از ریاضیات در قالب اوزان شعری بهره گرفته که تحت عنوان عروض مطرح است یا وقتی فقیهی در مورد مسأله ای اجتهاد می کند یعنی مسأله ای را با مفروضات دینی و شرایط مقتضیات زمان فتوا می دهد، این نتیجه گیری در واقع روی اصول ریاضی است.
به طور کلی کسی که با توجه به شرایط موجود و پیش آمده بهترین تصمیم را در عرصه کار، مدیریت و زندگی می گیرد آن را بر اساس تفکر و استدلال منطقی انجام می دهد و استنتاج خوب هم به وسیله انسانهایی انجام می گیرد که توانایی خوب اندیشیدن و خوب فکر کردن را دارند؛ از آنجایی که در پیچ و خم های کارهای اداری، مسئولیتی،مدیریت، زندگی، گردونه ها و دو راهی ها صاحب فکر باشیم، خوب فکر کنیم، همه اوضاع را با همه زیروبم هایش ببینیم و سپس با استفاده از تجارب خود و تجارب دیگران، بهترین تصمیم را گرفته و مجدداَ آن را کنترل و بررسی کرده و سپس بهترین نتیجه را با کمترین زمان و هزینه بگیریم. گفتنی است که ریاضی علمی پویا و پیوسته در تکامل است از آنجایی که جهت متکامل شدن راهی به درازی کهکشانها را باید طی نمود. لذا چنانچه بخواهید با فواید و کاربرد ریاضی بیشتر ملموس شوید در یکی از رشته های مربوط ادامه تحصیل دهید تا با فایده و کاربرد آن افزودن بر آنچه شمردیم آشنا شوید اگر چه ریاضیات پایه و ستون همه علوم است اما ادعا بر این نیست که ریاضیات بر علوم دیگر رجحان دارد بلکه ادعای دانشمندان بر این است که علوم دیگر ثمره و میوه ریاضیات اند و ریاضیات هم میوه ناب آنها.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
ادعای رابطه ریاضی در قرآن
قرآن نزد مسلمانان بزرگترین معجزه محمد پیامبر اسلام است. درباره وجوه مختلف اعجاز قرآن سخنهای بسیار رفتهاست. در سدهٔ اخیر، ادعای نوع دیگری از اعجاز قرآن به عنوان اعجاز عددی و نظم ریاضی در قرآن مطرح شد.
پیشینه
از پیشینه این نوع برخورد با قرآن اطلاع چندانی در دست نیست، ولی از آنجا که سیوطی در کتاب الاتقان فی علوم القرآن به این موضوع پرداخته، میتوان دریافت که این موضوع چندان غریب نبوده. با این حال توجه جدی به این موضوع در دهه هفتاد میلادی، با ادعاهای رشاد خلیفه آغاز شد. او ادعا کرد که نظمی رادر قرآن کشف نمودهاست که ویژگی خاص قرآن بوده و یکی از بزرگترین وجوه اعجاز آن به شمار میرود.کشف رابطه ریاضی در قرآن، موجب گردید که برخی از پژوهشگران مسلمان برای کشف اسرار و رموز بیشتری از قرآن به آمارگیری از تعداد حروف و کلمات قرآن بپردازند. برخی از شاگردان یا پیروان رشاد، چون «عبدالله آریک»[۱] با چاپ کتابی، نظریات او را در باب «عدد نوزده» تکمیل نمودند. با اینحال برخی دیگر از اندیشمندان اسلامی نیز بودند که به طرح نظریات جدید ریاضی و مستقل از رشاد پرداختند.پس ازآنکه رشاد خلیفه، نظریاتش را بسط داد، با استفاده از همان نظریه ریاضی، دو آیه آخر از سوره توبه در قرآن را تحریفشده و افزوده شده دانست،[۲][۳] و نهایتاً ادعا نمود خداوند او را رسول میثاق نموده است و نام او در قرآن کد شده است. خلیفه همچنین از سایر متون مذهبی در کنار قرآن مثل «سنت پیامبر» و «احادیث» به عنوان منابع جعلی نسبت داده شده به محمد و در تضاد با قرآن، یاد کرد و کشف واقعیت این متون و آموزههای جعلی را از وظایف رسالت خویش دانست.[۴] .[۵] این امر موجب شد تا محققین اسلامی شروع به نقد نظریه رشاد و دیگر همکاران و پیروان نظریات او نموده و ادعاهای وی را انکار کنند.[۶]
جدای از درستی یا نادرستی، نظریات ریاضی در حیطه قرآن قابل بررسی و تامل است. بخصوص آنکه در این میان، نظریات دیگری پدید آمدند که اگرچه از دیدگاه ریاضی به قرآن پرداختهاند اما کاملاً مستقل از نظریه رشاد و عدد ۱۹ وی بودهاند، از آن جمله میتوان از مهدی بازرگان، نام برد که تاکنون نظریهاش مورد تعرض جدی مخالفان واقع نشدهاست.[۷]
نظریه رشاد خلیفه
در سال ۱۹۷۲(میلادی) میلادی رشاد خلیفه مقالهای منتشر کرد بنام «عدد۱۹، معجزه عددی در قرآن» و پس از آن در کتاب خود[۸] نظریه خود، مبنی بر کشف یک رابطه ریاضی در تعداد سورهها، آیهها، کلمات و حروف کتاب قرآن را رونمایی کرد. او انگیزه خود را اثبات اعجاز و غیر بشری بودن قرآن خواند تا بدین ترتیب اثبات کند که قرآن همانند انجیل نوشته دست بشر نیست و انشای خداوند است.وی ادعا نمود که با استفاده از رایانه ارتباط عددی ویژهای را در متن قرآن یافتهاست که با عدد ۱۹ مذکور در سوره ۷۴ (مدثر) ارتباط دارد. حروف مقطعه یکی دیگر از اساس نظریه اوست.او در شروع کار خود تعداد حرف «ق» را در دو سورهای که با این حرف از حروف مقطعه شروع میشوند (سورههای «شوری» و «ق») را بررسی نمود که نتیجه بررسی او این بود که تعداد این حرف در هر دو سوره یکسان و ۵۷ بار تکرار شدهاست، یا به عبارتی مجموعاً ۱۱۴ بار در دو سوره که این عدد با تعداد سورههای قرآن برابر است. از طرفی برابر بودن مقدار ابجدی کلمه «مجید» که صفت قرآن در همان سوره «ق» است با عدد ۵۷ و برابر بودن تعداد تکرار کلمه «قرآن» در کل سورههای قرآن با این عدد، عقیده او را به وجود یک رابطه ریاضی در قرآن تقویت نمود.[۹]رشاد به آیات ۱۹ تا ۲۱ سوره مطففین استناد میکند و آن را اینگونه ترجمه میکند {{{۱}}} (ترجمه: کتابی است که با اعداد بنا شده*تا بوسیله کسانی که به من نزدیک هستند مشاهده شود)[مطففین - ۲۱-۲۰] [۱۰][۱۱]
برخی جزئیات نظریه
رشاد خلیفه کد ریاضی قرآن را از ساده تا بسیار مشکل دسته بندی میکند و میگوید:
حقایق ساده مشاهداتی است که بدون هیچ وسایلی میتوان آنها را بررسی کرد. حقایق پیچیده به کمک ماشین حساب یا کامپیوتر قابل رویت است. بررسی حقایق زیر به هیچ وسیلهای احتیاح ندارد، اما خواهشمند است بخاطر داشته باشید که همه اینها به متن عربی اصلی اشاره دارد.[۹]
اولین آیه (۱:۱)، معروف به "بسم الله، شامل۱۹ حرف است.
قرآن دارای ۱۱۴ سورهاست که میشود۱۹x۶.
مجموع آیات در قرآن ۶۳۴۶ است که میشود۱۹x۲۳۴.
[۶۲۳۴ آیه شماره گذاری شدهاست و ۱۱۲ آیه (بسم الله) شماره گذاری نشدهاست که میشود ۶۲۳۴ =۱۱۲+۶۲۳۴] توجه کنید که ۶+۴+۳+۶ میشود۱۹
بسم الله ۱۱۴ مرتبه تکرار شدهاست، با وجود غیبت مرموز آن در سوره ۹ (درسوره ۲۷ دو بار تکرار شدهاست) و ۱۱۴ = ۱۹x۶
از غیبت بسم الله در سوره ۹ تا بسم الله اضافی در سوره ۲۷، دقیقا۱۹ سورهاست.
مجموع شماره سورهها از ۹ تا ۲۷ (۲۷+۲۶+......+۱۲+۱۱+۱۰+۹) = ۳۴۲ یا ۱۹x۱۸
این مجموع (۳۴۲) همچنین مساوی است با مجموع کلمات بین دو بسم الله سوره ۲۷، و ۳۴۲ =۱۹x۱۸
اولین آیات معروفی که اول وحی شد (۵-۱:۹۶) شامل۱۹ کلمهاست.
این اولین وحی ۱۰ کلمهای، دارای ۷۶ حرف است۱۹x۴
سوره ۹۶ که از نظر ترتیب زمانی اولین سورهاست، دارای۱۹ آیهاست.
بخش اصلی نظریه را حروف مقطعه (پاراف قرآنی) تشکیل میدهند که به برخی از آنها در حقایق ساده اشاره نمودهاست:
حرف مختلف عربی، ۱۴ «پاراف قرآنی» مختلف (مانند ا. ل. م، از ۲:۱) را تشکیل میدهند که در ابتدای ۲۹ سوره قرار دارند. مجموع این اعداد میشود ۱۴+۱۴+۲۹=۵۷ یا ۱۹x۳.
مجموع ۲۹ سورهای که «پارافهای قرآن» در آنها آمدهاست میشود:
۸۲۲=۶۸+۵۰+..........+۷+۳+۲، و ۸۲۲+۱۴ (۱۴ مجموعه پارافها) میشود ۸۳۶، یا ۱۹x۴۴.
بین اولین سوره پاراف دار(۲) و آخرین سوره پاراف دار (۶۸)، ۳۸ سوره بدون پاراف وجود دارد۱۹x۳۸.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 8 صفحه
قسمتی از متن .doc :
دایره
برای دیگر کاربردهای نام دایره به صفحهٔ دایره (ابهامزدایی) مراجعه کنید.
یک دایره با ویژگیهای آن (مرکز، شعاع، قطر و محیط.
دایره، مجموعهای است از بینهایت نقطه که فاصله آنها از یک نقطه (مرکز دایره) به یک اندازه است. این فاصله را شعاع دایره میگویند و معمولاً با حرف r نمایش میدهند.
در حقیقت، دایره یک بیضی است که کانونهای آن بر همدیگر منطبقاند.
مثلث
مثلث (سهگوش) شکلی مسطح است که از اتصال سه نقطه غیرهمخط در صفحه به وجود میآید. مثلث دارای سه ضلع و سه زاویه است.
مساحت مثلث
مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخابشده، است.
مجموع اندازه زوایای مثلث
در هندسه اقلیدسی مجموع اندازه زوایای هر مثلث برابر 180 درجه است.
مثلث ار اساسی ترین اشکال در هندسه میباشد.یک مثلث دارای سه راس است که سه ضلع این رئوس را به هم وصل میکند.در هندسه اقلیدسی این اضلاع خطوطی مستقیم هستند. ولی در هندسه کروی این اضلاع کمان هایی از دایره عظیمه میباشند.این دو نوع مثلث را میتوانید در شکلهای روبرو مشاهده نمایید.
انواع مثلث
مثلث متساوی الاضلاع: مثلثی است که دارای سه ضلع با طولهای مساوی است و زوایای داخلی این مثلث نیز با هم برابرند.
مثلث متساوی الساقین: مثلثی است که دارای دو ضلع با طولهای مساوی استو دو زاویه داخلی برابر دارد.
البته مثلث میتواند دارای سه ضلع با طولهای مختلف و زوایای غیر مساوی باشد.
مثلث قائم الزاویه: مثلثی را گویند که یکی از زوایای آن 90درجه باشد.نسبت های مثلثاتی مانند sin و cos ،بر روی مثلث قائم الزاویه تعریف میشوند.
مثلث منفرجه: مثلثی را گویند که یکی از زوایای داخلی آن بیشتر از 90 درجه باشد.
مثلث حاده : مثلثی را گویند که تمام زوایای داخلی آن کمتر از 90 درجه باشد.
300 سال قبل از میلاد اقلیدس ،اصول اولیه درباره مثلث را ارائه داد.به عنوان مثال یکی از اصول مهم در مورد مثلث این است که مجموع زوایای داخلی یک مثلث برابر 180 درجه است. بر اساس این اصل میتوان با معلوم بودن دو زاویه از مثلث اندازه زاویه سوم را بدست آورد.
یکی از مهمترین قضایای موجود در مثلثات قضیه فیثاغورث میباشد.در این قضیه رابطه بین وتر و اضلاع قائم یک مثلث قائم الزاویه بیان میشود.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
الف) تاریخچهایده ی نمایش یک تابع برحسب مجموعه ی کاملی از توابع اولین بار توسط ژوزف فوریه، ریاضیدان و فیزیکدان بین سال های ۱۸۰۶-۱۸۰۲ طی رساله ای در آکادمی علوم راجع به انتشار حرارت، برای نمایش توابع بکار گرفته شد. در واقع برای آنکه یک تابعf(x) به شیوه ای ساده و فشرده نمایش داده شود فوریه اساسا ثابت کرد که می توان از محور هایی استفاده کرد که بکمک مجموعه ایی نامتناهی از توابع سینوس وار ساخته می شوند. بعبارت دیگر فوریه نشان داد که یک تابع f(x) را می توان بوسیله ی حاصل جمع بی نهایت تابع سینوسی و کسینوسی به شکل sin(ax) و cos(ax) نمایش داد. پایه های فوریه بصورت ابزار هایی اساسی، با کاربردهای فوق العاده متواتر در علوم، در آمده اند، زیرا برای نمایش انواع متعددی از توابع و در نتیجه کمین های فیزیکی فراوان بکار می روند. با گذشت زمان ضعف پایه های فوریه نمایان شد مثلا دانشمندان پی بردند پایه های فوریه و نمایش توابع سینوس وار در مورد سیگنال های پیچیده نظری تصاویر، نه تنها ایده آل نیستند بلکه از شرایط مطلوب دورند، بعنوان مثال به شکل کارآمدی قادر به نمایش ساختارهای گذرا نظیر مرزهای موجود در تصاویر نیستند. همچین آنها متوجه شدند تبدیل فوریه فقط برای توابع پایه مورد استفاده قرار می گیرد و برای توابع غیر پایه کار آمد نیست.(البته در سال ۱۹۴۶ با استفاده از توابع پنجره ای، که منجر به تبدیل فوریه ی پنجره ای شداین مشکل حل شد.. در سال ۱۹۰۹ هار اولین کسی بود که به موجک ها اشاره کرد. در سال های ۱۹۳۰ ریاضیدانان به قصد تحلیل ساختارهای تکین موضوعی به فکر اصلاح پایه های فوریه افتادند. و بعد از آن در سال ۱۹۷۰ یک ژئوفیزیکدان فرانسوی به نام ژان مورله متوجه شد که پایه های فوریه بهترین ابزار ممکن در اکتشافات زیر زمین نیستند، این موضوع در آزمایشگاهی متعلق به الف آکیلن منجر به یکی از اکتشافات تبدیل به موجک ها گردید.در سال ۱۹۸۰ ایومیر ریاضیدان فرانسوی، نخستین پایه های موجکی متعامد را کشف کرد(تعامد نوعی از ویژگی ها را بیان می کند که موجب تسهیلات فراوانی در استدلال و محاسبه می شود، پایه های فوریه نیز متعامدند.) در همین سال ها مورله مفهوم موجک و تبدیل موجک را بعنوان یک ابزار برای آنالیز سیگنال زمین لزره وارد کرد و گراسمن فیزیکدان نظری فرانسه نیز فرمول وارونی را برای تبدیل موجک بدست آورد.در سال ۱۹۷۶ میرو و مالت از پایه های موجک متعامد توانسنتد آنالیز چند تفکیکی را بسازند و مالت تجزیه موجک ها و الگوریتم های بازسازی را با بکار بردن آنالیز چند تفکیکی بوجود آورد. در سال ۱۹۹۰ مورنزی همراه با آنتوان موجک ها را به دو بعد و سپس به فضاهایی با ابعد دیگر گسترش دادند و بدین ترتیب بود که آنالیز موجکی پایه گذاری گردید.ب) آشناییآنالیز موجک (Wavelet Analysis) یکی از دستاوردهای نسبتا جدید و هیجان انگیز ریاضیات محض که مبتنی بر چندین دهه پژوهش در آنالیز همساز است، امروزه کاربردهای مهمی در بسیاری از رشته های علوم و مهندسی یافته و امکانات جدیدی برای درک جنبه های ریاضی آن و نیز افزایش کاربردهایش فراهم شده است.در آنالیز موجک هم مانند آنالیز فوریه با بسط تابع ها سروکار داریم ولی این بسط برحسب «موجک ها» انجام می شود.موجک تابع مشخص مفروضی با میانگین صفر است و بسط برحسب انتقالها و اتساعهای این تابع انجام می گیرد، بر خلاف چند جمله ای های مثلثاتی، موجک ها در فضا بصورت موضعی بررسی می شوند و به این ترتیب ارتباط نزدیکتری بین بعضی توابع و ضرایب آن ها امکان پذیر می شود و پایداری عددی بیشتری در باز سازی و محاسبات فراهم می گردد. هر کاربردی را که مبتنی بر تبدیل سریع فوریه است می توان با استفاده از موجک ها فومول بندی کرد و اطلاعات فضایی (یا زمانی) موضعی بیشتری بدست آورد. بطور کلی، این موضوع بر پردازش سیگنال و تصویر و الگوریتم های عددی سریع برای محاسبه ی عملگرهای انتگرالی اثر می گذارد.آنالیز موجک حاصل ۵۰ سال کار ریاضی (نظریه ی لیتلوود – پیلی و کالدرون – زیگموند) است که طی آن، با توجه به مشکلاتی که در پاسخ دادن به ساده ترین پرسش های مربوط به تبدیل فوریه وجود داشت، جانشینهای انعطاف پذیر ساده تری از طریق آنالیز همساز ارائه شدند. مستقل از این نظریه که درون ریاضیات محض جای دارد، صورتهای مختلفی از این رهیافت چند مقیاسی (multi Scale) را در طی دهه ی گذشته در پردازش تصویر، آکوستیک، کدگذاری(به شکل فیلترهای آیینه ای متعامد و الگوریتمهای هرمی)، و استخراج نفت دیده ایم.ج) کاربردهاآنالیز موجک همراه با تبدیل سریع فوریه در تحلیل سیگنالهای گذرایی که سریعا تغییر می کنند، صدا و سیگنالهای صوتی، جریان های الکتریکی در مغز، صداهای زیر آبی ضربه ای و داده های طیف نمایی NMR، و در کنترل نیروگاههای برق از طریق صفحه ی نمایش کامپیوتر بکار رفته است. و نیز بعنوان ابزاری علمی، برای روشن ساختن ساختارهای پیچیده ای که در تلاطم ظاهر می شوند، جریان های جوی، و در بررسی ساختارهای ستاره ای از آن استفاده شده است. این آنالیز به عنوان یک ابزار عددی می تواند مانند تبدیل سریع فوریه تا حد زیادی از پیچیدگی محاسبات بزرگ مقیاس بکاهد، بدین ترتیب که با تغییر هموار ضریب، ماتریس های متراکم را به شکل تنکی که به سرعت قابل محاسبه باشد در آورد. راحتی و سادگی این آنالیز باعث ساختن تراشه هایی شده است که قادر به کدگذاری به نحوی بسیار کارا، و فشرده سازی سیگنالها و تصاویرند.آنالیز موجک امروزه کاربردهای فراوانی پیدا کرده است که از آن جمله می توان به کاربرد آن در تصویر برداری پزشکی (MRI) و سی تی اسکن (CAT)، جداسازی بافت های مغزی از تصاویر تشدید مغناطیس، تشخیص خودکار خوشه های میکروکلسیفیکاسیون، تحلیل تصاویر طیفی تشدید مغناطیسی (MR Spectrorscopy) و عملکردهای تشدید مغناطیسی (F MRI) اشاره نمود.
ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیتهای ظاهرا پیچیده نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر میسازند تا این نظم را توصیف کنیم» .
دکتر ریاضی استاد ریاضی و رییس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم میگوید: «ریاضیات علم مدلدهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی میباشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمیباشد.»
اهداف گرایشهای مختلف این رشته عبارتنداز:
۱- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسایل صنعتی، اقتصادی و برنامهریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.
۲- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسایل در قالب ریاضی و مدلسازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.
۳- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیشدانشگاهی باشند.
ماهیت :
« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همهجا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»
فارغالتحصیلان این رشته میتوانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسایل سروکار دارند، در بخش خصوصی در اموری همانند طراحی سیستمها در امر بهینهسازی و بهرهوری ، در بخش صنعت برای اموری همانند مدلسازیهای ریاضی و در آموزش و پرورش و … ، مسوولیتهای متفاوتی را به عهده گیرند.
گرایشهای مقطع لیسانس:
«رییس اتحادیه بینالمللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»
«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان میپردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده میشود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسایل موجود در جامعه بیان میگردد»
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
ریاضی و پزشکی
درمان سرطان با ریاضی !
گروهی از دانشمندان آمریکایی مدلی رایانه ای را ارائه کرده اند که براساس آن می توان ترکیبی از موثرترین روش های درمانی معالجه سرطان را با استفاده از آلگوریتم های ریاضی ارائه کرد. به گزارش مهر، پروژه تحقیقاتی لیزه دو فلیس استاد ریاضی کالج هاروی ماد در کالیفرنیا که با عنوان درمان سرطان با ریاضی" معرفی شده است که نشان می دهد که از ترکیب علم سرطان شناسی و ریاضی می توان بیشترین شانس را برای شناسایی و تشخیص درمان های موثر در مبازره با تومرها بدست آورد.این استاد دانشگاه چند سیستم ریاضی را برای ترکیب استراتژی ها مختلف ایمنی درمانی، شیمی درمانی و واکسینودرمانی شناسایی کرده است.دو فلیس که بررسی های خود را در کنگره سالانه "ائتلاف ملی برای یافته های علمی" در واشنگتن مطرح کرده است، در این خصوص توضیح داد : "ما یکسری از مدل های ریاضی خاص را توسعه داده ایم که به کمک آنها می توان دینامیک کاملتر واکنش های میان سلولهای نئوپلاستیکی، سیستم ایمنی و درمان های پزشکی سازگار را دریافت. از آنجا که این راه درصد خطر سلامت بیمار را تا حدقابل ملاحظه ای کاهش می دهد، بسیار حائز اهمیت است."براساس مدیکال نیوز تو دی، این مدل ها با استفاده از شبیه سازی و تصویرسازی هندسی ویژگی های متعدد بیماری به روش مجازی درمان های موثر را ارائه می کند.درحقیقت با این روش، یک مدل ریاضی عرضه می شود که به اطلاعات متعدد افزایش سلولهای سرطانی و واکنش آنها با سیستم ایمنی ترجمه می شود. به این ترتیب پزشکان می توانند قبل از آغاز درمان سرطان با داروهای خطرناک شیمیایی که عوارض جانبی زیادی دارند، بهترین درمان را تشخیص دهند.
اساس ریاضیات بازسازی تصویر در رادیولوژی (پزشکی)
در این رساله اساس ریاضی روشهای تصویرسازی توضیح داده میشوند، که فرآیند بازسازی توسط کامپیوتر پردازش میشود. این روشها بسیار شبیه به فرآیند سیگنال در مهندسی الکترونیک میباشند. در مهندسی الکترونیک ، سیگنالهای یک بعدی بیشتر مورد توجهاند. در صورتیکه در بازسازی نگاره از سیگنالهای دو بعدی استفاده میشود. از این رو دو فصل اول این رساله بیشتر درباره سیگنالهای یک بعدی میباشد و فصل سوم به تشریح روشهای بازسازی تصویر میپردازد. از روشهای فرایند سیگنال در رادیولوژی به عنوان بازسازی نگاره، استفاده میشود. این رساله به سه قسمت مهم: مدلهای سیستم و تبدیلات ، فیلترینگ و بازسازی تصویر تقسیم میشود. فصل اول: نشان میدهد که چگونه روشهای ریاضی در مسائل رادیولژیکی بکار میروند. در این فصل مدلهای سیستم را معرفی و تئوری سیستمهای خطی را توضیح میدهیم. در اینجا اثر یک سیستم روی یک سیگنال ورودی و تبدیل آن به یک سیگنال خروجی مورد بررسی قرار گرفته و چند مثال از سیستمهای خطی ارائه میشوند. سپس نقش ویژه توابع و اعداد مختلط را در تبدیلات فوریه توضیح میدهیم. همچنین در این فصل روشهای آماری در فرایندهای تصادفی و فرایندهای تصادفی در اندازهگیری پارازیت در تصویرسازی توضیح داده میشوند. تبدیل فوریه روشی برای توضیح سیگنالها برحسب فرکانس میباشد، که برای درک عملگرها در سیستمها بسیار مفیدند. لذا خواص تبدیل فوریه برای کاربرد در کامپیوترهای دیجیتال توسط عملگر تبدیل فوریه توضیح داده میشود. ارتباط بین تبدیل فوریه و گسستگی تبدیل فوریه به تشریح نمونهبرداری کمک میکند که در فصل دوم تشریح میشود. فصل دوم: به تشریح عمل فیلترینگ میپردازد. فیلترینگ یا صاف کردن مربوط به اصلاح سیگنالها میشود، تا یک تصویر را از پارازیت سیگنالهای ناخواسته صاف کند. فیلترینگ یک قسمت مهم در بازسازی تصویر است از این رو نحوه فیلترینگ سیگنالهای تصادفی که در درک ساختن تصویر مهم میباشند مورد بحث قرار میگیرند. سپس روشهای جبر خطی و فیلتر تصادفی با هم مقایسه میشوند. قسمتی از فصل دوم مربوط به فیلتر وینر (Wiener) میباشد که برای درک تصویرسازی در حضور پارازیت بسیار مهم است . فصل سوم: به بررسی ساختن تصویر و کاربردهای رادیولوژیکی میپردازد. در این فصل با پنج روش مهم بازسازی نگاره آشنا میشویم. بازسازی از نمونهبرداری فوریه روشی برای NMR است . بازسازی تصویر در حضور پارازیت و بازسازی تصویر در غیاث پارازیت در توموگرافی کامپیوتری مورد استفاده دارند. بازسازی توموگرافی گسیل تک فوتون (SPECT) و بازسازی از نمونههای چندگانه در قسمتهای آخر فصل سوم توضیح داده میشوند و در انتها به تشریح تصویرسازی با گسیل پوزیترون میپردازیم به طور کلی فصلها و قسمتهای این رساله از هم مستقل نمیباشند و اغلب به هم وابستهاند. تقسیمبندی مفصلتر فصلها در فهرست مطالب آمدهاند. این رساله تمام مبانی ریاضیات مورد استفاده در تصویرسازی رادیولوژی را از مفاهیم ساده پایه شروع کرده و سپس آنرا به حوزه ریاضیات پیشرفته مرتبط میکند. دانشجویان پزشکی یا رزیدنتهای رادیولوژی یا متخصصین رادیولوژی که بخواهند اساس ریاضی تصویرسازی کامپیوتری را درک کنند بدون اشکال و مراجعه به کتابهای ریاضی دیگر میتوانند از این رساله استفاده کنند و درک خود را به سطح ریاضیات پیشرفته در این مباحث گسترش دهند
ارتباط علم ریاضیات با علوم زیستیدانشمندان حوزه علوم دقیق(hard sciences) _ علومی که با قوت ریاضی، فرمول ها و معادلات پشتیبانی می شوند _ به طور سنتی نگاهی تحقیر آمیز به پژوهش ها در سوی دیگر طیف علوم دارند، این نگاه تحقیر آمیز _ در حالی که بودجه های دولتی از فیزیک به زیست شناسی و پزشکی تغییر جهت داده است _ اندکی تغییر کرده است. اما در زمانی که زیست شناسان نشان می دهند که آنها می توانند به همان اندازه همکارانشان در علوم دقیق پژوهش های کمی انجام دهند در حال ناپدید شدن است.یک نمونه از این دگرگونی را می توان در پژوهش ها درباره سرطان مشاهده کرد. به گفته «هانس اوتمر» ریاضیدان دانشگاه مینه سوتا در مینیاپولیس آمریکا که در مقاله ای در شماره آینده «نشریه زیست شناسی ریاضی» به بازبینی این موضوع پرداخته است، درک فرآیندهای میکروسکوپی امکان تکوین الگوهای ریاضی سودمندی از این بیماری را به وجود آورده است.در واقع این زمینه تحقیقاتی در حال شکوفایی است و یک نشریه علمی دیگر، نشریه «سیستم های دینامیکی مداوم و مجزا سری های (Discrete and Continues Dynamical System_Series B) در فوریه سال میلادی جاری شماره ویژه ای را به این موضوع اختصاص داده است.خانم «زیوا آگور» و همکارانش در مؤسسه ریاضیات زیستی پزشکی (Institute for Medical biomathematics) در «بن آتاروث» اسرائیل در مقاله ای در این شماره ویژه الگویی را ارائه می کنند که تلاش می کند چگونگی عمل رگزایی (angiogenesis ) _ فرآیندی که غدد سرطانی به وسیله آن رگ های خونی خودشان را ایجاد می کنند _ را توصیف کند.هنگامی که یک غده یا تومور در ابتدا از یک سلول که به علت جهش ژنتیکی دارای قابلیت تکثیر نامحدود شده است به وجود می آید، در شرایط معمول رشد آن در اندازه ای در حد یک میلی متر محدود می شود. این امر ناشی از آن است که معمولاً رگ های خونی اطراف به درون تومور نفوذ نمی کنند، بنابراین سلول های عمق تومور نمی توانند به مواد مغذی و اکسیژن دست یابند و می میرند. تومورهایی در این اندازه ندرتاً باعث به خطر افتادن سلامتی انسان می شوند و در واقع بسیاری از تومورها در همین اندازه باقی می مانند. اما در برخی از تومورها جهش های ژنتیکی بیشتر امکان تولید شدن مواد شیمیایی به نام عوامل رشد (growth factors) را فراهم می کند که تشکیل عروق خونی درون غده را تحریک می کنند. این فرآیند نه تنها به این علت خطرناک است که امکان رشد تومور و بزرگتر شدن اندازه آن را فراهم می کند، بلکه از این لحاظ هم خطر آفرین است که اکنون سلول های سرطانی می توانند وارد جریان خون شوند، در بدن به گردش درآیند، در مکان دیگر مستقر شوند و به رشد خود ادامه دهند. این پراکنده شدن سلول های سرطانی که باعث تشکیل تومورهای ثانوی می شود «متاستاز» (metastasis) نامیده می شود و در بسیاری از موارد همین متاستازها هستند که مرگ بیمار را موجب می شوند.دکتر آگور به کمک تصویربرداری با تشدید مغناطیسی یا MRI تومورهایی را که در حال رگزایی بودند مورد بررسی قرار داد و سپس نظامی از معادلات دیفرانسیل را برای شبیه سازی آنچه که می دید ترتیب داد. معادلات دیفرانسیل سرعت تغییر یک متغیر (مثلاً میزان عامل رشد تولید شده) را به مقدار فعلی آن و در مواردی به مقدار آن در گذشته ربط می دهند و این معادلات تقریباً اساس الگوهای ریاضی سرطان هستند؛ الگوهایی که معمولاً متشکل از مجموعه ای از معادلات دیفرانسیل «همزمان»، هر کدام در مورد یک متغیر، هستند که نتایج هر کدام وارد معادله بعدی می شود. حل کردن چنین نظام هایی از معادلات مشکل است؛ در واقع تنها به ندرت ممکن است راه حل دقیق آنها را یافت. در عوض پژوهشگران به شبیه سازی های عددی یا در موارد دیگر به توصیف تحلیلی شکل تقریبی راه حل تکیه می کنند. در معادله های دکترآگور متغیرها شامل تعداد سلول ها در تومور، غلظت عوامل رشد رگزایی درون آن و حجم عروقی خونی حمایت کننده از آن هستند. نتایج بررسی های این گروه پژوهشی آن بود که شرایطی وجود دارد که در آن اندازه یک تومور، به جای رشد مداوم، نوسان می کند. به عبارت دیگر رشد تومور مهار می شود. اگر مشابه چنین وضعیتی را بتوان در شرایط واقعی به وجود آورد، شیوه نیرومندی برای کنترل کردن رشد تومور به دست می آید.جلوگیری کردن از رگزایی مانع انتشار تومور خواهد شد. اما اگر تومور در حدی پیشرفت کرده باشد که این کار ممکن نباشد روش های متفاوتی برای مقابله با آن به کار گرفته می شود. در گذشته تنها سه راه برای درمان سرطان موجود بود. اولین راه برداشتن سلول های سرطانی به وسیله جراحی بود. دومین راه درمان کردن سرطان به وسیله مواد شیمیایی بود که رشد سلول های سرطانی را مهار می کردند یا آنها را می کشتند. و بالاخره سومین راه متلاشی کردن این سلول ها به وسیله اشعه یونیزه کننده یا گرما بود. در چند سال گذشته روش چهارمی تکوین یافته است. این راه جدید تحریک کردن دستگاه ایمنی بدن است. از آنجایی که سلول های سرطانی حاوی جهش های ژنتیکی هستند، پروتئین هایی تولید می کنند که برای دستگاه ایمنی بدن «بیگانه» محسوب می شوند. دستگاه ایمنی برای حمله به چنین سلول هایی طراحی شده است و در واقع اغلب خود به خود به آنها حمله می کند. اما گاهی برای به کار انداختن دستگاه ایمنی نیاز به یک عامل کمکی به صورت یک تحریک خارجی مثلاً یک دارو وجود دارد.از آنجایی که ایمنی درمانی (immunotherapy) سرطان هنوز مراحل ابتدایی خود را طی می کند، امکانات درمانی این روش و رفتار سلول های سرطانی هنگام تعامل با دستگاه ایمنی کاملاً درک نشده است. این وضع سبب می شود که این حوزه به خصوص زمینه ای بارور برای الگوسازی ریاضی فراهم کند.خانم «دنیس کیرشنر» از دانشگاه میشیگان در «آن آربور» آمریکا در یکی دیگر از مقالات آن شماره ویژه بررسی هایش در مورد یک شیوه درمان جدید سرطان با نام درمان با RNA کوچک مداخله کننده (siRNA) small interfering RNA را توصیف میکند. این شیوه درمانی عمل مولکولی را به نام «عامل رشد تغییر شکل دهنده بتاTGF _beta مهار می کند که تومورهای بزرگ برای گریز از دستگاه ایمنی از آن استفاده می کنند.معادله های مدل دکتر کیرشنر چهار کمیت را توصیف می کنند: تعداد «سلول های تأثیر کننده effecter cells دستگاه ایمنی (سلول هایی که با تومور مقابله می کنند)، تعداد سلول های تومور، میزان انیترلوکین-۲ (پروتئینی که توانایی بدن را در مبارزه با سرطان تشدید می کند) و متغیر دیگری که مربوط به اثرات TGF _beta می شود. در حال حاضر درمان با siRNA تنها در محیط آزمایشگاهی و بر روی کشت های سلولی امتحان شده است؛ بنابراین شبیه سازی ریاضی دکتر کیرشنر می تواند راه سریعی برای تصمیم گرفتن در این مورد باشد که آیا استفاده کردن از این روش ارزش دنبال کردن را در تجربیات حیوانی واقعی دارد یا نه. کیرشنر در مقاله اش ادعا می کند که این روش نتایج امیدبخشی داشته است. دراین الگو، یک دوز روزانه از siRNA در طول یک دوره متوالی ۱۱ روزه در خنثی کردن اثرات TGF _beta موفق بود و بنابراین دستگاه ایمنی را قادر کرد تا تومور را تحت کنترل در آورد، گرچه در حذف کردن کامل تومور موفق نبود.گرچه تحقیقات آگور و کیرشنر امیدبخش هستند اما همه الگوهای ریاضی مورد بحث قرار گرفته در مورد سرطان مانند آنها انتزاعی نیستند. «پپ چاروستانی» و همکارانش در دانشگاه کالیفرنیا در لوس آنجلس به بررسی چگونگی اثر دارویی به نام «گلیوک» (gleevec) بر ضد یک نوع سرطان خون به نام لوسمی میلوئیدی مزمن پرداخته اند.داروی گلیوک، با مانع شدن از فسفریلاسیون پروتئینی به نام Bcr-Abl عمل می کند که برای رشد سلول های سرطانی ضروری است. فسفریلاسیون یک فرآیند انتقال انرژی است. انرژی مورد نیاز از مولکولی به نام ATP (آدنوزین تری فسفات) که نتیجه نهایی فرآیند تنفس سلولی است به دست می آید. از آنجایی که این مدل به سرطانی خاص و دارویی خاص متمرکز است، نسبت به سایر بررسی ها مشروح تر و دارای جزئیات