لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن .doc :
درون یک دوربین دیجیتال
اشاره: بدون شک تا بهحال مقالات زیادی در رابطه با دوربینهای دیجیتالی خواندهاید. مقالاتی که بسیار جامع و یا بسیار مختصر نوشته شدهاند و یا حتی به کالبد شکافی همه و یا یکی از اجزای دوربینهای دیجیتالی پرداختهاند. گاهی نیز دوربینها با هم مقایسه شدهاند. و ممکن است تصور کنید دیگر چیزی در مورد دوربینهای دیجیتال وجود ندارد که نیاز به بررسی و یا اهمیت دوبارهخوانی داشته باشد. اما در این مقاله ما قصد داریم ضمن آشنا کردن شما با نحوه کارکرد دوربینهای دیجیتالی، نحوه عکاسی کردن با این دوربینها را نیز بیان کنیم. لطفاً ادامه مقاله را بخوانید.
درآمدبگذارید اینطور شروع کنیم: شما میخواهید یک عکس خانوادگی بگیرید و آن را برای یکی از دوستانتان که در کشور دیگری زندگی میکند ایمیل کنید. برای اینکار شما مجبورید عکستان را به گونهای تهیه کنید که از نظر کامپیوتر قابل تشخیص باشد. مطمئنا انتظار ندارید عکستان را جلوی مانیتور کامپیوتر بگیرید تا آن را ببیند و برای دوستتان تعریف کند! (این مطلب را در صفحه نوستالژی شماره قبل خواندهاید!)
35mm Full-Frame 11.1-Megapixel CMOS Sensor
بیتها و بایتها همان زبان مخصوص کامپیوتر هستند. هر عکس دیجیتالی عملا زنجیرهای از صفر و یک محسوب میشود که نقاط رنگی تشکیل دهنده عکسها (پیکسلهای رنگی) توسط آنها برای کامپیوتر تعریف میشوند. همه فرمتهای خاص عکس، در حقیقت اشکال گوناگون تعریف این نقاط رنگی توسط کامپیوتر به حساب میآیند. برای اینکه یک عکس به این فرمتها تبدیل شود دوراه وجود دارد. شما میتوانید بهوسیله یکی از همان دوربینهای قدیمی نگاتیوی یک عکس بگیرید. نگاتیو را به طریقه شیمیایی ظاهر کنید. آن را روی یک کاغذ عکاسی چاپ کنید و سپس توسط یک اسکنر آن را به یک عکس دیجیتالی تبدیل کنید. هرچند که استفاده از یک اسکنر نگاتیوی جدید میتواند مرحله چاپ عکس بر روی کاغذ را حذف کرده و عمل تبدیل را مستقیماً از روی نگاتیو انجام دهد، اما مبنای کار باز هم بر دریافت الگوی نوری بازتابش شده و ضبط مقدار ارزش پیکسلی آنها استوار است.اما راه دوم این است که مستقیماً نور بازتابش شده از موضوع را دریافت کرده و مقدار ارزش پیکسلی آنها را بلافاصله و بدون هیچ واسطهای ذخیره کنید و یا به زبان سادهتر از یک دوربین دیجیتال استفاده کنید.اما اصلیترین تفاوت کار بین دوربینهای دیجیتالی و آنالوگ در همین نکته نهفته است. مثل تمام دوربینهای آنالوگ قدیمی، دوربینهای دیجیتالی نیز دارای تعدادی لنز هستند که میتوانند نور دریافتی از سوژه را به منظور ایجاد یک تصویر متمرکز کنند. اما به جای اینکه نور متمرکز شده روی یک قطعه نگاتیو حساس به نور متمرکز گردد، روی قطعهای نیمه هادی تابیده میشود که قابلیت ضبط الکترونیکی نور را داراست. در مرحله بعدی کامپیوتر با تفکیک اطلاعات الکترونیکی دریافتی از این پروسه به دادههای دیجیتالی، تصاویر را با فرمتهای گوناگون ذخیره میکند. همه قابلیتهای هیجانانگیز دوربینهای دیجیتالی از همین قابلیت عملکرد مستقیم ناشی میشود.حالا میخواهیم ببینیم دوربینها دقیقا چه کاری انجام میدهند.
دوربینی بدون فیلم تفاوت کلیدی بین یک دوربین دیجیتال و یک دوربین نگاتیوی آنالوگ این است که دوربینهای دیجیتالی فیلم ندارند و در عوض سنسوری دارند که میتواند تابش نور را به بار الکتریکی تبدیل کند. سنسورهای دیجیتالی اغلب دارای ابعاد بسیار کوچکتری نسبت به نگاتیوهای 35میلیمترهستند. البته اندازههای بزرگتری هم ساخته شدهاند. مثلاً در دوربین CANON EOS -1Ds نوعی حسگر به کار رفته است که42 x 63 mm میباشد و وضوحی برابر1/11مگاپیکسل دارد.
سنسور تصویری به کار رفته در اغلب دوربینهای دیجیتالی موجود از نوع Charge Coupled Device)CCD) میباشد. البته برخی دوربینهای سادهتر از نوع دوم سنسورها یعنی تکنولوژی Complementary Metal Oxide Semiconductor)CMOS) نیز استفاده میکنند. علیرغم بهبودهایی که در سنسورهای CMOS حاصل شده و احتمالاً میتواند در آینده بیشتر مورد استقبال عموم قرار گیرد اما بعید به نظر میرسد بتواند به طور کلی در دوربینهای حرفهایتر جانشین سنسورهای CCD شود. در طول این مقاله ما بیشتر روی فناوری CCD تمرکز میکنیم. البته برای سادگی کار میتوانید هر دوی آنها را یکسان فرض کنید. زیرا این دو، از نظر ماهیت عملا یکسان هستند تنها از لحاظ استفاده از نور دریافتی متفاوت از یکدیگر عمل میکنند. بنابراین بیشتر چیزهایی که درباره CCDها یاد میگیریم قابل تعمیم به CMOSها نیز هستند.سنسورهای نوری مجموعهای متشکل از هزاران ردیف بسیار کوچک از دیودهای حساس به نور هستند که میتوانند فوتونهای نور را به بار الکتریکی تبدیل کنند. این دیودهای یکسویه را Photosite مینامند. هر فوتوسایت به تابش نور حساس است و مسلماً هرچه نور تابیده شده بر آن شدت بیشتری داشته باشد، بار الکتریکی بیشتری در آن انباشته خواهد شد.در حسگرهای CCD این بار الکتریکی انباشته شده در هر فوتوسایت به صورت تک به تک و ردیف به ردیف خوانده میشود و اصولاً تشخیص مقدار یک بار الکتریکی وابسته به مکان آن در میان دیگر فوتوسایتها میباشد. ضمن اینکه قبل از آنکه سنسور نوری بتواند آماده عکسبرداری شود لازم است که تمام اطلاعات مربوط به عکس قبلی از روی آن به طور کامل خوانده و حذف شود. اما در سنسورهای CMOS، هر یک از عناصر حساس به نور دارای یک آدرس طولی و عرضی مشخص است و میتواند به طور منفرد توسط محورهای X و Y آدرسدهی و خوانده شود. مطلب کمی پیچیده شد؟ بهتر است کمی بیشتر درباره آن بحث کنیم.
CMOS در مقابل CCD دقیقا از مرحلهای که فوتونهای نور توسط فوتوسایتها به الکترون تبدیل میشوند، تفاوت بین دو نوع حسگر اصلی آشکار میشود. مسلماً مرحله بعدی عبارت است از خواندن مقادیر بار انباشته شده در هر سلول و تشخیص یکسل رنگی مربوط به آن. در سنسورهای CCD بار الکتریکی شارژ شده از یک گوشه سنسور خوانده شده و ردیف به ردیف جلو میرود و به طور همزمان یک مبدل آنالوگ به دیجیتال متناوب با تمام مقادیر دریافتی از پیکسلها را به مقادیر دیجیتالی تبدیل میکند. اما CMOSها دارای چندین ترانزیستور مختلف در سر راه دادهها هستند که با تقویت و جابهجا کردن بارهای الکتریکی توسط سیمهای متصل به آنها، مقادیر را جداگانه و تک به تک به پردازشگر ارسال میکنند. هرچند که انعطافپذیری این شیوه به مراتب بالاتر از روش سطر به سطر است و میتواند برای کاربردهایی مثل فوکوس خودکار و اندازهگیری نور مفید واقع شود. اما عملا سیگنال دریافتی ازCCDها شفافتر میباشد. CCDها برای ایجاد قابلیت ارسال بار بدون اعوجاج و تحریف، از یک پروسه صنعتی خاص استفاده میکنند و این پروسه روشی را ارایه میدهد که موجب خلق تصاویری بسیار شفاف میشود. اصلیترین تفاوتهای بین سنسورهای CMOS و CCD را میتوان به این شکل فهرست کرد: ● سنسورهای CCD همانطور که در بالا گفته شد تصاویری با کیفیت بالاتر و اختلال کمتری بهوجود میآورند. اما به طور تجربی ثابت شده که سنسورهای CMOS برای ایجاد نویز و اختلال بسیار مستعدترند.● از آنجا که هر پیکسل در سنسورهای CMOS دارای چندین ترانزیستور مرتبط است که در کنار آنها قرار میگیرد، حساسیت این سنسورها به نور پایینتر میآید. چرا که بسیاری از فوتونهای نور به جای اینکه با سطح دیودهای نوری برخورد کنند با این ترانزیستورها برخورد کرده و به هدر میروند.● سنسورهای CCD به مصرف توان بالا معروفند. این سنسورها در مقایسه با سنسورهای CMOS تقریبا 100 مرتبه بیشتر از باتری استفاده میکنند.CCD ها به علت تولید بالاتر، بسیار بیشتر ازCMOS ها مورد تحقیق و بررسی قرار گرفتهاند و مسلما روشهای تولید اقتصادیتر و با کیفیتتری برای آنها ابداع شده است. به همین دلیل میتوان مشاهده کرد که اغلب دوربینهای با کیفیت و مارکهای معتبر جهان از این سنسور بهره میبرند.● از آنجا که تقویت کننده سیگنالهای نوری در CMOS بلافاصله بعد از هر فوتوسایت قرار دارد بنابراین این نوع حسگرها میتوانند تصاویر را دو برابر سریعتر نسبت بهCCD ها انتقال دهند.براساس گفتههای بالا متوجه میشوید کهCCD ها بیشترین استفاده را در دوربینهایی دارند که بیشتر بر کیفیت بالاتر تصویر، مقدار بیشتر پیکسلهای تصویر و حساسیت به نور بالاتر تأکید دارند. اما در عوض سنسورهایCMOS دارای قیمت کمتر هستند و بیشتر در دوربینهایی به کار میروند که از نظر اقتصادی به صرفه بوده و دارای منبع انرژی محدودتری میباشند.
وضوح (Resolation) مقدار جرییاتی که هر دوربین میتواند روی یک تصویر ضبط کند، رزولوشن (وضوح) نامیده میشود و توسط واحد پیکسل اندازهگیری میشود. هرچه وضوح دوربین شما بالاتر باشد مقدار جزییاتی بیشتری را میتوانید در تصویر خود بگنجانید و هرچه مقدار این جزییات در تصویر بیشتر باشد میتوانید در هنگام چاپ اندازه آن را بزرگتر کنید بدون آنکه تصویر شما محو یا دندانهدندانه شود. انواع وضوحهای دوربینها اینگونه است:256x256 پیکسل: این اندازه وضوح روی دوربینهای بسیار ارزان قیمت دیده میشود و بسیار ناچیز تر از آن است که برای چاپ مورد استفاده قرار گیرد. وضوح نمایشگر برخی از گوشیهای موبایل در همین حد است و میتوان از تصاویری با این خصوصیت برای نمایش در آنها استفاده کرد. این وضوح کلاً دربردارنده 65هزار پیکسل است.640x640 پیکسل: این ابعاد حداقل اندازه وضوح در دوربینهای واقعی است و بهترین اندازه برای تصاویری است که میخواهید آنها را روی وب قرار داده و یا از طریق اینترنت برای کسی ایمیل کنید. این مقدار وضوح دربردارنده 307000 پیکسل میباشد.1216x912 پیکسل: اگر تصمیم دارید تصاویرتان را در ابعاد معمولی عکسهای نگاتیوی چاپ کنید این وضوح بهترین انتخاب است. چرا که اولین نوع وضوح از رده مگاپیکسل محسوب میشود و حدودا دارای 000/109/1 پیکسل میباشد.1600x1200 پیکسل: تصاویری با این مشخصات به عنوان تصاویر وضوح بالا محسوب میشوند و میتوانند بدون هیچ مشکلی تا ابعاد 30x40 سانتیمتر که بالاترین اندازه پیشنهادی عکاسان برای چاپ نگاتیوهای دوربینهای 35 میلیمتری میباشد چاپ شوند. این مقدار وضوح دربردارنده حدودا دومیلیون پیکسل رنگی میباشد و برای استفاده خانگی بسیار مناسب است. هرچند که تا به امروز دوربینهایی تا وضوح 14میلیون پیکسل نیز ساخته شده است اما پیشنهاد مناسب برای کسانی که درباره دوربینی مناسب برای کاربردهای خانگی سؤال می کنند یک دوربین دومگاپیکسلی میباشد. شما که نتیجهای بهتر از نتیجه دوربینهای نگاتیوی معمولی احتیاج ندارید؟
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
مخابرات دیجیتال:
شکل زیر در مورد ارسال دیجیتال دید بهتری به ما می دهد.
{BOU-87}کد گذاری منبع و مالتی تقسیم زمان تشریح شده اند وظایف باقی مانده در بخشهای بعد تشریح می شوند.
رمز نگاری(Encryption ):
رمز نگاری زمانی استفاده می شود که لازم باشد از به کار گیری یا دستکاری پیغام های ارسالی توسط کاربران غیر مجاز جلوگیری شود. رمز نگاری مشتمل بر اجرای یک عمل الگوریتمی در زمان واقعی به صورت بیت به بیت یک رشته دودویی است. مجموعه پارامترهایی که تبدیل را تعریف می کند ((کلید))نامیده می شود .
اگر چه استفاده از رمز نگاری اغلب در مخابرات نظامی مطرح است، سیستم های مخابرات تجاری در حال فزاینده ای تحت فشار مشتریان می باشد تا خصوصا در شبکه های تجاری و اداری از رمز نگاری استفاده کنند در حقیقت به دلیل پوشش وسیع ماهواره ها و دسترسی ساده به آنها بوسیله ایستگاه های کوچک،امکان استراق
سمع و غلط اندازی در پیغامها در دسترس تعداد زیادی از عوامل با وسایل سطح پایین می باشد.
شکل زیر اساس کار رمز نگاری شده را نشان می دهد واحدهای رمز نگاری و رمز گشایی با کلیدی کار می کند که به وسیله واحدهای تولید کلید رمز فراهم می شود داشتن یک کلید مشترک روش مطمئنی برای توزیع کلید می باشد.
رمز نگاری دارای دو خصوصیت می باشد:
محرمانه بودن- از به کار گیری پیغام توسط افراد غیر مجاز جلوگیری می شود
- معتبر بودن- حفاظت در قبال دستکاری پیغام توسط یک اختلال گر را فراهم می کند .
برای این کار دو روش استفاده می شود :
رمز نگاری همزمان(رمز رشته ای )-هر بیت از رشته دودویی اصلی (متن خام) با استفاده از یک عمل ساده (مثلا جمع مبنای دو) با هر بیت از یک رشته دودویی (رشته کلید) تولید شده توسط یک یک تولید کننده کلید ترکیب می شوند. به عنوان مثال می تواند یک مولد رشته شبه تصادفی باشد که ساختار آن با کلید تعریف گردیده است.
رمز نگاری با بلوک (رمز نگاری بلوکی)- تبدیل رشته دودویی اصلی به یک رشته رمز شده با یک روش بلوک به بلوک می باشد که مطابق با منطق تعریف شده بوسیله یک کلید انجام می شود.
کد گذاری کانال:
شکل زیر اساس کد گذاری کانال را نشان می دهد هدف از کد گذاری کانال اضافه کردن بیت های اطلاعات است دومی برای آشکار سازی و تصحیح خطاها در گیرنده به کار می رود.
{PRO-96 }این روش به نام تصحیح خطای پیشرو(Forward error correction)(FEC) معروف است نرخ کد به صورت زیر تعریف می شود (4-19 الف) P=n/(n+r)
که R تعداد بیت های اضافه شده به n بیت اطلاعات می باشد.
نرخ بیت در ورودی کدگذار R است در خروجی این نرخ بیت بزرگتر بوده و مساوی R می باشد بنابر این:
R=R/P(bit/s)
کد گذاری بلوکی و کد گذاری کانولوشنی:
دو روش جهت کد گذاری اضافه می شود:کد گذاری بلوکی و کد گذاری کانولوشنی در کد گذاری بلوکی کد گذارr بیت اضافه با هر بلوک از n بیت اطلاعات همراه می کند هر بلوک مستقل از سایر بلوک ها کد گذاری می گردد بیت های کد از ترکیب خطی بیت های اطلاعات بلوک متناظر تولید می شود کد های دوره ای خصوصا کد هایBCH, Reed-solomin (Bose,chaudhari & Hocquenghem) که در آن هر کلمه کد مضربی از چند جمله ای مولد است اغلب مورد استفاده واقع می شود در مورد یک کد کانولوشنی (n+r) بیت بوسیله ی کدگذار از (n-1) بسته قبلیn بیتی اطلاعات تولید می شود حاصلضرب (n+r)N محدودیت طول کد را تعریف می کند کدگذار از شیفت رجیستر ها و جمع کننده های از نوع گیت XOR((exclusive تشکیل می شود .
انتخاب بین کد گذاری بلوکی و کد گذاری کانولوشنی با انواع خطاهایی که در خروج دمولاتور انتظار می رود مشخص می شود توزیع خطاها بستگی به طبیعت نویز و آسیبهای انتشاری پایدارو نویزگوسی،خطاها به صورت تصادفی اتفاق افتاده و معمولا کدگذاری کانولوشنی استفاده می شود در شرایط فیدینگ خطاها اغلب در برست ها اتفاق می افتد در مقایسه با کد گذاری کانولوشنی کدگذاری بلوکی کمتر به برست های خطاها حساس بوده و بنابراین تحت شرایط فیدینگ کدگذاری بلوکی ارجحیت دارد کدهای بلوکی (RS)(Reed-solomon)مهمترین کدهای تصحیح خطای برست است.
اینتر لیوینگ:
اینتر لیوینگ روشی برای بهبود عملکرد کدگذاری کانولوشنی با توجه به برست های خطا است این کار عبارتست از مرتب کردن بیت های کدگذاری شده قبل از ارسال و مرتب کردن مجدد آنها بعد از دریافت،بطوریکه برست های خطا به شکل تصادفی در آید.
دو روش برای اینتر لیوینگ استفاده می شود:
اینتر لیوینگ بلوکی: بیت ها به صورت بلوک های N بیتی مرتب می شوند که به صورت متوالی در ردیف های B یک آرایه حافظه ای (N,B) نشانده شده و برای ارسال ازN ستون بلوک های B بیتی خوانده می شوند یک برست از خطا هایی که N بیت را جاروب می کند تنها بر روی یک بیت در هر بلوک ارسالی اثر می گذارد این روش تاخیری برابر با 2NB دوره بیت ایجاد می کند.
اینتر لیوینگ کانولوشنی (شکل 4-7 ب)بیت ها به صورت بلوک هایی N بیتی مرتب شده اند. i امین بیت(N و...2و1 =i )در هر بلوک با NJ (i-1 )واحد های زمانی را از طریق یک شیفت رجیستر J (i-1 )طبقه ای هر N دوره بیت یکبار کلاک می خورد که J=B/N بنابراین یک واحد زمانی متناظر با ارسال یک بلوک N بیت های خروجی برای یک ارسال به صورت سریال در می آیند. در پایانه ی دریافتی گروه های N بیتی دوباره بلوک بندی شده وi امین بیت در هر بلوک به اندازه NJ(N-i) واحد زمانی از طریق یک شیفت رجیستر J (N-i) طبقه ای تاخیر گذاری می شود. این روش تاخیر ثابتی به اندازهJ (N-1) واحد زمانی برابر با(N-1)=J (N-1)N دوره بیت ایجاد می کند بنابر این تاخیر حدود نصف تاخیر ایجاد شده بوسیله یک صفحه به صفحه کننده بلوکی (N,B) می باشد.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
دانشگاه جامع علمی کاربردی
رشته :
گرافیک
موضوع:
پردازشگرهای دیجیتال یا (DSP)
Discrete time signal processing
استاد:
جناب آقای فتح الله زاده
نام محقق:
خانم حکیمه حسن علی لو
زمستان 87
مقدمه
بخش مخابرات هوایی از مهمترین و اصلی ترین بخش هاست و زیرسیستم های یک سیستم هوایی را تشکیل می دهد. درحوزه صنعت هوایی و ناوبری، گیرنده ها و فرستنده های رادیویی نقش اساسی را دربخش مخابراتی برعهده دارند بخش مخابرات از سه بخش اساسی گیرنده، فرستنده و کانال مخابراتی تشکیل شده است که دراین مقاله بیشتر به پردازش سیگنالهای گسسته درزمان می پردازیم که در گیرنده ها و فرستنده های مخابراتی نقش اساسی را ایفا می کنند گیرنده های رادیویی نقش اساس درآشکارسازی، آنالیز، شنود و جهت یابی سیگنالهای دریافتی داشته که عمدتاً از نوع سوپرهیتروداین استفاده می شود.
علاوه بر سیستم های رادیویی، بسیاری از انواع سیتمها برای ارسال دیتاهای با ارزش، از سیگنال های رادیویی RF استفاده می کنند که دارای رشدی مداوم ، پیوسته و قابل توجه هستند، گیرنده های هوایی برای انواع مختلفی از کاربردها و حوزه ای عملیاتی طراحی و بنا به نیاز، بصورت انفرادی و یا عمدتاً درقالب سیستم بکارگیری می شوند که عمده اهداف و مقاصد این نوع گیرنده ها برای ارتباطات هوایی یا زمین به هوا و بالعکس انجام می شود عمده تعاریف به کاررفته درمخابرات هوایی یا درکل، مخابرات:
رنج دینامیکی : رنج از کمترین تا بیشترین سیگنالهای ورودی برحسب dB، که یک گیرنده می تواند احساس کند بطور مثال اگر یک گیرنده قادر به آشکارسازی ، سیگنالهای بین dB 10 و dB50- باشد در این صورت رنج دینامیکی گیرنده dB 60 خواهد بود.
-پهنای باند لحظه ای : پهنای باند گیرند درهر نقطه معلوم از زمان (که اساساً کمتر از پهنای باندکلی سیستم برای هرگیرنده می باشد.
-حساسیت یا Sensitivity: کمترین سطح توان سیگنال دریافتی که هر گیرنده قادر به آشکارسازی آن می باشد را گویندکه (برحسب dBm اندازه گیری می شود)
-پهنای باند رادیویی کل : رنج فرکانسی که گیرنده قادر به آشکارسازی آنها می باشد راگویند.
-توانایی پردازش چندین سیگنال: میزان قابلیت و توانایی گیرنده درتشخیص و تمیز دادن بین دو سیگنال راداری درفرکانس های متفاوت در درون پهنای باند لحظهای یک گیرنده
پردازشگرهای دیجیتالی درگیرنده های دیجیتالی
به دلیل استفاده از تکنیک سوپرهیتروداین درگیرنده های دیجیتالی ابتدا به مقدمه ای از این گیرنده ها می پردازیم سپس گیرنده های دیجیتالی را شرح داده و سپس به پردازشگر دیجیتالی که مهمترین قسمت این بخش از گیرنده هاست می پردازیم.
گیرنده های سوپرهیتروداین:
گیرنده های سوپرهیتروداین از رایجترین و پرکاربردترین نوع گیرنده ها درجهان برای تقریباً همه سیستم های دریافت رادیویی و راداری با بهره گیری از ساختار سوپرهیت می باشد. درگیرنده سوپرهیت نیاز به تقویت کننده رادیویی باند پهن برای اصلاح حساسیت نیست بلکه به جای آن، سیگنال RF با استفاده از یک مخلوط کننده یا میکسر و یک نوسان ساز محلی به یک فرکانس میانی تبدیل و سپس با استفاده از یک تقویت کننده IF، گین با بهره مورد نیاز بدست می آید. سیگنال تبدیل شده به فرکانس پائین ازمیان یک فیلتر میان گذر عبور می کند، این فیلتر باعث عبور بودن تضعیف سیگنال مورد نظر شده و سایر سیگنالهای ناخواسته بویژه سیگنالهای ناشی از حاصلضرب های فرکانسی که باعث تولید اعوجاج اینترمدولاسیون و در نتیجه سیگنال نامطلوب می شوند را حذف می نماید و آنها را عبور نمی دهد.
مزیت تبدیل سیگنال RF به یک سیگنال IF با فرکانس پائین تر به روش سوپرهیت این است که فیلتر ها و تقویت کننده هایی با پهنای باند باریک و با مشخصه های فرکانس قطع نیز نیازمند است که درفرکانس های IF به راحتی در درسترس است به همین دلیل گیرنده های سوپرهیتروداین دارای حساسیت بالا و انتخاب گری فرکانس
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 25
با معماران عصر دیجیتالاندیشه های فیلیپ کاتلر
فیلیپ کاتلر (PHILIP KOTLER) در سال 1931 در شیکاگو متولد شد. لیسانس را از دانشگاه دی پل، فوق لیسانس را در رشته اقتصاد از دانشگاه شیکاگو، دکتری را در همان رشته از MIT و فوق دکتری ریاضی را از هاروارد و فوق دکتری علم و فناوری را از دانشگاه شیکاگو اخذ کرد. او از سال 1969 استاد رشته بازاریابی بین المللی دانشگاه نورث وسترن است. این دانشگاه از اولین مراکزی بود که در آن بازاریابی تدریس می شد. نام کاتلر با واژه بازاریابی عجین شده است. او را بی هیچ تردید پدر بازاریابی می خوانند. از دهه 1970 که اندیشه بازاریابی پس از دو دهه دوران شکوفایی اقتصادی در غرب و همزمان با رکود ناشی از شوک نفتی و مسائل اقتصادی مطرح و به رسمیت شناخته شد، نام او بیش از دیگران در این زمینه به گوش خورده است. کارنامه پررنگ و بار او در زمینه بازاریابی منحصر به فرد است. تألیف 34 کتاب و بیش از 100 مقاله که در مجلات معتبری نظیر مجله هاروارد بیزینس ریویو منتشر شده گواه مطلب است. کتـــــاب اصول بازاریابی او کتاب مرجع بی بدیل همه دانش پژوهان و پژوهشگران در این زمینه است. کتابهای او به بیش از 30 زبان دنیا ترجمه شده است. کاتلر به راستی بنیانگذار مدیریت نوین بازاریابی است و بیش از هر نویسنده یا متفکر دیگر درگسترش اهمیت بازاریابی و تغییر نگرش به آن از یک فعالت جنبی به فعالیت مهم و اصلی نقش ایفا کرده است. او مـــدرس، نویسنده و سخنران برجسته ای است که مسافرتهای بسیار به اروپا، آسیا و آمریکای جنوبی برای سخنرانی و مشاوره داشته و از دانشگاههای معتبر دنیا دکترای افتخاری دریافت داشته است. کاتلر سالهای متمادی مشاور شرکتهای بزرگی همچون AT&T, IBM ،جنرال الکتریک، فورد، موتورولا، مرک، بــانک آمریکا و... بوده و دانسته های خود را در زمینه برنامه ریزی و سازماندهی بین المللی بازاریابی به این شرکتها منتقل کرده است. او عضو هیئت مشورتی بنیاد دراکر، رئیس هیئت مدیره دانشکده بازاریابی موسسه علوم مدیریت و مدیرعامل انجمن بازاریابی آمریکا (IMR) است.انجمن مدیریت آمریکا (AMA) او را تاثیرگذارترین بازاریاب تمام دوران لقب داده است. کاتلر نه تنها در بازاریابی کلاسیک شهره است بلکه یک پیشرو در تئوری و عمل ارتباط کسب وکار الکترونیک و بازاریابی سازمان محسوب می شود. هیچ پژوهشگری در عرصه بازاریابی نمی تواند خود را بی نیاز از آثار عمیق و دقیق او بداند. تحقیقات و نوشته های او بر مقوله هایی همچون گسترش و کاربرد اصول بازاریابی، تجزیه وتحلیل بازار، توسعه محصول جدید، راهبرد رقابتی، برنامه ریزی راهبردی و سیستم های اطلاعاتی متمرکز است. نگرش فیلسوفانه او به مفاهیم بازاریابی، جایگاه این حوزه خطیر مدیریتی را دگرگون ساخته است. او مقوله بازاریابی اجتماعی را طرح کرد و با تاکید بر اینکه بازاریابی برمبنای ارتباطی است ناشی از نیازها، خواسته ها، پیشنهادها، قیمت و... که تمامی آنها زیربنای ارزشی دارند، اهمیت بازاریابی را از حوزه قیمت و فروش و فعالیتهای توزیع به نیاز مشتری و ارزش آفرینی سوق داد. او سازمانها را واداشت که با مدل مشتری مداری فکر کنند و نیازهای مشتری را محور قرار دهند، وفاداری مشتری را به دست آورند و با نوآوری؛ خواسته های درحال تغییر مشتری همگام شوند. کاتلر بازاریابی را بخشی از فلسفه مدیریت همه مدیران می داند که براساس آن باید نیازها و خواسته های مشتری را بشناسند و شرایط را درجهت رضایت مندی آنان فراهم سازند. رضایتمندی مشتری در نگاه او هنگامی محقق می شود که ارزش واقعی فراورده یا خدمت برابر یا بیشتر از ارزش موردانتظار مشتری باشد. کاتلر بر این باور است که گرچه بازاریابی مفهومی ساده دارد اما اجرای آن بسیار پیچیده است و برای استادشدن در آن یک عمر وقت لازم است. گرچه هیچ متفکری درجهان به اندازه او درگسترش پیام بازاریابی سهم نداشته است اما در هزاره جدید، او همه را به تفکر مجدد در این مقوله فرامی خواند و ندا در می دهد که راهبرد پیروزمند سال پیش ممکن است امسال ناکارآمد از آب درآید.شما را پدر بازاریابی می نامند. نظر خودتان چیست؟کاتلر: هر زمان که برخی مرا پدر بــــازاریابی می نامند، من این نکته را متذکر می شوم که اگر چنین باشد، پیتر دراکر پدر بزرگ بازاریابی است. دراکر یکی از انسانهای استثنایی است که من دیده ام. او یک نابغه دربرگرفتن الگو از تاریخ و پیش بینی روندهای سیاسی، اجتماعی و اقتصادی است. برای بسیاری از ما او الگویی است کـــــه دائماً ایده های نو می پرورد و ایده های کهنه را تصفیه می کند.بازاریابی به چه معناست؟- بازاریابی به معنی کار با بازارهاست، برای فراهم ساختـــن مبادلات با هدف تامین خواسته ها و نیازهای انسان. بازاریابی فرایندی است که طی آن افراد و گروهها، با تولید و مبادله کالا و فایده با دیگران، خواسته ها و نیازهای خود را تامین می کنند. اصولاً وظیفه بازاریابی شناسایی نیازها و خواسته ها، تعیین بازارهای هدف برای خدمت به آنها، طراحی کالاها و خدمات و برنامه زمان بندی شده برای ارائه خدمت به این بازارها و بالاخره فراخوانی کلیه افراد درون سازمان به اینکه به مشتریان فکر و به آنان خدمت کنند.بسیاری از مردم، بازاریابی را به معنای فروش و تبلیغات درنظرمی گیرند. نسبت فروش و بازاریابی چیست؟- فروش فقط جزء کوچکی از مجموعه عظیم بازاریــــابی است. فروش یکی از چندین وظیفه های بازاریابی و نه حتی مهمترین آنها، به شمار می رود. بنابراین، هرچند فروش بخشی از بازاریابی و مدیریت بازار است اما بازاریابی مفهومی بس گسترده دارد. به تعبیر پیتردراکر هدف بازاریابی گسترش فروش است. مفاهیم فروش و بازاریابی غالباً با یکدیگر اشتباه می شــــوند. مفهوم فروش از داخل به بیرون می نگرد. این مفهوم از کارخانه شروع می کند، به محصولات و کالاهای موجود شرکت توجه دارد و به دنبال کسب فروش سودآور است که تبلیغات قابل ملاحظه ای را می طلبد. برعکس، مفهوم بازاریابی دارای نگاهی از بیرون به درون است. این مفهوم با یک بازار کاملاً تعریف شده آغاز می شود، روی نیازهای مشتریان تاکید دارد و با تـــــــامین رضایت
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن .doc :
درون یک دوربین دیجیتال
اشاره: بدون شک تا بهحال مقالات زیادی در رابطه با دوربینهای دیجیتالی خواندهاید. مقالاتی که بسیار جامع و یا بسیار مختصر نوشته شدهاند و یا حتی به کالبد شکافی همه و یا یکی از اجزای دوربینهای دیجیتالی پرداختهاند. گاهی نیز دوربینها با هم مقایسه شدهاند. و ممکن است تصور کنید دیگر چیزی در مورد دوربینهای دیجیتال وجود ندارد که نیاز به بررسی و یا اهمیت دوبارهخوانی داشته باشد. اما در این مقاله ما قصد داریم ضمن آشنا کردن شما با نحوه کارکرد دوربینهای دیجیتالی، نحوه عکاسی کردن با این دوربینها را نیز بیان کنیم. لطفاً ادامه مقاله را بخوانید.
درآمدبگذارید اینطور شروع کنیم: شما میخواهید یک عکس خانوادگی بگیرید و آن را برای یکی از دوستانتان که در کشور دیگری زندگی میکند ایمیل کنید. برای اینکار شما مجبورید عکستان را به گونهای تهیه کنید که از نظر کامپیوتر قابل تشخیص باشد. مطمئنا انتظار ندارید عکستان را جلوی مانیتور کامپیوتر بگیرید تا آن را ببیند و برای دوستتان تعریف کند! (این مطلب را در صفحه نوستالژی شماره قبل خواندهاید!)
35mm Full-Frame 11.1-Megapixel CMOS Sensor
بیتها و بایتها همان زبان مخصوص کامپیوتر هستند. هر عکس دیجیتالی عملا زنجیرهای از صفر و یک محسوب میشود که نقاط رنگی تشکیل دهنده عکسها (پیکسلهای رنگی) توسط آنها برای کامپیوتر تعریف میشوند. همه فرمتهای خاص عکس، در حقیقت اشکال گوناگون تعریف این نقاط رنگی توسط کامپیوتر به حساب میآیند. برای اینکه یک عکس به این فرمتها تبدیل شود دوراه وجود دارد. شما میتوانید بهوسیله یکی از همان دوربینهای قدیمی نگاتیوی یک عکس بگیرید. نگاتیو را به طریقه شیمیایی ظاهر کنید. آن را روی یک کاغذ عکاسی چاپ کنید و سپس توسط یک اسکنر آن را به یک عکس دیجیتالی تبدیل کنید. هرچند که استفاده از یک اسکنر نگاتیوی جدید میتواند مرحله چاپ عکس بر روی کاغذ را حذف کرده و عمل تبدیل را مستقیماً از روی نگاتیو انجام دهد، اما مبنای کار باز هم بر دریافت الگوی نوری بازتابش شده و ضبط مقدار ارزش پیکسلی آنها استوار است.اما راه دوم این است که مستقیماً نور بازتابش شده از موضوع را دریافت کرده و مقدار ارزش پیکسلی آنها را بلافاصله و بدون هیچ واسطهای ذخیره کنید و یا به زبان سادهتر از یک دوربین دیجیتال استفاده کنید.اما اصلیترین تفاوت کار بین دوربینهای دیجیتالی و آنالوگ در همین نکته نهفته است. مثل تمام دوربینهای آنالوگ قدیمی، دوربینهای دیجیتالی نیز دارای تعدادی لنز هستند که میتوانند نور دریافتی از سوژه را به منظور ایجاد یک تصویر متمرکز کنند. اما به جای اینکه نور متمرکز شده روی یک قطعه نگاتیو حساس به نور متمرکز گردد، روی قطعهای نیمه هادی تابیده میشود که قابلیت ضبط الکترونیکی نور را داراست. در مرحله بعدی کامپیوتر با تفکیک اطلاعات الکترونیکی دریافتی از این پروسه به دادههای دیجیتالی، تصاویر را با فرمتهای گوناگون ذخیره میکند. همه قابلیتهای هیجانانگیز دوربینهای دیجیتالی از همین قابلیت عملکرد مستقیم ناشی میشود.حالا میخواهیم ببینیم دوربینها دقیقا چه کاری انجام میدهند.
دوربینی بدون فیلم تفاوت کلیدی بین یک دوربین دیجیتال و یک دوربین نگاتیوی آنالوگ این است که دوربینهای دیجیتالی فیلم ندارند و در عوض سنسوری دارند که میتواند تابش نور را به بار الکتریکی تبدیل کند. سنسورهای دیجیتالی اغلب دارای ابعاد بسیار کوچکتری نسبت به نگاتیوهای 35میلیمترهستند. البته اندازههای بزرگتری هم ساخته شدهاند. مثلاً در دوربین CANON EOS -1Ds نوعی حسگر به کار رفته است که42 x 63 mm میباشد و وضوحی برابر1/11مگاپیکسل دارد.
سنسور تصویری به کار رفته در اغلب دوربینهای دیجیتالی موجود از نوع Charge Coupled Device)CCD) میباشد. البته برخی دوربینهای سادهتر از نوع دوم سنسورها یعنی تکنولوژی Complementary Metal Oxide Semiconductor)CMOS) نیز استفاده میکنند. علیرغم بهبودهایی که در سنسورهای CMOS حاصل شده و احتمالاً میتواند در آینده بیشتر مورد استقبال عموم قرار گیرد اما بعید به نظر میرسد بتواند به طور کلی در دوربینهای حرفهایتر جانشین سنسورهای CCD شود. در طول این مقاله ما بیشتر روی فناوری CCD تمرکز میکنیم. البته برای سادگی کار میتوانید هر دوی آنها را یکسان فرض کنید. زیرا این دو، از نظر ماهیت عملا یکسان هستند تنها از لحاظ استفاده از نور دریافتی متفاوت از یکدیگر عمل میکنند. بنابراین بیشتر چیزهایی که درباره CCDها یاد میگیریم قابل تعمیم به CMOSها نیز هستند.سنسورهای نوری مجموعهای متشکل از هزاران ردیف بسیار کوچک از دیودهای حساس به نور هستند که میتوانند فوتونهای نور را به بار الکتریکی تبدیل کنند. این دیودهای یکسویه را Photosite مینامند. هر فوتوسایت به تابش نور حساس است و مسلماً هرچه نور تابیده شده بر آن شدت بیشتری داشته باشد، بار الکتریکی بیشتری در آن انباشته خواهد شد.در حسگرهای CCD این بار الکتریکی انباشته شده در هر فوتوسایت به صورت تک به تک و ردیف به ردیف خوانده میشود و اصولاً تشخیص مقدار یک بار الکتریکی وابسته به مکان آن در میان دیگر فوتوسایتها میباشد. ضمن اینکه قبل از آنکه سنسور نوری بتواند آماده عکسبرداری شود لازم است که تمام اطلاعات مربوط به عکس قبلی از روی آن به طور کامل خوانده و حذف شود. اما در سنسورهای CMOS، هر یک از عناصر حساس به نور دارای یک آدرس طولی و عرضی مشخص است و میتواند به طور منفرد توسط محورهای X و Y آدرسدهی و خوانده شود. مطلب کمی پیچیده شد؟ بهتر است کمی بیشتر درباره آن بحث کنیم.
CMOS در مقابل CCD دقیقا از مرحلهای که فوتونهای نور توسط فوتوسایتها به الکترون تبدیل میشوند، تفاوت بین دو نوع حسگر اصلی آشکار میشود. مسلماً مرحله بعدی عبارت است از خواندن مقادیر بار انباشته شده در هر سلول و تشخیص یکسل رنگی مربوط به آن. در سنسورهای CCD بار الکتریکی شارژ شده از یک گوشه سنسور خوانده شده و ردیف به ردیف جلو میرود و به طور همزمان یک مبدل آنالوگ به دیجیتال متناوب با تمام مقادیر دریافتی از پیکسلها را به مقادیر دیجیتالی تبدیل میکند. اما CMOSها دارای چندین ترانزیستور مختلف در سر راه دادهها هستند که با تقویت و جابهجا کردن بارهای الکتریکی توسط سیمهای متصل به آنها، مقادیر را جداگانه و تک به تک به پردازشگر ارسال میکنند. هرچند که انعطافپذیری این شیوه به مراتب بالاتر از روش سطر به سطر است و میتواند برای کاربردهایی مثل فوکوس خودکار و اندازهگیری نور مفید واقع شود. اما عملا سیگنال دریافتی ازCCDها شفافتر میباشد. CCDها برای ایجاد قابلیت ارسال بار بدون اعوجاج و تحریف، از یک پروسه صنعتی خاص استفاده میکنند و این پروسه روشی را ارایه میدهد که موجب خلق تصاویری بسیار شفاف میشود. اصلیترین تفاوتهای بین سنسورهای CMOS و CCD را میتوان به این شکل فهرست کرد: ● سنسورهای CCD همانطور که در بالا گفته شد تصاویری با کیفیت بالاتر و اختلال کمتری بهوجود میآورند. اما به طور تجربی ثابت شده که سنسورهای CMOS برای ایجاد نویز و اختلال بسیار مستعدترند.● از آنجا که هر پیکسل در سنسورهای CMOS دارای چندین ترانزیستور مرتبط است که در کنار آنها قرار میگیرد، حساسیت این سنسورها به نور پایینتر میآید. چرا که بسیاری از فوتونهای نور به جای اینکه با سطح دیودهای نوری برخورد کنند با این ترانزیستورها برخورد کرده و به هدر میروند.● سنسورهای CCD به مصرف توان بالا معروفند. این سنسورها در مقایسه با سنسورهای CMOS تقریبا 100 مرتبه بیشتر از باتری استفاده میکنند.CCD ها به علت تولید بالاتر، بسیار بیشتر ازCMOS ها مورد تحقیق و بررسی قرار گرفتهاند و مسلما روشهای تولید اقتصادیتر و با کیفیتتری برای آنها ابداع شده است. به همین دلیل میتوان مشاهده کرد که اغلب دوربینهای با کیفیت و مارکهای معتبر جهان از این سنسور بهره میبرند.● از آنجا که تقویت کننده سیگنالهای نوری در CMOS بلافاصله بعد از هر فوتوسایت قرار دارد بنابراین این نوع حسگرها میتوانند تصاویر را دو برابر سریعتر نسبت بهCCD ها انتقال دهند.براساس گفتههای بالا متوجه میشوید کهCCD ها بیشترین استفاده را در دوربینهایی دارند که بیشتر بر کیفیت بالاتر تصویر، مقدار بیشتر پیکسلهای تصویر و حساسیت به نور بالاتر تأکید دارند. اما در عوض سنسورهایCMOS دارای قیمت کمتر هستند و بیشتر در دوربینهایی به کار میروند که از نظر اقتصادی به صرفه بوده و دارای منبع انرژی محدودتری میباشند.
وضوح (Resolation) مقدار جرییاتی که هر دوربین میتواند روی یک تصویر ضبط کند، رزولوشن (وضوح) نامیده میشود و توسط واحد پیکسل اندازهگیری میشود. هرچه وضوح دوربین شما بالاتر باشد مقدار جزییاتی بیشتری را میتوانید در تصویر خود بگنجانید و هرچه مقدار این جزییات در تصویر بیشتر باشد میتوانید در هنگام چاپ اندازه آن را بزرگتر کنید بدون آنکه تصویر شما محو یا دندانهدندانه شود. انواع وضوحهای دوربینها اینگونه است:256x256 پیکسل: این اندازه وضوح روی دوربینهای بسیار ارزان قیمت دیده میشود و بسیار ناچیز تر از آن است که برای چاپ مورد استفاده قرار گیرد. وضوح نمایشگر برخی از گوشیهای موبایل در همین حد است و میتوان از تصاویری با این خصوصیت برای نمایش در آنها استفاده کرد. این وضوح کلاً دربردارنده 65هزار پیکسل است.640x640 پیکسل: این ابعاد حداقل اندازه وضوح در دوربینهای واقعی است و بهترین اندازه برای تصاویری است که میخواهید آنها را روی وب قرار داده و یا از طریق اینترنت برای کسی ایمیل کنید. این مقدار وضوح دربردارنده 307000 پیکسل میباشد.1216x912 پیکسل: اگر تصمیم دارید تصاویرتان را در ابعاد معمولی عکسهای نگاتیوی چاپ کنید این وضوح بهترین انتخاب است. چرا که اولین نوع وضوح از رده مگاپیکسل محسوب میشود و حدودا دارای 000/109/1 پیکسل میباشد.1600x1200 پیکسل: تصاویری با این مشخصات به عنوان تصاویر وضوح بالا محسوب میشوند و میتوانند بدون هیچ مشکلی تا ابعاد 30x40 سانتیمتر که بالاترین اندازه پیشنهادی عکاسان برای چاپ نگاتیوهای دوربینهای 35 میلیمتری میباشد چاپ شوند. این مقدار وضوح دربردارنده حدودا دومیلیون پیکسل رنگی میباشد و برای استفاده خانگی بسیار مناسب است. هرچند که تا به امروز دوربینهایی تا وضوح 14میلیون پیکسل نیز ساخته شده است اما پیشنهاد مناسب برای کسانی که درباره دوربینی مناسب برای کاربردهای خانگی سؤال می کنند یک دوربین دومگاپیکسلی میباشد. شما که نتیجهای بهتر از نتیجه دوربینهای نگاتیوی معمولی احتیاج ندارید؟