لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 36
اساتید مربوطه:
آقایان حداد و تیموری
گرد آورندگان:
عباس آذری
ترم ۴ رشته متالورژی
سال ۱۳۸۶
فهرست
صفحه
عنوان
4
مقدمه
5
عملیات سختکاری سطحی
مقدمه
در عملیات حرارتی فولاد معمولاً یکی از اهداف زیر دنبال میشود: تنشگیری حاصل از کار یا تنش گیری حاصل از سرد کردن ناهمگن بهینه سازی ساختار دانه در فولادهایی که بر روی آنها کار گرم انجام شده است
و ممکن است دانههای درشت داشته باشند. کاهش سختی فولاد و افزایش قابلیت شکلپذیری بهینهسازی ساختار دانه افزایش سختی فولاد به منظور زیاد شدن مقاومت سایشی و یا سخت کردن فولاد برای مقاومت بیشتر در شرایط کاری افزایش چقرمگی فولاد به منظور تولید فولادی که استحکام بالا و انعطافپذیری خوبی دارد و افزایش مقاومت فولاد در برابر ضربه بهبود قابلیت ماشینکاری .بهبود خواص برش در فولادهای ابزار .بهینه کردن خواص مغناطیسی فولاد .بهبود خواص الکتریکی فولاد .
عنوان گزارش اول : عملیات حرارتی سخطی سطحی فولاد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 87
سیستم گرمایش و ذوب برف بر اساس پمپ حرارتی زمین گرمایی در فرودگاه گولنیو لهستان
خلاصه:
طراحی یک سیستم گرمایش و ذوب برف در فرودگاه GolenioW در کشور لهستان هدف این مقا له میباشد. سیستم بر اساس کار کرد و استفاده از انرژی زمین گرمایی در منطقة Sziciecin نزدیک به شهر Goleniow طراحی شده است. در این منطقه آب زمین گرمایی در محدودة دمایی 40 تا 90 درجه سانتیگراد یافت میشود. مبنای طراحی سیستم استفاده از هیت پمپ هایی میباشد که گرما را از آب گرم 40 تا 60 درجه سانتیگراد جذب میکنند. برای درک عملکرد چیدمان پمپ حرارتی مختلف در یک سیستم گرمایی برای سیال زمین گرمایی 40 oc مقایسه هایی به عمل آمده است. برای منطقه مورد نظر محاسبات جریان سیال و محاسبات گرمایش موجود میباشد.
سیستم دیواره های پخش گرما شامل یک دبی سنج مبدل حرارتی زمین گرمایی و پمپ حرارتی (که به طور الکتریکی کار میکند) میباشد. اگر سیستم با یک اوپراتور که مستقیماً بعد از مبدل حرارتی زمین گرمایی نصب شده است کار کند سیم نوع I و اگر با اوپراتوری که بطور غیرمستقیم روی شبکة برگشت آب نصب شده است کار کند سیتم نوع I I و اگر شامل یک منبع حرارتی معمولی با یک دیگ گازی (که میتوانند با هم با یک مبدل حرارتی زمین گرمایی کار کنند) سیستم نوع I I I میباشد.
منطقه گرمایش توسط یک سیستم توزیع (شامل اتصالات موازی) گرما را بین مصرف کنندگان با احتیاجات مختلف توزیع میکند.در اولین مصرف کننده (سیستم گرمایش با رادیاتور دما پایین) محاسبات در دو حالت کاری متفاوت انجام میشود. در اولین حالت دمای آب خروجی و ورودی تابعی از دمای هوای بیرون میباشد. در دومین حالت دمای آب خروجی و ورودی به دمای بیرون بستگی ندارد و ثابت فرض میشود. دومین مصرف کننده یک سیستم تهویه وآب گرم مصرفی است که آب شبکه را با دمای ثابت در طول سال به حرکت در میآورد. نوع سوم استفاده یک سیستم ذوب برف است.
که در محدوده دمایی 3oc تا– 16 oc با تأمین گرماهای متفاوت در دو حالت ذوب برف و در جا کارکردن، عمل میکند.گرمای ناشی از زمین در این سیستم توسط مبدل حرارتی تامین میشود.
هر یک از سه سیستم فوق الذکردر این مقاله مورد نظر میباشند و توسط دیاگرام شماتیکی مربوطه کاربرد انرژی زمین گرمایی، الکتریکی و انرژی کسب شده توسط دیگ گازی را شرح میدهد معرفی میشوند.
در سیستم های گرمایی، هیت پمپ مستقیم از هیت پمپ غیر مستقیم اقتصـــادی تر و موثرتر میباشد. با کنترل هدفمند وبا استفاده از یک حسگر برف در یک سیستم ذوب برف مقدار آب گرم و هزینه عملیات کاهش مییابد.
معرفی
متاسفانه اخیراً همه احتیاجات سوخت لهستان برای گرمایش از سوزاندن زغال سنگ قهوه ای تأمین میشود. مهمترین نتیجه سوزاندن چنین سوختهای فسیلی تخریب محیط زیست است.
برای مهار رشد سریع آلودگی محیط زیست، صاحب نظران تمایل زیادی بسمت جایگزینی منابع انرژی (بازگشت پذیر) که در میان آنها انرژی زمین گرمایی نقش مؤثری ایفاء میکند دارند. لهستان یک کشور غنی در منابع آب زمین گرمایی با آنتالپی متوسط میباشد. حجمی از این آبهای گرمایشی ، در حدود تقریباً 6500 Km3 (در سوکولوسکی) دمایی بین 30 تا 120 درجه سانتیگراد دارند.آب در محدودة دمایی 50 oc تا 90 oc از میان سوراخهایی با عمق km 1.5 تا 3km به سطح زمین آورده میشوند.
کم و بیش منابع زمین گرمایی بطور یکنواخت در قسمت هایی از لهستان در حوزه یا زیر حوزه های زمین گرمایی مخصوصی که به مناطق و ایالات زمین گرمایی خاصی تعلق دارد توزیع شده اند. بهترین شرایط مناسب و دلخواه زمین گرمایی در Podhale and Studety, Polish Low land میتواند یافت شود.با وجود چنین انرژی با پتانسیل
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
دانشگاه آزاد اسلامی – واحد میبد
تاثیر دمای حرارتی دهی بر رنگ ایجاد شده با رنگدانه ی
(zr,v)sio4 لعاب سرامیک مات
آزمایشگاه لعاب
استاد : مهندسی قهرمانی
دانشجو: آیدا خیامی
شماره داشجویی: 82474467517
بهار 1386تأثیر دمای حرارت دهی بر رنگ ایجاد شده با رنگدانهی (zr,v)sio4 لعاب سرامیک مات
خلاصه
تحلیل واکنش پذیریهای فیزیکی بین رنگدانهها، کدرسازها و لعابها برای درک رفتار نوری لعابهای سرامیک مهم میباشند. ضمناً مهم است که تمایز قائل شویم که آیا لعاب مات میشود چون فاز بلوری شده میتواند به ویژگیهای نوری سیستم کمک میکند یا نه. اندازه و کیفیت بلورهای ایجاد شده به طور قابل توجهی میتواند رنگ لعاب را تغییر دهد. هدف این بررسی ارزیابی تأثیر دمای حرارت دهی بر پایداری رنگ یک سرامیک مات شده توسط رنگدانهی وانادیم – زیرکن آبی است. تحلیل انکساری کمی اشعهی ایکس به منظور ارزیابی کردن انحلال رنگدانه در سه دمای مورد بررسی قرار گرفته و کیفیت بلورهای زیر کن ایجاد شده در محل اصلی خود میباشد. تحقیق گزارش شده اهمیت مورد توجه قرار دادن تمام اجزاء در سیستم نوری چند جزئی به عنوان یک لعاب سرامیک را اثبات مینماید.
کلمات کلیدی : زنگ، اسپکتروسکوپی؛ روشهای اشعهی ایکس؛ سرامیکهای سنتی، لعابها: (zr,v)siot
مقدمه
در صنعت سرامیک یک هدف پیش پا افتاده در کاربرد لعاب ارتقا دادن هنر زیبایی شناسی محصول پایانی است، در این زمینه توزیع اندازهی بافت و ذره هم رنگدانهها و هم بلورها توسط لعاب مات میشود، و تقابل شیمیایی و فیزیکی بین رنگدانهها و لعابها هنگام حرارت دیدن اساسی و مهم است تا فرآیند رنگ آمیزی کنترل شود. در واقع، رنگدانهی مشابه میتواند بسته به دمای حرارت دهی و ترکیب شیمیایی لعاب برای رنگ آمیزی، رنگهای نسبتاً متفاوتی ایجاد نماید.
کنترل بلوری شدن، و جلوگیری از انحلال رنگدانهها در لعابها و مواد بین سلولی بافتهای سرامیک طی حرارت دهی برای بهتر کردن ویژگیها، ظاهر و قابلیت تکثیر محصولات مهم است. جوهرهای چند اکسیده مواد شاخص در لعابهای حرار دهی سریع میباشند. 4-2- و رنگدانههای زیرکن (zrsiot) متداولترین مواد رنگی مورد استفاده هستند. در مقایسه با اجزای دستهی دیگر، جوهر معمولاً کمترین دمای ذوب را دارد اما نسبت به رنگدانههای سرامیک خورندهترین میباشد. ابتدا برای لعاب دادنها معمولا sio2 به عنوان شکل دهندهی اصلی شیشه، قلیاها (k2o, Na2o)، ZnO, B2O3 یا SrO به عنوان سیالهی اصلی، AL2O3, MgO, CaO برای افزایش سختی و دوام لعاب دادن منظور میشدند. ضمناً پوششهای کدر، که بیشترین پوششهای تولید شده هستند، معمولاً با ZrO2 در هم میآمیزند. کدری و سفیدی از طریق بلوری شدن زیرکن بدست میآیند. ریز ناهمگنهای حاصل (اندازه) به طور قابل توجهی ضریب شکستشان (40/2 – 05/2) از ضریب شکست بافتهای شیشهای (70/1 – 50/1) بزرگتر است و در نتیجه نور را به طور موثری پخش میکنند در حقیقت محاسبات انتشار Mie تعیین میکند که حداکثر انتشار نور و سفیدی با زیرکن همراه انواع اندازههای ذره و شکستگی وسیع 16/0 روی میدهد.
رنگدانههای تخدیر شدهی زیرکن پایدارترین مواد رنگی تا Cْ1200 هستند. ساختار چهار گوشهای زیر کن قابلیت در خود جای دادن وانادیم و پراسدم به طور جانشین سازی و هماتیت اینگلوبات را دارد. و پایداری گرمایی و شیمیایی بالای آن، آنرا مناسب استفاده در لعاب دادن سرامیک میکند. سیستم سه محوری زیر کن معمولاً برای رنگ آمیزی لعابهای صنعتی به کار میرود. بدست آوردن طیف وسیعی از رنگها بر اساس مخلوط کردن زیر کن – وانادیم آبی (Zr-v)، زیر کن – آهن قرمز، و زیر کن – پراسدیم زرد میباشد. رنگدانههای زیرکن
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 13 صفحه
قسمتی از متن .doc :
مقدمه ای بر عملیات حرارتی سطحی
عملیات حرارتی سطحی ، فرایندی است شامل دامنه وسیعی از روشها ( شکل 1 ) که برای افزایش سختی ، بهبود مقاومت به سایش ، افزایش استحکام خستگی و حتی مقاومت در برابر خورگی ، بدون ایتکه خواص درونی قطعه نظیر نرمی مغز و چقرمگی تحت تاثیر قرار گیرد به کار می رود . این مجموعه خواص ، مخصوصاً ترکیبی از سختی سطح و مقاومت در برابر نیروهای ضربه ای ، در ارتباط با قطعاتی نظیر شافتها و چرخ دنده ها که از یک طرف باید مقاوم در برابر سایش بوده و از طرف دیگر باید در برابر نیروهای ضربه ای اعمال شده در ضمن کار مقاوم باشن بسیار مفید است . به علاوه ، مزیت عمده عملیات حرارتی سطحی در مقایسه با عملیات حرارتی حجمی این است که ، ضخامتهای زیاد فولاد کم کربن و کربن متوسط که ممکن است در ضمن عملیات حرارتی حجمی ترک خوردن و یا اینکه تاب بردارند را به راحتی و با اطمینان می توان عملیات حرارتی سطحی کرد .
به طور کلی سه گروه کاملاً متفاوت از روشهای مختلف عملیات حرارتی سطحی وجود دارد . ( شکل 1 ) این سه گروه عبارتند از :
روشهایی که شامل تغییر ترکیب شیمیایی سطح و یا نفوذ یک عنصر ( بین نشینی و یا جانشینی ) به داخل قطعه است . این روشها به عملیات حرارتی – شیمیایی یا نفوذی موسوم اند .
روشهایی که شامل اصلاح و یا تغییر میکرو ساختار سطحی بوده و به هیچ وجه ترکیب شیمیایی سطح عوض نمی شود . این روشها به فرایندهای سخت کردن انتخابی یا موضعی موسوم اند .
- روشهای نوین که شامل به کارگیری تجهیزات جدید بوده و بستگی به نوع روش می تواند شامل اصلاح و تغییر میکروساختار سطحی ، جانشینی و یا ترکیبی از آنها وارد سطح قطعه می شود ، و بدین ترتیب ترکیب شیمیایی سطح را اصلاح کرده و یا عوض می کنند می توان تمام و یا بخشی از سطح را به طور موضعی سخت کرد .
این فرایند ها معمولاً موقعی استفاده می شوند که تعداد زیادی از قطعات قرار است سختی سطحی شوند ( تولید انبوه ) از سوی دیگر عملیات حرارتی گروه دوم ترجیحاً برای سخت کردن قطعات بزرگ و حجیم ، برای تمام سطح و یا به طور موضعی ، استفاده می شوند . در حقیقت مزیت عمده عملیات حرارتی گروه دوم ، سخت کردن سطحی قطعاتی است که نتوان آنها را به روش حجمی سخت کرد .
عملیات حرارتی جهت سخت کردن سطح
عملیات نفوذی با عملیات حرارتی – شیمیایی عملیات حرارتی انتخابی یا موضعی روشهای نوین سخت کردن سطحی
نفوذ عناصر بین نشینی نفوذ عناصر جانشینی سخت کردن شعله ای سخت کردن لیزری
سخت کردن القایی سخت کردن پلاسمایی
سخت کردن توسط پرتوی الکترونی القا یا کاشت یونی
کربن دهی آلومینیوم دهی
نیتروژن دهی کرم دهی
کربن – نیتروژن دهی سیلسیم دهی
نیتروژن – کربن دهی منگنز دهی
بوردهی نفوذ همزمان دو یا چند عنصر
شکل 1 : روش های مهندسی برای عملیات حرارتی سطحی
کربن دهی
کربن دهی فرایند اضافه کرددن کربن به سطح فولاد کم کربن است که در دمایی معمولاً در محدوده حرارتی 850-950 درجه سانتی گراد ، دمایی که آستنیت با حد حلالیت زیاد کربن در آن فاز پایدار باشد ، انجام می شود . این فرایند همراه با سرد کردن سریع و لذا تشکیل مارتنزیت پر کربن و مقاوم به سایش و خستگی در سطح بر روی مغزی نرم و مقاوم به ضربه از فولاد کم کربن است . سختی سطح فولاد کربن داده شده عمدتاً تابع درصد کربن آن است . با افزایش درصد کربن بیشتر از 5/0 درصد ، کربن اضافی اثر چندانی بر روی سختی نداشته ولی موجب افزایش سختی ناپذیری می شود .
کربن بیشتر از 5/0درصد ممکن است در آستنیت حل نشود مگر آنکه دمای عملیات به اندازه کافی بالا باشد . ضخامت پوسته کربن داده شده تابع زمان کربن دهی و کربن قابل دسترس ( پتانسیل کربن ) در سطح است . اگر به منظور دست یابی به عمق زیاد نفوذ کربن زمان کربن دهی افزایش داده شود در حضور پتانسیل زیاد کربن افزایش زیاد کربن سطح و لذا تشکیل آستنیت باقیمانده یا کاربید آزاد در سطح وجود دارد . تشکیل آستنیت باقیمانده و یا کاربیدآزاد هر دو اثرات سوء بر روی توزیع تنشهای باقیمانده در پوسته دارند . لذا گفته می شود که پتانسیل زیاد کربن برای زمان کربن دهی کوتاه مناسب است .
فولادهای مناسب برای کربن دهی معمولاً حدود 2/0 درصد کربن داشته و کربن پوسته را معمولاً در محدوده 8/0 -1 درصد کنترل می کنند . مع هذا به علت خطر تشکیل آستنیت باقی مانده و مارتنزیت ترد و شکننده ناشی از کربن زیاد ،
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 5 صفحه
قسمتی از متن .doc :
بررسی اثر پمپ حرارتی در کاهش مصرف انرژی برج های جداساز C2
مقادیر زیادی از انرژی برای پالایش اولفین های سبک، مثل اتیلن، در جداسازی محصولات پلیمری با نقطه جوش نزدیک به هم مصرف می شود. از آنجا که جداسازی اتیلن از اتان از نظر نیازهای حرارتی و فنی از مشکل ترین جداسازی هاست. جای زیادی برای بهبود اقتصادی فرایند اتیلن وجود دارد. هدف این مقاله، ارایه یک طرح صنعتی قابل اجرا برای برج های تقطیر یکپارچه حرارتی (HIDiC) برای جداسازی اتیلن از اتان با به کارگیری پمپ حرارتی است. در این مقاله، روشی برای ترکیب حرارتی برج ها به وسیله پمپ های حرارتی برقی؛ که بین مراحل میانی غنی سازی و عاری سازی برج کار می کنند ارایه می شود. برای این کار از یک سیکل پمپ حرارتی در میانه برج استفاده شده است تا هزینه کل برق مصرفی را کاهش دهد. در این بهینه سازی از مدول معادلاتی Aspen Plus بهره گرفته شده است و در تابع هدف تشکیل شده به تاثیر مفاهیم پنالتی حرارتی و تاثیر گلوگاهی افزایش جریان بخار در بهینه سازی توجه و حالت بهینه آن انتخاب شده است
در بهینه سازی سیستم های حرارتی، عموماً به یک مدل کامل از سیستم و استفاده از روشهای عددی نیاز است.در این مقاله، بهینه سازی اگزرژی- اقتصادی سیکل سرمایش تراکمی تبخیری مورد استفاده در سرمایش ساختمان بر پایه نظریه هزینه اگزرژی (Exergetic cost) بکار رفته است. برمبنای این نظریه، هزینه تمام جریانهای داخلی و محصولات سیستم محاسبه می گردند و یک تابع هدف که مجموعه هزین ههای سرمایه گذاری اولیه برای تجهیزات، هزینه های کارکرد، هزینه های تعمیر و نگهداری و انهدام اگزرژی می باشد، معرفی شده است. سپس پارامترهای طراحی سیکل سرمایش در حالت حداقل هزین هها، محاسبه و ارائه شد هاند. این پارامترها شامل بازده موتور الکتریکی، بازده کمپرسور، بازده حرارتی کندانسور و اواپراتور می باشند.
چگونگی انتقال حرارت و ضریب عملکرد در اینگونه از سیست مها به روشهای تحلیلی و تجربی محاسبه شده است . سیال عامل در پمپ حرارتی ، به محض تبخیرشدن، حرارت را از منبع حرارتی گرفته و با میعان خود، آن را به جریان آب موجود در سیستم گرمایش منطقه ای تحویل م یدهد. در این بررسی ضمن مرور ادبیات، در مسیر بازخوانی و تکمیل مطالعات قبلی اگزرژی که در اغلب موارد، ریشه در احصاء برگشت ناپذیر یها دارد؛ یک برنامة رایانه ای به منظور محاسبات اگزرژتیکی تهیه گردیده است. این بررس ی، تمام پارامترهای مهم در طراحی را مورد توجه قرار داده است . نتایج این تحلیل علاوه بر مقایسه با استانداردJIS و تأیید صحت آنها، با یافت ههای تجربی نیز مقایسه شده و تطابق مطلوبی در روند ضرورت بکارگیری پم پهای حرارتی در سیست مها بدست آمده است.
پمپ های حرارتی، یکی از انواع سیستم های تهویه مطبوع برای تأمین گرمایش و سرمایش ساختما ن ها می باشند . پمپ حرارتی در زمستان، گرما را از محیط خارج گرفته و به داخل ساختمان انتقال می دهد و در تابستان، گرمای درون ساختمان را به محیط خارج منتقل می نماید . پمپهای حرارتی بر اساس منبعی که از آن جهت تبادل گرما و سرما استفاده می کنند، به دو دسته اصلی پمپ حرارتی هوایی و زمینی تقسیم می گردند. در این مقاله سیستم پمپ حرارتی هوایی معرفی شده و خواص، کارکرد، مزایا و نکات لازم جهت استفاده از این سیستمها ارائه می گردد
پمپهای حرارتی در تولید گرمایش و سرمایش ، ساختمانهای مسکونی، تجاری ، اداری و صنعتی مورد توجه قرار گرفته اند. نیروی محرکه لازم جهت به حرکت در آوردن کمپرسور می تواند ، توسط موتور الکتریکی و یا یک موتور احتراق داخلی تأمین شود . پمپ حرارتی گاز سوز ، دستگاهی است که انرژی لازم برای سرمایش و گرمایش را از حرکت کمپرسور توسط یک موتور احتراق داخلی گازسوز ، فراهم می گرداند. با توجه به هزینه های متفاوت انرژی الکتریکی و سوخت گاز طبیعی، می توان هزینه های جاری کارکرد هر یک از این دستگاهها را در مناطق مختلف ، تعیین نمود . نظر به فراوانی گاز طبیعی و قیمت کم این سوخت در ایران، استفاده از پمپ های حرارتی گاز سوز می تواند بسیار سودمند باشد . در این مقاله ، پس از تشریح مشخصه های سیستمهای پمپ حرارتی گاز سوز ، هزینه های مصرف انرژی پمپ های حرارتی گاز سوز و الکتریکی برای دو گروه از محصولات شرکتهای تولید کننده این وسیله، مقایسه شده است
قانون دوم ترمودینامیک متضمن این مفهوم است که یک فرایند فقط در یک جهت معین پیش می رود و در جهت خلاف آن قابل وقوع نیست. این محدودیت برای جهت وقوع یک فرایند, مختصه قانون دوم است.اگرسیکلی متناقض با قانون اول ترمودینامیک نباشد, دلیلی براین نیست که آن سیکل حتماً اتفاق می افتد. همین امر منجر به تنظیم قانون دوم ترمودینامیک شده است. دو بیان کلاسیک از قانون دوم ترمودینامیک وجود دارد که هر دو بیانگر یک مفهوم اساسی هستند: بیان کلوین- پلانک و بیان کلازیوس , بیان کلوین- پلانک بر پایه توضیح عملکرد موتورهای حرارتی است وبیان می دارد که غیرممکن است وسیله ای بسازیم که در یک سیکل عمل کند و در عین حال که با یک مخزن تبادل حرارت دارد اثری بجز صعود وزنه داشته باشد. این بیان از قانون دوم ترمودینامیک در بر گیرنده این مضمون است که غیر ممکن است که یک موتور حرارتی مقدار مشخصی حرارت را از جسم درجه حرارت بالا دریافت کند و همان مقدار نیز کار انجام دهد. بیان کلازیوس نیز یک بیان منفی است و اعلام می دارد که غیر ممکن است وسیله ای بسازیم که در یک سیکل عمل کند و تنها اثر آن انتقال حرارت از جسم سردتر به جسم گرمتر باشد. این بیان بر پایه توضیح عملکرد پمپهای حرارتی می باشد و دربرگیرنده این مفهوم است که نمی توان یخچالی ساخت که بدون کار ورودی عمل کند. هر دو بیان کلاسیک از قانون دوم ترمودینامیک نوعاً بیانهای منفی هستند و اثبات بیان منفی ناممکن است. درباره قانون دوم ترمودینامیک گفته میشود "هر آزمایش مربوطی که صورت گرفته به طور مستقیم یا غیرمستقیم ﻤﺆید قانون دوم بوده و هیچ آزمایشی منجر به نقض قانون دوم نشده است. همانگونه که ذکر شد تنها گواه ما بر صحت قانون دوم ترمودینامیک آزمایشات گوناگونی است که همگی درستی این قانون را ﺘﺄیید می کنند. با این همه در ترمودینامیک کلاسیک سعی می کنند نشان دهند که اثبات معادل بودن دو بیان کلوین- پلانک و کلازیوس دلیلی بر صحت قانون دوم ترمودینامیک است. در حالیکه این امر درستی قانون دوم را اثبات نمی کند. در اثبات اینکه دو بیان فوق الذکر معادل یکدیگرند از یک مدل منطقی بهره جسته می شود که می گوید: " دو بیان, معادل هستند اگر صحت هر بیان منجر به صحت بیان دیگر گردد و اگر نقض هر بیان باعث نقض بیان دیگر شود."
در ترمودینامیک کلاسیک ,معادل بودن دو بیان کلوین- پلانک و کلازیوس با این آزمایش ذهنی استنتاج می شود. در شکل نشان داده می شود که نقض بیان کلازیوس منجر به نقض بیان کلوین- پلانک می شود. وسیله سمت چپ ناقض بیان کلازیوس است. زیرا که یک پمپ حرارتی است که نیازی به کار ندارد. وسیله سمت راست یک موتور حرارتی است. در اینجا به دلیل اینکه انتقال حرارت خالص با منبع درجه حرارت پایین وجود ندارد پس پمپ حرارتی و موتور حرارتی و منبع درجه حرارت بالا مشتمل بر یک سیکل ترمودینامیکی است اما فقط با یک مخزن تبادل حرارت دارد بنابراین نتیجه می شود که ناقض بیان کلوین- پلانک می باشد. و گفته می شود تساوی کامل این دو بیان هنگامی اثبات می شود که نقض بیان کلوین- پلانک نیز موجب نقض بیان کلازیوس بشود. با این وصف باید بپذیریم که دو بیان فوق, منتج از یکدیگر هستند. " در اثبات معادل بودن چند گزاره اگر عبارتی بصورت B ↔A بیان شده باشد آنگاه B نتیجه A است و A هم نتیجه B , بعبارت دیگر AوB معادل یکدیگر هستند, بالعکس اگر A وB معادل یکدیگر باشند, هریک از آنها نتیجه دیگری است.