لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
دانشگاه آزاد اسلامی
واحد کرج
گزارش کار:
آزمایشگاه عملیات حرارتی
استاد:
مهندس میر آخوری
تهیه و تنظیم:
سید یاسر موسوی
شماره دانشجویی:
82473435212
زمستان86
آزمایش شماره 1
عنوان آزمایش : بررسی اثرسرعت سرد کردن در ریزساختار طولی و خواص مکانیکی فولاد
مقدمه
فریت
محلول جامد بین نشینی کربن در آهن با شبکه بلوری مکعب مرکز دار به فریت موسوم است.حلالیت کربن در آهن فریتی به مراتب کمتر از حلالیت آن در آهن آستنیتی است. به طوریکه حد حلالیت کربن در فریت حداکثر 0.02 درصد در 727 درجه سانتیگراد است که با کاهش دما به طور پیوسته کاهش یافته و در دمای اتاق به مقدار ناچیزی خواهد رسید.
آستنیت
آستنیت عبارتست از محلول جامد بین نشینی کربن در آهن با شبکه بلوری مکعبی با وجوه مرکزدار (fcc) است کربن با وارد شدن در شبکه بلوری آهن آستنیتی ، ناحیه تشکیل و پایداری آستنیتی را در فولادها گسترش می دهد . با اضافه شدن کربن ناحیه پایداری آستنیت از 912 تا 1394 درجه سانتیگراد که گستره تشکیل و پایداری آستنیت است ، به گستره وسیعی از دما و ترکیب شیمیایی افزایش می یابد .
ماتنزیت
در آلیاژهای آهن - کربن و فولادها ، مارتنزیت از سریع سرد کردن آستنیت بدست می آید . از آنجایی که دگرگونی آستنیت به مارتنزیت بدون نفوذ انجام می شود. بسته به ترکیب شمیایی آلیاژ، تا 2درصد کربن، مارتنزیت دقیقا همان ترکیب شمیایی آستنیت اولیه را دارد .
در تشکیل فاز مارتنزیت کربن در فضای هشت وجهی شبکه bcc محبوس شده و فاز جدید مارتنزیت را بوجود می آورد . با تشکیل مارتنزیت ، کربن محلول در شبکه bcc به مقدار زیادی افزایش پیدا می کند . با افزایش درصد کربن محلول در شبکه ، جاهای خالی بیشتری از شبکه توسط کربن اشغال می شود ، درنتیجه شبکه بلوری از bcc به bct میل میکند که در آن پارامتر c شبکه بزرگتر از دو پارامتر دیگر a است نسبت c/a که تتراگونالیته شبکه می بتشد با افزایش میزان کربن افزایش میابد .
از آنجایی که در تشکیل مارتنزیت نفوذ نقشی ندارد ، مارتنزیت فازی ناپایدار است . اگر مارتنزیت تا دمایی حرارت داده شود که اتم های کربن قدرت کافی جهت نفوذ پیدا کنند ، از فضاهای خالی هشت وجهی خارج شده و تشکیل سمانتیت می دهند . در نتیجه شبکه بلوری مارتنزیت از حالت هشت وجهی خارج شده و فازهای تعادلی در نمودار آهن کربن یعنی فریت و سمانتیت به وجود می آیند .
مارتنزیت در اثر یک دگرگونی برشی بوجود می آید . در این مکانیزم ، جهت انجام دگرگونی اتم های زیادی با هم و به طور همزمان جابجا می شوند . این جابجایی گروهی اتم ها ، کاملا متفاوت از جابجایی انفرادی آنها و حرکت در فصل مشترک ، از فاز قدیم به فاز جدید است .
بینیت
بینیت در فولادها در گستره دمایی بین پایینترین دمای تشکیل پرلیت و بالاترین دمای تشکیل مارتنزیت تشکیل می شود . بینیت همانند پرلیت ، یک فاز نیست بلکه مخلوطی از دو فاز فریت و سمنتیت است . بنابراین دگرگونی بینیتی نیاز به تغییر ترکیب شیمیایی دارد و در نتیجه برای انجام آن نفوذ کربن لازم است . تغییر ترکیب شیمیایی که در دگرگونی بینیتی انجام می شود شامل عناصر آلیاژی جانشینی که ممکن است در فولادها وجود داشته باشد ، نمی شود . بنابراین درصد عناصر آلیاژی در فازهای فزیت و سمنتیت ثابت و برابر همان ترکیب شیمیایی اولیه آستنیت است . همچنین برخلاف پرلیت محصول حاصل از دگرگونی بینیتی شامل لایه های متناوب فریت و سمنتیت نیست و همچنین رشد آن به صورت صفحه ای است .
شرح آزمایش :
در ابتدا یک میله فولادی را انتخام می کنیم و سه نمونه مسطح mm 15با اره دستی می ریم و سپس عملیات سوهان کاری و صیقل کاری را بر روی سه نمونه فولادی بریده شده انجام می دهیم و سپس با سنباه های نمره مختلف عمل سنباده زنی را بر روی یکی از سطوح نمونه ها انجام می دهیم.سپس سه نمونه فولادی را پس ازعلامتگذاری در کوره در دمای 900درجه سانتیگراد می گذاریم . زمان نگه داشتن قطعات بستگی به حجم قطعات دارد . سپس یکی را در آب ، یکی را در حمام روغن و آخری را در هوا سرد می کنیم . سپس قطعات را اچ ومتالوگرافی می کنیم و در نهایت سختی آنها توسط دستگاه سختی سنج اندازه گرفته می شود.
1- نمونه سرد شده در آب :
نمونه را پس از در آوردن از کوره به سرعت وارد آب میکنیم و آن را در آب حرکت می دهیم تا حباب در اطراف قطعه تشکیل نشود چون حباب های تشکیل شده باعث می شود که انتقال حرارت به سرعت انجام نگیرد پس باید قطعه را در اب حرکت داد تا حباب های تشکیل شده در اطراف قطعه ازبین بروند در این حالت دمای نمونه به سرعت تا زیر دمای تشکیل مارتنزیت افت کرده و چون فرصت کافی برای نفوذ وجود ندارد پس امکان تشکیل فازهای پرلیت و بینیت وجود ندارد و تمام قطعه مارتنزیتی میشود . سختی در این حالت 63راکول سی بدست آمد که بیشترین عدد سختی، همین حالات می باشد.
2- نمونه سرد شده در روغن :
در این حالت نمونه پس از آستنیته شدن کامل ، سریعا از کوره خارج شده و توسط یک انبر آهنی ،نمونه در داخل حمام روغن قرار می گیرد . در این حالت آهنگ سرد شدن بیشتر از نرماله کردن می باشد و ساختار بدست آمده در این حالت مخلوطی از پرلیت و مارتنزیت می باشد .عدد سختی در این حالی برابر با 45 راکول سی بدست آمد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 24
به این علت یوتکتیک باید بوسیله عملیات حرارتی در ساختار حل شود.
عملیات حرارتی
عملیات حرارتی به یک فرآیند گرمایی یا تعدادی فرایندها که برای بهبود خواص مورد نظر در فلزات استفاده می شوند می گویند. در عملیات حرارتی آلیاژهای آلومینیوم، خواص تغییر یافته عبارتند از:
سفتی معمولی و تشکیل آلیاژهای مشخص بوسیله رسوب.
برای رسوب فتی آلیاژهای آلومینیوم، عملیات حرارتی از سه فاز پایه تشکیل شده است.
سفتی محلولی – آب دادن – پیری.
عملیات سفتی محلولی می تواند یوتکتیک تشکیل شده را حل کند و فرم محلول جامد تشکیل دهد، دمای عملیات سختی محلولی عملاً نزدیک به نقطه ذوب بوتکتیک است. می دانیم که شکر خیلی اسان و به تعداد بیشتری در آب گرم نسبت به آب سرد حل می شود. بنابراین یوتکتیک نیز آسانتر در فلز مذاب حل می شود. از اینرو کنترل دما بسیار مهم است زیرا تجاوز کردن از دمای ذوب یوتکتیک دارای عواقبی چون ذوب موضوعی و از بیان رفتن خواص قطعه (قراضه)می باشد. سختی محلولی ساختار قطعه ریخته شده را یکنواخت می کند. زمان مورد نیاز برای سختی محلولی به آلیاژ و طبیعت قطعه آلیاژ بستگی دغارد. بطور کلی قسمتهای نازک که سریعتر منجمد می شوند. تشکیل دهندگی بهتری دارد و نسبت به قسمتهای زمانی سفتی محلولی کمتری نیاز دارند.
عملیات حرارتی برای قطعات ریختگی آلومینیومی:
عملیات حرارتی قطعات آلومینیوم مستلزم کنترل دقیق برروی گرمادهی و. سرد کردن می باشد هر فاز از عملیات حرارتی برای قطعه یک فرآیند بحرانی است و یک عمل مهندسی می باشد. از اساس مهم عملیات حرارتی قطعات ریختگی آلومینیوم اینست که یک مخلوط با خواص خوب بدست آید. بهبود شکل پذیری ساختار در حین ریخته گری:
2-رفع تنشهای داخلی که بوسیله انقباض در حین انجماد حاصل شده است.
3-بهبود پایداری ابعادی
4-بهبود خاصیت ماشینکاری
5-بهبود مقاومت در برابر خوردگی
آلیاژهای ریختگی آلومینیوم به دو بخش کلاسه می شوند:
عملیات حرارتی پذیر و عملیات حرارتی ناپذیر
آلیاژهای قابل عملیات حرارتی که رسوب سخت هستند تحت یک روش اساسی از قبیل سختی محلولی آب دادن و پیر کردن قرار می گیرد. که باعث بهبود خواص مکانیکی می شود. تغییرات در خواص فوق بوسیله میلکهای عهملیاتی حرارتی یا سختی محلولی هستند و یا نتیجه خواص عناصر آلیاژی محلول در آن می باشد.
آلیاژهای غیرعملیات حرارتی پذیر تحت یک عملیات حرارتی مانند رفع تنش (برای پایداری ابعادی) و آنیل (برای توقف رشد دانه) یا بهبود خواص مقام به خوردگی قرار می گیرند.
واکنش رسوبی زیادی در این آلیاژها انجام نمی شود با این وجود خواص مکانیکی آنها به میزان کمی افزایش می یابد.
الیاژ دمایی مانند 0/713 دارای خودپیرسازی هستند که داشتن رسوب در دمای اتاق در فلصله زمنی چندین هفته اتفاق می افتد.
بر طبق عملیات یفتی محلولی، قطعات ریختگی گرم شده در آب داغ بصورت غوطه وری کوه یخ میشوند. یک آب دادن صحیح ساختار همگن را در محلول جامد در درجه حرارت اتاق حفظ کند، وقتیکه یک ظرف سرد می شود، اعضاء تشکیل دهنده یوتکتیک سعی می کنند که از محلول خارج شوند در نتیجه انحلال پذیری مختلفی در درجه حرارت اتاق حاصل می شود و مانند اینست که چگونه وقتی شکر را در آب جوش حل می کنیم، وقتیکه آب خنک می شود مقداری از شکرها بصورت کریستالهای کوچک دوباره ظاهر می شوند.
قطعه فلزی کوئنچ شده از داخل تحت تنش و یا محلهای وجود فوق اشباع قرار دارد. زمانی عملیات پیر کردن قابل اجراست که رسوب یوتکتیکی بسیار بیشتر از نوع پراکنده آن باشد زیرا این نوع اصلاً خارج نمی شوند.
ذرات رسوب بسیار ریز هستند و معمولاً آنها را بوسیله میکروسکوپ نوری نمی توان مشاهده کرد برای فهم بهتر تئوری این عملیات می توان ظاهر شدن دوباره ذرات را تصویر کرد.
درجه حرارت برای انجام عملیات حرارتی در مورد آلیاژهای مختلف، متفاوت است، اما معمولاً دمای عملیات سختی محلولی بین 1000-800 است و درجه حرارت سیکل پیرسختی بین 500-300 می باشد که به تمپر بستگی دارد.
از دیگر عملیات حرارتیهایی که گهگاه به آلومینیوم ریختگی داده می شود آنیلینگ است. آنیل کردن درجه حرارتی بین دمای سختی محلول و دمای پیرسختی به قطعه می دهد. آنیل کردن شرایطی چون نرم کردن داکلیته بالا و بهترین پایداری ابعادی را بوجود می آورد. این عملیات معمولاً برای آلیاژهای ریختگی 0/235 . 0/233 استفاده دارد. عملیات حرارتی که ممکن است برای
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 65
عملیات حرارتی 8
مطالعات و بررسیهایی که توسط یک شرکت بزرگ تولید کننده فولادهای ابزار، در رابطه با علل شکست و خرابیهای زودرس ابزارها و قالبها انجام شده، نشان می دهد که در %70 موارد، انجام عملیات حرارتی نادرست باعث ایجاد عیوب بوده است. بنابراین می توان ادعا کرد که عملیات حرارتی ، مهم ترین مرحله در ساخت ابزارها و قالبهای با کیفیت می باشد.
هر چند که امروزه توصیه می شود که از تجهیزات مدرن عملیات حراردتی، نظیر کوره های خلاء برای ساخت قالبها و ابزارها استفاده شود، ولی هنوز هم بسیاری از استادکاران عملیات حرارتی می توانند با تجهیزاتی شبیه به آهنگریهای قدیمی، قالبها و ابزارهای با کیفیت بسازند. از طرف دیگر نیز ممکن است یک اپراتور عملیات حرارتی با به کارگیری تجهیزات مدرن و پیشرفته نتواند یک قطعه را بخوبی عملیات حرارتی کرده و قطعه قالب به سرعت ترک برداشته و خراب شود.
در این فصل خلاصه ای از روشهای درست عملیات حرارتی قالبها وابزارها ارائه می شود.همچنین با استفاده از تصویرهای مختلف، مشکلات و عیوب رایج در عملیات حرارتی، به همراه روشهای پیش گیری از آنها نیز مطرح می شود.
عملیات حرارتی فقط سخت کردن نیست
عملیات حرارتی نقطه کانونی عملیات ساخت یک قالب یا ابزار به شمار می رود. البته هنوز هم در اغلب کارخانجات، بیشترین تأکید در عملیات حرارتی را بر ایجاد سختی مورد نظر در فولاد می کنند. ولی در واقع، سختکاری باید یک سطح سختی مطلوب را به همراه خواص فیزیکی ومهندسی فراوان دیگر در قطعه کار ایجاد کند، تا آن قطعه بتواند بهترین کارآیی را از خود بروز دهد. برای انجام چنین کاری باید کلیه پرسنلی که به نحوی با ساخت ابزارها و قالبها مرتبط هستند، یک اطلاعات پایه راجع به اصول، متالوژی، مشکلات رایج و تکنیکهای ساختکاری فولادها داشته باشند. این افراد باید سیکلهای حرارتی(Thermal Cycles) را در عملیات حرارتی بفهمند.
سختکاری دقیق قطعات باعث ایجاد یک ساختار پایدار، یکنواخت وریز دانه می شود که سختی در همه قسمتهای آن یکسان است و میزان تنش در آن کم می باشد.
مشخصات سختی مورد نیاز برای هر ابزار یا قالب را بررسی کنید،
در عملیات حرارتی قطعات سنگین با سطح مقطع زیاد و فرمهای پیچیده، دقت بیشتری به عمل آورید،
انجام سیکلهای تنش زدایی را قبل از ماشینکاری نهایی و قبل از سختکاری، فراموش نکنید،
زمان سیکلهای حرارتی را کوتاه نکنید، زمان کافی را برای عملیات مختلف نظیر تنش زدایی، پیش گرم، سختکاری، کوئنچ و تمپرینگ مصرف کنید،
سختی قطعه کار را پس از کوئنچ اندازه گرفته و ثبت کنید تا از صحت عملیات سختکاری اطمینان یابید،
قطعه کار را بیش از حد سخت نکنید، سختی ابزار باید تا اندازه ای باشد که نیازهای پیش بینی شده از نظر مقاومت سایشی و چقرمگی را تأمین نماید و
طراح سیکل عملیات حرارتی، باید اپراتور عملیات حرارتی را بشناسد و با روشهای سختکاری او، قابلیتها و محدودیتهای تجهیزات او آشنا شود.
هیچ کاری را به شانس واگذار نکنید.
هر ساله، ابزارها و قالبهای بسیاری به ارزش صدها هزار دلار، به دقت طراحی و ماشینکاری می شوند و سپس به بخش عملیات حرارتی ارسال می گردند، در حالیکه اطلاعات اندکی درباره نحوه عملیات حرارتی آنها از طرف واحد طراحی به اپراتورهای عملیاتی حرارتی ارائه می شود. بدین ترتیب تعداد زیادی ابزار به علت انجام نادرست عملیات حرارتی معیوب شده و نمی توانند کارایی خوبی در تولید داشته باشند.همیشه به یاد داشته باشید که فقط چند ساعت عملیات حرارتی نامناسب می تواند صدها ساعت کار انجام شده در مراحل طراحی و ساخت را به هدر دهد.
در شکل 8-2 یک ماتریس ساخته شده از فولاد A2 نشانداده شده است. این ماتریس پس از جازدن پرسی تکه هایی در شیارهای جانبی آن شکسته است.تردی خیلی زیاد این قطعه که در اثر تمپرینگ ناکافی آن ایجاد شده، باعث شکستن آن شده است، در حالی که سختی 62-64 HRC خیلی زیاد بوده و برای چنین ابزاری اصلاً مناسب نبوده است.
هیچ وقت عملیات حرارتی را به شانس واگذار نکنید. همیشه برای این کار یک برنامه تهیه کنید. یک فولاد مناسب برای
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 20 صفحه
قسمتی از متن .doc :
سیستم های حرارتی و خنک کننده
موتورهای الکتریکی :
یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل میکند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام میشود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار میکنند، اما موتورهایی که بر اساس پدیدههای دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار میکنند، هم وجود دارند.ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار میگیرد، نیرویی بر روی آن ماده از سوی میدان اعمال میشود. در یک موتور استوانهای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصلهای معین از محور روتور به روتور اعمال میشود، میگردد. اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده میشود.
موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده میشود، اما این واژه عموماً به غلط بکار برده میشود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال میشود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد میشود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور میتوانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده میکنند.
انواع موتورهای الکتریکی :
1) موتورهای DC :
یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطهور بود، میشد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور میکرد، سیم حول آهنربا به گردش در میآمد و نشان میداد که جریان منجر به افزایش یک میدان مغناطیسی دایرهای اطراف سیم میشود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده میشود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده میشود.موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل میشود. بدلیل اینکه این نوع از موتور میتواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده میکنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک میکند و هر چه که سرعت موتور بالاتر باشد، جاروبکها میبایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور میشود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد میکند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا میکنند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
به نام خدا
موضوع:
Simulated Annealing
شبیهسازی حرارتی
نام استاد:
جناب آقای دکتر حمیدزاده
نام درس:
شیوه ارائه مطالب علمی و فنی
نام دانشجو:
حسین حقیقت
پاییز 1386
چکیده
در این تحقیق ما به بررسی یکی از روشهای بهینهسازی حل مسئله به نامSimulated Annealing میپردازیم. SA در واقع الهام گرفته شده از فرآیند ذوب و دوباره سرد کردن مواد و به همین دلیل به شبیهسازی حرارتی شهرت یافته است. در این تحقیق ادعا نشده است که SA لزوماً بهترین جواب را ارائه میکند. بلکه SA به دنبال یک جواب خوب که میتواند بهینه هم باشد میگردد. SA در حل بسیاری از مسائل بخصوص مسائل Np-Complete کاربرد دارد. در پایان روش حل مسئلهی فروشندهی دوره گرد در SA بطور مختصر آورده شده است.
فهرست مطالب
عنوان شماره صفحه
1- مقدمه 3
2. SA چیست؟ 5
3- مقایسه SA با تپهنوردی 8
4- معیار پذیرش (یک حرکت) 9
5- رابطهی بین SA و حرارت فیزیکی 11
6- اجرای SA 11
7- برنامه سرد کردن 12
1-7. درجه حرارت آغازین 13
2-7. درجه حرارت پایانی 14
3-7. کاهش درجه حرارت در هر مرحله 14
4-7. تکرار در هر دما 14
8- تابع هزینه 14
9- همسایگی 15
10- روش حل TSP با SA 15
11- نتیجهگیری 19
منابع 20
1- مقدمه
سیستمهای پیچیده اجتماعی تعداد زیادی از مسائل دارای طبیعت ترکیباتی را پیش روی ما قرار میدهند. مسیر کامیونهای حمل و نقل باید تعیین شود، انبارها یا نقاط فروش محصولات باید جایابی شوند، شبکههای ارتباطی باید طراحی شوند، کانتینرها باید بارگیری شوند، رابطهای رادیویی میبایست دارای فرکانس مناسب باشند، مواد اولیه چوب، فلز، شیشه و چرم باید به اندازههای لازم بریده شوند؛ از این دست مسائل بیشمارند. تئوری پیچیدگی به ما میگوید که مسائل ترکیباتی اغلب پلینومیال نیستند. این مسائل در اندازههای کاربردی و عملی خود به قدری بزرگ هستند که نمیتوان جواب بهینه آنها را در مدت زمان قابل پذیرش به دست آورد. با این وجود، این مسائل باید حل شوند و بنابراین چارهای نیست که به جوابهای زیر بهینه بسنده نمود به گونهای که دارای کیفیت قابل پذیرش بوده و در مدت زمان قابل پذیرش به دست آیند.
چندین رویکرد برای طراحی جوابهای با کیفیت قابل پذیرش تحت محدودیت زمانی قابل پذیرش پیشنهاد شده است. الگوریتمهایی هستند که میتوانند یافتن جوابهای خوب در فاصله مشخصی از جواب بهینه را تضمین کنند که به آنها الگوریتمهای تقریبی میگویند. الگوریتمهای دیگری نیز هستند که تضمین میدهند با احتمال بالا جواب نزدیک بهینه تولید کنند که به آنها الگوریتمهای احتمالی گفته میشود. جدای از این دو دسته، میتوان الگوریتمهایی را پذیرفت که هیچ تضمینی در ارائه جواب ندارند اما براساس شواهد و سوابق نتایج آنها، به طور متوسط بهترین تقابل کیفیت و زمان حل برای مسئله مورد بررسی را به همراه داشتهاند. به این الگوریتمها، الگوریتمهای هیوریستیک گفته میشود.
هیوریستیکها عبارتند از معیارها، روشها یا اصولی برای تصمیمگیری بین چند گزینه خطمشی و انتخاب اثربخشترین برای دستیابی به اهداف مورد نظر. هیوریستیکها نتیجه برقراری اعتدال بین دو نیاز هستند: نیاز به ساخت معیارهای ساده و در همان زمان توانایی تمایز درست بین انتخابهای خوب و بد. برای بهبود این الگوریتمها از اواسط دهه هفتاد، موج تازهای از رویکردها آغاز گردید. این رویکردها شامل الگوریتمهایی است که صریحاً یا به صورت ضمنی تقابل بین ایجاد تنوع جستجو (وقتی علائمی وجود دارد که جستجو به سمت مناطق بد فضای جستجو میرود) و تشدید جستجو (با این هدف که بهترین جواب در منطقه مورد بررسی را پیدا کند) را مدیریت میکنند. این الگوریتمها متاهیوریستیک نامیده میشوند. از بین این الگوریتمها میتوان به موارد زیر اشاره کرد:
بازپخت شبیهسازی شده
جستجوی ممنوع