لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 18
دانشگاه آزاد اسلامی – واحد میبد
تاثیر دمای حرارتی دهی بر رنگ ایجاد شده با رنگدانه ی
(zr,v)sio4 لعاب سرامیک مات
آزمایشگاه لعاب
استاد : مهندسی قهرمانی
دانشجو: آیدا خیامی
شماره داشجویی: 82474467517
بهار 1386تأثیر دمای حرارت دهی بر رنگ ایجاد شده با رنگدانهی (zr,v)sio4 لعاب سرامیک مات
خلاصه
تحلیل واکنش پذیریهای فیزیکی بین رنگدانهها، کدرسازها و لعابها برای درک رفتار نوری لعابهای سرامیک مهم میباشند. ضمناً مهم است که تمایز قائل شویم که آیا لعاب مات میشود چون فاز بلوری شده میتواند به ویژگیهای نوری سیستم کمک میکند یا نه. اندازه و کیفیت بلورهای ایجاد شده به طور قابل توجهی میتواند رنگ لعاب را تغییر دهد. هدف این بررسی ارزیابی تأثیر دمای حرارت دهی بر پایداری رنگ یک سرامیک مات شده توسط رنگدانهی وانادیم – زیرکن آبی است. تحلیل انکساری کمی اشعهی ایکس به منظور ارزیابی کردن انحلال رنگدانه در سه دمای مورد بررسی قرار گرفته و کیفیت بلورهای زیر کن ایجاد شده در محل اصلی خود میباشد. تحقیق گزارش شده اهمیت مورد توجه قرار دادن تمام اجزاء در سیستم نوری چند جزئی به عنوان یک لعاب سرامیک را اثبات مینماید.
کلمات کلیدی : زنگ، اسپکتروسکوپی؛ روشهای اشعهی ایکس؛ سرامیکهای سنتی، لعابها: (zr,v)siot
مقدمه
در صنعت سرامیک یک هدف پیش پا افتاده در کاربرد لعاب ارتقا دادن هنر زیبایی شناسی محصول پایانی است، در این زمینه توزیع اندازهی بافت و ذره هم رنگدانهها و هم بلورها توسط لعاب مات میشود، و تقابل شیمیایی و فیزیکی بین رنگدانهها و لعابها هنگام حرارت دیدن اساسی و مهم است تا فرآیند رنگ آمیزی کنترل شود. در واقع، رنگدانهی مشابه میتواند بسته به دمای حرارت دهی و ترکیب شیمیایی لعاب برای رنگ آمیزی، رنگهای نسبتاً متفاوتی ایجاد نماید.
کنترل بلوری شدن، و جلوگیری از انحلال رنگدانهها در لعابها و مواد بین سلولی بافتهای سرامیک طی حرارت دهی برای بهتر کردن ویژگیها، ظاهر و قابلیت تکثیر محصولات مهم است. جوهرهای چند اکسیده مواد شاخص در لعابهای حرار دهی سریع میباشند. 4-2- و رنگدانههای زیرکن (zrsiot) متداولترین مواد رنگی مورد استفاده هستند. در مقایسه با اجزای دستهی دیگر، جوهر معمولاً کمترین دمای ذوب را دارد اما نسبت به رنگدانههای سرامیک خورندهترین میباشد. ابتدا برای لعاب دادنها معمولا sio2 به عنوان شکل دهندهی اصلی شیشه، قلیاها (k2o, Na2o)، ZnO, B2O3 یا SrO به عنوان سیالهی اصلی، AL2O3, MgO, CaO برای افزایش سختی و دوام لعاب دادن منظور میشدند. ضمناً پوششهای کدر، که بیشترین پوششهای تولید شده هستند، معمولاً با ZrO2 در هم میآمیزند. کدری و سفیدی از طریق بلوری شدن زیرکن بدست میآیند. ریز ناهمگنهای حاصل (اندازه) به طور قابل توجهی ضریب شکستشان (40/2 – 05/2) از ضریب شکست بافتهای شیشهای (70/1 – 50/1) بزرگتر است و در نتیجه نور را به طور موثری پخش میکنند در حقیقت محاسبات انتشار Mie تعیین میکند که حداکثر انتشار نور و سفیدی با زیرکن همراه انواع اندازههای ذره و شکستگی وسیع 16/0 روی میدهد.
رنگدانههای تخدیر شدهی زیرکن پایدارترین مواد رنگی تا Cْ1200 هستند. ساختار چهار گوشهای زیر کن قابلیت در خود جای دادن وانادیم و پراسدم به طور جانشین سازی و هماتیت اینگلوبات را دارد. و پایداری گرمایی و شیمیایی بالای آن، آنرا مناسب استفاده در لعاب دادن سرامیک میکند. سیستم سه محوری زیر کن معمولاً برای رنگ آمیزی لعابهای صنعتی به کار میرود.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
به نام خدا
تاثیر دمای پخت و زمان آن در میزان تردی و کلاژن در گوشت خرگوش
« خلاصه »
ما روی تاثیر زمان و دمای پخت در میزان تردی ماهیچه لانگیسیموس لومیوروم در خرگوش 70 روزه تحقیق کردیم . اتلاف پخت ، میزان کلی کلاژن و حل پذیری ماهیچه LL در کل اندازه گیری شد . افزایش دمای پخت یک تاثیر چهار فازی را در میزان WB سبب می شود . انرژی کلی و فشار به طور چشمگیری بین گوشت پخته و خام در 0C50 افزایش یافت ، سپس به 0C65-60 کاهش یافتند و دوباره تا سقف حداکثر0C90-80 افزایش یافتند . اتلاف پخت یک افزایش %80 بین 50 و 0C80 را نشان داد . در 0C80 میزان فشار و انرژی کلی پس از 20 و 40 دقیقه ثابت باقی ماند . کلاژن ماهیچه LL 3/2 ± 4/16 میلی گرم از ماهیچه خشک بود . حل پذیری کلاژن در 0C77 به مدت1 ساعت بالا بود یعنی % 1/8 ± 3/75 . کلیه حقوق محفوظ است .
مقدمه
تعیین بافت گوشت می تواند با استفاده از پانل طعم آموزشی یا روش های فیزیکی به دست آید . ارزیابی تردی با استفاده از پانل طعم فرآیندی نسبتا آرام و وقت گیر است . وسایل بسیاری برای ارزیابی مکانیکی توسعه داده شده اند . همچنانکه گوشت معمولا قبل از خوردن پخته می شود ، درک تغییرات فیزیکی بافت گوشت حین گرما مهم است . داوی و گیلبرت پخت را به عنوان گرم کردن گوشت با دمایی نسبتا بالا برای عوض کردن طبیعت پروتئین ها تعریف می کند . دما و طول پخت تاثیر زیادی روی ویژگی های فیزیکی گوشت و کیفیت خوراکی دارد . روش های آزمایشی مختلفی برای پخت گوشت خرگوش استفاده می شود : َ2 در 0C80 ، 30-15 دقیقه در فرهای برقی در دمای 0C200 و 2 تا َ4 در مایکروفر . این روش های آزمایشی پخت ، مقایسه مطالعات بعدی را مشکل می سازد چون در بیشتر آنها دمای داخلی نهایی نمی تواند به روشنی تعریف شود . علاوه بر این ، تاثیر زمان و طول پخت در ویژگی های مکانیکی گوشت خرگوش شناخته شده است .
ویژگی های حرفه ای گوشت تحت تاثیر بافت پروتئین مربوط ، کلاژن است . بسیاری از نویسندگان تلاش کرده اند رابطه ی بین مقدار کلاژن و سفتی گوشت را مشخص کنند . به نظر می رسد مقدار کلاژن روی بافت گوشت تاثیر می گذارد اما یک رابطه ی مستقیم را نمی توان مشخص کرد . دیگر عوامل مثل حل پذیری کلاژن هم مدنظر هستند . در دانش ما میزان کلاژن و حل پذیری آن در گوشت خرگوش هرگز مورد تحقیق قرار نگرفته است .
این آزمایش برای مشخص کردن تاثیر دمای نقطه پایانی و زمان پخت در میزان تردی WB گوشت خرگوش 70 روزه انجام شده است . اتلاف پخت و میزان کلاژن را هم مشخص کردیم
2 مواد و روش ها
30 خرگوش 70 روزه را در این آزمایش استفاده کردیم . وزن ذبح آنها 77 ± 2338 گرم بود . پس از 24 ساعت دوباره هر دو ماهیچه را بریدیم . PH در جای طبیعی در اولین بریدگی ماهیچه LL 25 ± 84/5 و وزن ماهیچه 4 ± 50 گرم بود . کل ماهیچه را به مدتَ10 در %50 گلیسیرین در دمای 0C20- منجمد کردیم .
پخت از فرایند توصیف شده توسط هونیکل گرفته شد . به طور خلاصه ، نمونه منجمد LL در کیسه های پلاستیکی خلأ نگه داشته و زیر شیر آب به مدت َ45 گرم می شد . نمونه های LL را وزن کردیم و دوباره تحت خلأ در کیسه های پلاستیکی بستیم ، سپس در دمای ثابت حمام آب غوطه ور ساختیم . برای آزمایش تاثیر دما نمونه ها را 1 ساعت در دمای 0C90-50 به مدت َ120 پختیم . چهار ماهیچه LL به هر عملکرد نسبت داده شد . میله های رزیستور برقی برای کنترل دما در حمام آب استفاده می شد . در 0C80 ، تغییرات دمای درونی برای دو نمونه ی اضافی در هر دقیقه نشان داده می شد . دمای نقطه پایانی به َ20 رسید . پس از پخت ، نمونه ها از حمام آب جدا و زیر آب شیر َ20 سرد شدند و در دمای اتاق نگهداری شدند . اتلاف پخت از تفاوت وزن نمونه های خام و پخته سنجیده شد .
آزمایشات WB و گوشت پخته با استفاده از یک دستگاه آزمایش جهانی انجام شد . نمونه های مستطیلی cm 1×1 و cm 2 با محور فیبری از گوشت پخته و خام بریده شدند . این نمونه ها از گوشه راست تا محور فیبری با استفاده از تیغه WB بریده شدند . پارامترهای اندازه گیری شده از منحنی تغییر شکل حداکثر فشار بودند و انرژی کل تعریف شده منطقه تحت منحنی تغییر شکل بود .
میزان کلی کلاژن به وسیله ی هیدروکسی پرولین و با استفاده از عوامل چندگانه 14/7 اندازه گیری شد .
3 نتایج
دمای اندازه گیری شده حمام آب را در جدول 1 با حداکثر انحراف استاندارد 0C6/0 گزارش کردیم . حداکثر فشار و انرژی کلی برای به دست آوردن تجزیه تحت تاثیر دما و زمان بود . دمای پخت تاثیر چهار فازی روی اندازه WB را سبب می شد . انرژی کلی و فشار 5/2 و 6/1 و در گوشت پخته در دمای 0C50 بیش از گوشت خام بود . وقتی دمای پخت افزایش می یابد ، میزان انرژی کلی و فشار تا حداقل 0C65-60 و با کاهش77/6 و % 0/76 می رسد . انرژی کلی و فشار به سرعت
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
دانشگاه آزاد اسلامی – واحد میبد
تاثیر دمای حرارتی دهی بر رنگ ایجاد شده با رنگدانه ی
(zr,v)sio4 لعاب سرامیک مات
آزمایشگاه لعاب
استاد : مهندسی قهرمانی
دانشجو: آیدا خیامی
شماره داشجویی: 82474467517
بهار 1386تأثیر دمای حرارت دهی بر رنگ ایجاد شده با رنگدانهی (zr,v)sio4 لعاب سرامیک مات
خلاصه
تحلیل واکنش پذیریهای فیزیکی بین رنگدانهها، کدرسازها و لعابها برای درک رفتار نوری لعابهای سرامیک مهم میباشند. ضمناً مهم است که تمایز قائل شویم که آیا لعاب مات میشود چون فاز بلوری شده میتواند به ویژگیهای نوری سیستم کمک میکند یا نه. اندازه و کیفیت بلورهای ایجاد شده به طور قابل توجهی میتواند رنگ لعاب را تغییر دهد. هدف این بررسی ارزیابی تأثیر دمای حرارت دهی بر پایداری رنگ یک سرامیک مات شده توسط رنگدانهی وانادیم – زیرکن آبی است. تحلیل انکساری کمی اشعهی ایکس به منظور ارزیابی کردن انحلال رنگدانه در سه دمای مورد بررسی قرار گرفته و کیفیت بلورهای زیر کن ایجاد شده در محل اصلی خود میباشد. تحقیق گزارش شده اهمیت مورد توجه قرار دادن تمام اجزاء در سیستم نوری چند جزئی به عنوان یک لعاب سرامیک را اثبات مینماید.
کلمات کلیدی : زنگ، اسپکتروسکوپی؛ روشهای اشعهی ایکس؛ سرامیکهای سنتی، لعابها: (zr,v)siot
مقدمه
در صنعت سرامیک یک هدف پیش پا افتاده در کاربرد لعاب ارتقا دادن هنر زیبایی شناسی محصول پایانی است، در این زمینه توزیع اندازهی بافت و ذره هم رنگدانهها و هم بلورها توسط لعاب مات میشود، و تقابل شیمیایی و فیزیکی بین رنگدانهها و لعابها هنگام حرارت دیدن اساسی و مهم است تا فرآیند رنگ آمیزی کنترل شود. در واقع، رنگدانهی مشابه میتواند بسته به دمای حرارت دهی و ترکیب شیمیایی لعاب برای رنگ آمیزی، رنگهای نسبتاً متفاوتی ایجاد نماید.
کنترل بلوری شدن، و جلوگیری از انحلال رنگدانهها در لعابها و مواد بین سلولی بافتهای سرامیک طی حرارت دهی برای بهتر کردن ویژگیها، ظاهر و قابلیت تکثیر محصولات مهم است. جوهرهای چند اکسیده مواد شاخص در لعابهای حرار دهی سریع میباشند. 4-2- و رنگدانههای زیرکن (zrsiot) متداولترین مواد رنگی مورد استفاده هستند. در مقایسه با اجزای دستهی دیگر، جوهر معمولاً کمترین دمای ذوب را دارد اما نسبت به رنگدانههای سرامیک خورندهترین میباشد. ابتدا برای لعاب دادنها معمولا sio2 به عنوان شکل دهندهی اصلی شیشه، قلیاها (k2o, Na2o)، ZnO, B2O3 یا SrO به عنوان سیالهی اصلی، AL2O3, MgO, CaO برای افزایش سختی و دوام لعاب دادن منظور میشدند. ضمناً پوششهای کدر، که بیشترین پوششهای تولید شده هستند، معمولاً با ZrO2 در هم میآمیزند. کدری و سفیدی از طریق بلوری شدن زیرکن بدست میآیند. ریز ناهمگنهای حاصل (اندازه) به طور قابل توجهی ضریب شکستشان (40/2 – 05/2) از ضریب شکست بافتهای شیشهای (70/1 – 50/1) بزرگتر است و در نتیجه نور را به طور موثری پخش میکنند در حقیقت محاسبات انتشار Mie تعیین میکند که حداکثر انتشار نور و سفیدی با زیرکن همراه انواع اندازههای ذره و شکستگی وسیع 16/0 روی میدهد.
رنگدانههای تخدیر شدهی زیرکن پایدارترین مواد رنگی تا Cْ1200 هستند. ساختار چهار گوشهای زیر کن قابلیت در خود جای دادن وانادیم و پراسدم به طور جانشین سازی و هماتیت اینگلوبات را دارد. و پایداری گرمایی و شیمیایی بالای آن، آنرا مناسب استفاده در لعاب دادن سرامیک میکند. سیستم سه محوری زیر کن معمولاً برای رنگ آمیزی لعابهای صنعتی به کار میرود. بدست آوردن طیف وسیعی از رنگها بر اساس مخلوط کردن زیر کن – وانادیم آبی (Zr-v)، زیر کن – آهن قرمز، و زیر کن – پراسدیم زرد میباشد. رنگدانههای زیرکن
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .docx ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .docx :
اندازه گیری دمای سطح خورشید
مقدمه
خورشید یک راکتور هستهای طبیعی بسیار عظیم است که ماده در آنجا بر اثر همجوشی هستهای به انرژی تبدیل میشود و هر روز حدود 350 میلیارد تن از جرمش به تابش تبدیل میشود، دمای داخلی آن حدود 15 میلیون درجه سانتیگراد است. انرژیی که بدین ترتیب به شکل نور مرئی ، فرو سرخ و فرابنفش به ما میرسد 1 کیلو وات بر متر مربع است. خورشید به توپ بزرگ آتشین شباهت دارد که صد بار بزرگتر از زمین است.
این ستارهها از گازهای هیدروژن و هلیوم تشکیل شده است. گازها انفجارهای بزرگی را بوجود میآورند و پرتوهای قوی گرما و نور را تولید میکنند. این پرتوها از خورشید بسوی زمین میآیند. در طول راه ، یک سوم آنها در فضا پخش میشوند و بقیه بصورت انرژی گرما و نور به زمین میرسند. میدانیم که سرعت نور 300000 کیلومتر در ثانیه است. از سوی دیگر ، 8 دقیقه طول میکشد که نور خورشید به زمین برسد، بنابراین میتوان فاصله خورشید تا زمین را حساب کرد. در این مسیر طولانی ، مقدار زیادی از نور و گرمای خورشید از دست میرود، اما همان اندازهای که به زمین میرسد، کافی است تا شرایط مناسبی برای زندگی ما و جانوران و گیاهان بوجود آید.
/
کوره خورشید
این دشواریهای حل نشدنی که هنگام بحث درباره ساختن کورههای حرارتی هستهای بر روی زمین پیش میآید در مورد خورشید که خود به منزله یک کوره غول پیکری است وجود ندارد. این کوره فلکی عملا یک دیواره گازی دارد که همان قشرهای خارجی جرم خورشید است که در نتیجه نیروهای جاذبه موجود میان ذرات در مجاورت یکدیگر نگاه داشته شدهاند. به علاوه نیروهای جاذبه وسیله آن بودهاند تا درجه حرارت ابتدائی خورشید بدان اندازه فزونی یابد تا فعل و انفعالات حرارتی هسته امکانپذیر باشد.
خورشید در آغاز زندگی توده عظیمی از گاز نسبتا سرد بوده است که به تدریج بر اثر انقباضات ثقلی پیوسته گرم و گرمتر شده است. به محض آنکه درجه حرارت مرکزی این خورشید در حال انقباض به اندازهای رسید که برای آغاز شدن فعل و انفعلات هستهای کافی بود. آزاد شدن انرژی هستهای از انقباض بیشتر جرم خورشید جلوگیری کرد و خورشید به حالت پایدار فعلی خود در آمد.
منبع انرژی خورشیدی
با اندازه گیری شار خورشیدی تابشی در بالای جو زمین میتوان قدرت دریافتی کل انرژی از خورشید را محاسبه کرد. که حدود 1.8x1011 مگا وات است. البته تمام این انرژی به سطح زمین نمیرسد، مقداری از آن جذب لایههای اتمسفر میشود. ماده در عالم اساساً از هیدروژن و هلیوم تشکیل شده که قسمت اعظم آن بین ستارهها و کهکشانها توزیع شده است. نیروی جاذبه متقابل بین ذرات سبب تراکم گاز و گرد غبار شده و این تراکم ابر ستارهای را بوجود می آورند. انرژی پتاسیل گرانشی سبب ازدیاد دمای داخل ستاره شده و آن هم باعث افزایش چگالی ستاره شده ، در نتیجه دمای داخل آن افزایش مییابد تا یک حالت پلاسمای خورشیدی بخود بگیرد.
تعیین دمای خورشید
یک روش به نام قانون وین ، از طول موج تابش حداکثر peak /در طیف خطی نور خورشید ،استفاده می کند. دما به درجه کلوین برابر است با: 2.9x106nonometers / /peak
روش دیگر از انرژی که به زمین میرسد و قانون عکس مربع استفاده میکند. شار انرژی مقدار انرژی عبوری از یک واحد سطح (مثلاَ یک متر مربع) در هر ثانیه میباشد. با استفاده از قانون عکس مربع درخشندگی نور ، داریم:
شارژ خورشیدی در فاصله زمین = شارژ سطح خورشید × (شعاع خورشید/فاصله تا زمین) 2 =1380 وات بر متر مربع
از آنجائی که نور کره خورشید ، تقریباَ یک رادیاتور حرارتی است:
شارژ انرژی در سطح آن = (دمای سطح خورشید) 4 × /
که /ثابت استفان - بولترمن میباشد. با باز آرائی معادله
{دمای نور کره = (شعاع خورشید/فاصله خورشید تا زمین) 2 ×( //شارژ خورشیدی در زمین)}4/1
این دو روش دمای خشنی در حدود 5800K را میدهد. لایههای بالایی نور کره سردتر و کم چگالتر از لایههای عمیقتر میباشند، بنابراین در طیف خورشید ، طیف جذبی را میبینید که طیف جذبی عناصر ، موجود است و قدرت آنها ، بطور حساسی به دما بستگی دارند. میتوان از قدرتهای طیف جذبی ، به عنوان یک ردیاب قوی دما استفاده کرده و دمائی حدود 5840k را اندازه گرفت.
چرا تاج خورشید از سطح گرمتر است؟
در حالت معمولی ، انرژی گرمایی از منطقه گرمتر منتقل میشود، در حدود نیم قرن ، اخترشناسان در پی دریافتن توجیهی برای این مطلب بودند. در حال حاضر کمیسیونی مشترک از آژانس فضایی اروپا و ناسا از طریق رصدخانه خورشیدی و فضاپیمای SOHO به دنبال حل این معما هستند. تجهیزاتی که بر روی فضاپیماها تعبیه شده است نشان میدهد که در سطح خورشید حلقههای مغناطیسی دچار تغییرات سریعی میشوند که با درخشندگی گازهای داغ تاج خورشید در ارتباطند.آلن تایتل از انستیتوی تحقیقات فضایی کالیفرنیا میگوید: حدس میزنم که روند اساسی گرم شدن تاج خورشید را کشف کردیم، اما هنوز دقیقا نمیدانیم که به چه صورت عمل میکند. در طی چند روز ، میدانهای مغناطیسی در منطقهای به وسعت کالیفرنیا ظاهر و سپس ناپدید میشوند. انرژی این میدانها برابر با انرژی حاصل از هزاران سد (Hoover Dams) در طی هزاران سال میباشد. زمانی که این میدانها از بین میروند، جریانهای الکتریکی وسیعی تولید میشود که بر روی تاجها مساعد عمل میکنند. این جریانها شبیه حرارتی هستند که توسط یک حباب روشنایی ایجاد میشود و این انرژی خیلی بیش از آن مقداری است که برای گرم کردن تاج لازم است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .docx ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 4 صفحه
قسمتی از متن .docx :
اندازه گیری دمای سطح خورشید
مقدمه
خورشید یک راکتور هستهای طبیعی بسیار عظیم است که ماده در آنجا بر اثر همجوشی هستهای به انرژی تبدیل میشود و هر روز حدود 350 میلیارد تن از جرمش به تابش تبدیل میشود، دمای داخلی آن حدود 15 میلیون درجه سانتیگراد است. انرژیی که بدین ترتیب به شکل نور مرئی ، فرو سرخ و فرابنفش به ما میرسد 1 کیلو وات بر متر مربع است. خورشید به توپ بزرگ آتشین شباهت دارد که صد بار بزرگتر از زمین است.
این ستارهها از گازهای هیدروژن و هلیوم تشکیل شده است. گازها انفجارهای بزرگی را بوجود میآورند و پرتوهای قوی گرما و نور را تولید میکنند. این پرتوها از خورشید بسوی زمین میآیند. در طول راه ، یک سوم آنها در فضا پخش میشوند و بقیه بصورت انرژی گرما و نور به زمین میرسند. میدانیم که سرعت نور 300000 کیلومتر در ثانیه است. از سوی دیگر ، 8 دقیقه طول میکشد که نور خورشید به زمین برسد، بنابراین میتوان فاصله خورشید تا زمین را حساب کرد. در این مسیر طولانی ، مقدار زیادی از نور و گرمای خورشید از دست میرود، اما همان اندازهای که به زمین میرسد، کافی است تا شرایط مناسبی برای زندگی ما و جانوران و گیاهان بوجود آید.
/
کوره خورشید
این دشواریهای حل نشدنی که هنگام بحث درباره ساختن کورههای حرارتی هستهای بر روی زمین پیش میآید در مورد خورشید که خود به منزله یک کوره غول پیکری است وجود ندارد. این کوره فلکی عملا یک دیواره گازی دارد که همان قشرهای خارجی جرم خورشید است که در نتیجه نیروهای جاذبه موجود میان ذرات در مجاورت یکدیگر نگاه داشته شدهاند. به علاوه نیروهای جاذبه وسیله آن بودهاند تا درجه حرارت ابتدائی خورشید بدان اندازه فزونی یابد تا فعل و انفعالات حرارتی هسته امکانپذیر باشد.
خورشید در آغاز زندگی توده عظیمی از گاز نسبتا سرد بوده است که به تدریج بر اثر انقباضات ثقلی پیوسته گرم و گرمتر شده است. به محض آنکه درجه حرارت مرکزی این خورشید در حال انقباض به اندازهای رسید که برای آغاز شدن فعل و انفعلات هستهای کافی بود. آزاد شدن انرژی هستهای از انقباض بیشتر جرم خورشید جلوگیری کرد و خورشید به حالت پایدار فعلی خود در آمد.
منبع انرژی خورشیدی
با اندازه گیری شار خورشیدی تابشی در بالای جو زمین میتوان قدرت دریافتی کل انرژی از خورشید را محاسبه کرد. که حدود 1.8x1011 مگا وات است. البته تمام این انرژی به سطح زمین نمیرسد، مقداری از آن جذب لایههای اتمسفر میشود. ماده در عالم اساساً از هیدروژن و هلیوم تشکیل شده که قسمت اعظم آن بین ستارهها و کهکشانها توزیع شده است. نیروی جاذبه متقابل بین ذرات سبب تراکم گاز و گرد غبار شده و این تراکم ابر ستارهای را بوجود می آورند. انرژی پتاسیل گرانشی سبب ازدیاد دمای داخل ستاره شده و آن هم باعث افزایش چگالی ستاره شده ، در نتیجه دمای داخل آن افزایش مییابد تا یک حالت پلاسمای خورشیدی بخود بگیرد.
تعیین دمای خورشید
یک روش به نام قانون وین ، از طول موج تابش حداکثر peak /در طیف خطی نور خورشید ،استفاده می کند. دما به درجه کلوین برابر است با: 2.9x106nonometers / /peak
روش دیگر از انرژی که به زمین میرسد و قانون عکس مربع استفاده میکند. شار انرژی مقدار انرژی عبوری از یک واحد سطح (مثلاَ یک متر مربع) در هر ثانیه میباشد. با استفاده از قانون عکس مربع درخشندگی نور ، داریم:
شارژ خورشیدی در فاصله زمین = شارژ سطح خورشید × (شعاع خورشید/فاصله تا زمین) 2 =1380 وات بر متر مربع
از آنجائی که نور کره خورشید ، تقریباَ یک رادیاتور حرارتی است:
شارژ انرژی در سطح آن = (دمای سطح خورشید) 4 × /
که /ثابت استفان - بولترمن میباشد. با باز آرائی معادله
{دمای نور کره = (شعاع خورشید/فاصله خورشید تا زمین) 2 ×( //شارژ خورشیدی در زمین)}4/1
این دو روش دمای خشنی در حدود 5800K را میدهد. لایههای بالایی نور کره سردتر و کم چگالتر از لایههای عمیقتر میباشند، بنابراین در طیف خورشید ، طیف جذبی را میبینید که طیف جذبی عناصر ، موجود است و قدرت آنها ، بطور حساسی به دما بستگی دارند. میتوان از قدرتهای طیف جذبی ، به عنوان یک ردیاب قوی دما استفاده کرده و دمائی حدود 5840k را اندازه گرفت.
چرا تاج خورشید از سطح گرمتر است؟
در حالت معمولی ، انرژی گرمایی از منطقه گرمتر منتقل میشود، در حدود نیم قرن ، اخترشناسان در پی دریافتن توجیهی برای این مطلب بودند. در حال حاضر کمیسیونی مشترک از آژانس فضایی اروپا و ناسا از طریق رصدخانه خورشیدی و فضاپیمای SOHO به دنبال حل این معما هستند. تجهیزاتی که بر روی فضاپیماها تعبیه شده است نشان میدهد که در سطح خورشید حلقههای مغناطیسی دچار تغییرات سریعی میشوند که با درخشندگی گازهای داغ تاج خورشید در ارتباطند.آلن تایتل از انستیتوی تحقیقات فضایی کالیفرنیا میگوید: حدس میزنم که روند اساسی گرم شدن تاج خورشید را کشف کردیم، اما هنوز دقیقا نمیدانیم که به چه صورت عمل میکند. در طی چند روز ، میدانهای مغناطیسی در منطقهای به وسعت کالیفرنیا ظاهر و سپس ناپدید میشوند. انرژی این میدانها برابر با انرژی حاصل از هزاران سد (Hoover Dams) در طی هزاران سال میباشد. زمانی که این میدانها از بین میروند، جریانهای الکتریکی وسیعی تولید میشود که بر روی تاجها مساعد عمل میکنند. این جریانها شبیه حرارتی هستند که توسط یک حباب روشنایی ایجاد میشود و این انرژی خیلی بیش از آن مقداری است که برای گرم کردن تاج لازم است.