لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
این مقدار در انتخاب اولیه حامل (حلال) اهمیت زیادی دارد.
سایر خصوصیاتی که باید در انتخاب حلال مد نظر قرار داد عبارتند ازک
- حلالیت بالاک حلالیت حلال در خوراک باید به مقدار کافی زیاد باشد تا بتوان با مصرف مقدار کافی از حلال، میزان گزینش حلال را به مقدار لازم بالا برد و در بعضی از موارد حلالهایی با ضریب گزینش زیاد در رقت بینهایت برای جدا کردن اجزای یک مخلوط وجود دارند اما به علت حلالیت کم حلال در خوراک، حلال نمیتواند در خوراک حضور داشته باشد و فراریت نسبی اجزای خوراک را به اندازه کافی تغییر دهد.
- فراریت کمک برای ایکه حلال در فاز مایع باقی بماند تا بتواند ضرایب فعالیت اجزای خوراک را در محلول مایع تغییر دهد لازم است حلال فراریت کمی داشته باشد همچنین کمتر بودن فراریت حلال جدایش ان را از محصول بالا برج آسانتر می کند. در بعضی از موارد مانند جداسازی آب از اتانل حلالهای غیر فرار مانند نمکها میتوانند مفید باشند.
- قابلیت جدایش آسان : حلال باید به سادگی از اجرای همراه آن قابل جدا شدن باشد بهتر است حلال جز همراه آن آزئوتروپ تشکیل ندهند اما در صورتی که این دو جز آزئوتروپی با غلظت خیلی زیاد حلال تشکیل دهند ممکن است بتوان از این حلال استفاده کرد.
سایر ملاحظات مانند قیمت کم، سمی نبودن، خوراندگی کم، پایداری شیمیایی، نقطه ذوب پایین و ویسکوزیته پایین نیز برای انتخاب حلال در نظر گرفته شوند.
2-1- روابط ترمودینامیکی
مهمترین کاربرد ترمودینامیک در شبیهسازی برجهای تقطیر تعیین فوگاسیته فازهای مایع و بخار جهت محاسبات تعادلی و تعیین آنتالپی فازهای مایع و بخار جهت موازنه انرژی میباشد. دقت روابط
Kj برای هر جفت ماده I و j ثابتی تجربی میباشد.
و معادله حالت SRK به دست آورد.
1-2-1-2- معادله حالت PR(7) و (8)
معادله PR به شکل
(1-21)
میباشد که در آن
(1-22)
و a , و به ترتیب از روابط 1-13 و 1-15 به دست میآید، در معادله PR، ac و m مورد استفاده در معادلات فوق از روابط
(1-21)
میباشد که در آن
(1-22)
و a , و به ترتیب از روابط 1-13 و 1-15 به دست میآید. در معادله PR و acو m مورد استفاده در معادلات فوق از روابط
(1-23)
و
(1-24)
محاسبه میشوند.
قواعد اختلاط برای این معادله شبیه معادله SRK بوده و ضریب فوگاسیته هر جز در مخلوط نیز از ترکیب رابطه 1-20 و معادله PR قابل محاسبه است.
مایع روابط مختلفی وجود دارند که از میان آنها به معادله Wilson، و NRTLو UNIQUAC که در این پایان نامه استفاده شدهاند اشاره میشود.
1-2-2-1- معادله Wilsen(9)
ضریب فعالیت هر جز k در یک مخلوط m جزیی طبق معادله wilsonاز رابطه زیر به دست میآید.
(1-26)
که در آن
(1-27)
(1-28)
ضریب فعالیت جز I در یک مخلوط m جزیی طبق معادله NRTLاز رابطه زیر به دستمیآید.
که در رابطه فوق
(1-30)
(1-31)
این معادله دو مجموعه ثابتهای دوتایی دارد r و a مقدار ضرایب aijحدود 3/0 درصد است و د صورت موجود نبودن این ضرایب میتوان از 3/0 به جای آنها استفاده کرد.
1-2-2-3- معادله UNIQUAC (9)
در معادله UNIQUACضریب فعالیت جز I ام مخلوط به صورت زیر محاسبه میشود.
این معادله دو مجموعه ثابتهای دوتایی دارد t و a مقدار ضریب aij حدود 3/0 درصد است و درصورت موجود نبودن این ضرایب میتوان از 3/0به جای آنها استفاده کرد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
این مقدار در انتخاب اولیه حامل (حلال) اهمیت زیادی دارد.
سایر خصوصیاتی که باید در انتخاب حلال مد نظر قرار داد عبارتند ازک
- حلالیت بالاک حلالیت حلال در خوراک باید به مقدار کافی زیاد باشد تا بتوان با مصرف مقدار کافی از حلال، میزان گزینش حلال را به مقدار لازم بالا برد و در بعضی از موارد حلالهایی با ضریب گزینش زیاد در رقت بینهایت برای جدا کردن اجزای یک مخلوط وجود دارند اما به علت حلالیت کم حلال در خوراک، حلال نمیتواند در خوراک حضور داشته باشد و فراریت نسبی اجزای خوراک را به اندازه کافی تغییر دهد.
- فراریت کمک برای ایکه حلال در فاز مایع باقی بماند تا بتواند ضرایب فعالیت اجزای خوراک را در محلول مایع تغییر دهد لازم است حلال فراریت کمی داشته باشد همچنین کمتر بودن فراریت حلال جدایش ان را از محصول بالا برج آسانتر می کند. در بعضی از موارد مانند جداسازی آب از اتانل حلالهای غیر فرار مانند نمکها میتوانند مفید باشند.
- قابلیت جدایش آسان : حلال باید به سادگی از اجرای همراه آن قابل جدا شدن باشد بهتر است حلال جز همراه آن آزئوتروپ تشکیل ندهند اما در صورتی که این دو جز آزئوتروپی با غلظت خیلی زیاد حلال تشکیل دهند ممکن است بتوان از این حلال استفاده کرد.
سایر ملاحظات مانند قیمت کم، سمی نبودن، خوراندگی کم، پایداری شیمیایی، نقطه ذوب پایین و ویسکوزیته پایین نیز برای انتخاب حلال در نظر گرفته شوند.
2-1- روابط ترمودینامیکی
مهمترین کاربرد ترمودینامیک در شبیهسازی برجهای تقطیر تعیین فوگاسیته فازهای مایع و بخار جهت محاسبات تعادلی و تعیین آنتالپی فازهای مایع و بخار جهت موازنه انرژی میباشد. دقت روابط
Kj برای هر جفت ماده I و j ثابتی تجربی میباشد.
و معادله حالت SRK به دست آورد.
1-2-1-2- معادله حالت PR(7) و (8)
معادله PR به شکل
(1-21)
میباشد که در آن
(1-22)
و a , و به ترتیب از روابط 1-13 و 1-15 به دست میآید، در معادله PR، ac و m مورد استفاده در معادلات فوق از روابط
(1-21)
میباشد که در آن
(1-22)
و a , و به ترتیب از روابط 1-13 و 1-15 به دست میآید. در معادله PR و acو m مورد استفاده در معادلات فوق از روابط
(1-23)
و
(1-24)
محاسبه میشوند.
قواعد اختلاط برای این معادله شبیه معادله SRK بوده و ضریب فوگاسیته هر جز در مخلوط نیز از ترکیب رابطه 1-20 و معادله PR قابل محاسبه است.
مایع روابط مختلفی وجود دارند که از میان آنها به معادله Wilson، و NRTLو UNIQUAC که در این پایان نامه استفاده شدهاند اشاره میشود.
1-2-2-1- معادله Wilsen(9)
ضریب فعالیت هر جز k در یک مخلوط m جزیی طبق معادله wilsonاز رابطه زیر به دست میآید.
(1-26)
که در آن
(1-27)
(1-28)
ضریب فعالیت جز I در یک مخلوط m جزیی طبق معادله NRTLاز رابطه زیر به دستمیآید.
که در رابطه فوق
(1-30)
(1-31)
این معادله دو مجموعه ثابتهای دوتایی دارد r و a مقدار ضرایب aijحدود 3/0 درصد است و د صورت موجود نبودن این ضرایب میتوان از 3/0 به جای آنها استفاده کرد.
1-2-2-3- معادله UNIQUAC (9)
در معادله UNIQUACضریب فعالیت جز I ام مخلوط به صورت زیر محاسبه میشود.
این معادله دو مجموعه ثابتهای دوتایی دارد t و a مقدار ضریب aij حدود 3/0 درصد است و درصورت موجود نبودن این ضرایب میتوان از 3/0به جای آنها استفاده کرد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 39
شماهای مدولاسیون با حامل دیجیتال
برای انتقال اطلاعات توسط کانالهای مخابراتی که کانالهای میانگذر هستند ؛ میبایست را اطلاعات توسط یک موج حامل با فرکانس مناسب ارسال نمود .در انواع شیوههای مدولاسیون دیجیتال یکی از پارامترهای دامنه یا فرکانس یا فاز موج حامل در گامهای گسسته تغییر میکند. در زیر چهار شکل موج مختلف مدولاسیون برای انتقال اطلاعات باینری توسط کانالهای میانگذر نشان داده شده است .
شکل 1- موجهای مدوله شده مورد استفاده در شماهای انتقال باینری
در مدولاسیون ASK دامنه ی شکل موج حامل بین دومقدار قطع و وصل تغییر می کند که پالس وصل عدد باینری 1 و پالس قطع عدد باینری 0 را نشان میدهد .
در مدولاسیون FSK ، فرکانس حامل بین دو مقدار تغییر میکند که یکی بیانگر 1 و دیگری 0 را نشان میدهد . در مدولاسیون PSK ، فاز حا مل بین دو مقدار تغییر مییابد . البته در روشهای PSK و FSK دامنهی موج حامل ثابت میماند و در تمام حالات بالا شکل موج مدوله شده یک شکل موج پیوسته برای همه ی زمانها خواهد بود .
مدولاسیون آنالوگ حداقل پهنای باند را لازم دارد ولی تجهیزات مورد نیاز برای تولید ، انتقال و آشکارسازی تا حدودی پیچیده است ، در مقابل مدولاسیون دیجیتال از نظر ساخت فوق العاده ساده هستند و درمقابل بعضی خرابیهای کانال مصونیت خوبی دارد ولی نیاز به پهنای باند بیشتر و افزایش توان مورد نیاز در فرستنده است.
گیرنده بهینه برای شماهای مدولاسیون دیجیتال باینری :
عمل گیرنده در یک سیستم مخابراتی باینری تشخیص یکی از دو سیگنال فرستاده شده S2(t), S1(t) درحضور اغتشاش میباشد. کارایی گیرنده معمولاً برحسب احتمال خطا اندازهگیری میشود و گیرندهای را که حداقل احتمال خطا را نتیجه دهد ، گیرندهی بهینه گویند .
در صورتیکه اغتشاش در ورودی گیرنده سفید باشد ، گیرندهی بهینه به شکل یک فیلتر منطبق خواهد بود وفیلتر منطبق به صورت یک گیرندهی همبسته انتگرال گیری و تخلیه قابل ساخت است .
سیگنالهای باینری FSK ,PSK ,ASK را میتوان با استفاده از روشهای شبه بهینه غیر هم زمانی آشکار سازی نمود که از نظر ساخت آسانتر و احتمال خطای بالاتری دارند و به طور وسیع در انتقال داده با سرعت پایین به کار گرفته میشوند .
توصیف شماهای باینری FSK , PSK , ASK:
شکل زیر بلوک دیاگرام یک سیستم میانگذر انتقال دادههای باینری که از مدولاسیون دیجیتال استفاده میکند را نشان میدهد .
شکل 2- سیستم انتقال دادههای باینری میان گذر
ورودی مدولاتور دنبالهای از بیتهای باینری میباشد و rb میزان بیت ریت و Tb عرض بیت میباشد . خروجی مدولاتور در فاصلهی زمانی مربوط به بیت k ام ، تابعی از k امین بیت ورودیbk خواهد بود.خروجی مدولاتور Z(t) در فاصله زمانی k ام تغییر زمان یافتهی یکی از دو شکل موج پایهی S2(t), S1(t) میباشد که Z(t) به صورت زیر تعریف میشود :
شکل موجهای S2(t), S1(t) دارای عرض Tb و انرژی محدود هستند .
انتخاب شکل موج سیگنال برای انواع شماهای مدولاسیون دیجیتال به صورت زیر می باشد .
نوع مدولاسیون
0
A cos wct
(or A sin wc t)
ASK
-A cos wct
(or- Asin wc t)
A cos wct
(or Asin wc t)
PSK
A cos ((wc – wd)t)
(or Asin((wc – wd)t))
A cos ((wc + wd)t)
(or Asin ((wc + wd)t))
FSK
جدول1- انتخاب شکل موج سیگنال برای انواع شماهای مدولاسیون دیجیتال