لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک
خلاصه
مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .
این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .
اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .
از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .
این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .
1- مقدمه
شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .
یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .
دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .
ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .
برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .
شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی که هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .
آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .
اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .
برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .
این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 19 صفحه
قسمتی از متن .doc :
چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking) ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write میباشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب میشوند.
در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر میگیریم تا مساله تا حد ممکن ساده سازی شود.
1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود میآید. کنترل همروندی به کاربران اجازه میدهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور میکند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام میدهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:
کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.
یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.
مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاهدادههای متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار میگیرد بصورت مداوم راهکارهای بهبود مختلف عرضه میشود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده میباشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت میباشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان میشوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه میشود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.
با بررسی الگوریتمهای مختلف میتوان به این حقیقت رسید که این الگوریتمها همگی ترکیبی از زیر الگوریتمهای محدودی هستند. در حقیقت این زیر الگوریتمها نسخههای متفاوتی از دو تکنیک اصلی در کنترل همروندی توزیعی به نامهای قفل دو مرحله ای و ترتیب برچسب زمانی میباشند.
همانطور که گفته شد، هدف کنترل همروندی مقابله با تزاحمهایی است که در اثر استفاده چند کاربر از یک سری داده واحد برای کاربران بوجود میآید است. حال ما با ارائه دو مثال در خصوص این مسائل بحث خواهیم نمود. این دو مثال از محک معروف TPC_A مقتبس شده اند. در این مثالها، یک سیستم اطلاعات را از پایگاه داده ها استخراج کرده و محاسبات لازم را انجام داده و در نهایت اطلاعات را در پایگاه داده ذخیره مینماید.
حالت اول را میتوان بروزآوری از دست رفته نامید. حالتی را تصور کنید که دو مشتری از دو سیستم مجزا بخواهند از یک حساب مالی برداشت نمایند. در این حالت فرض کنید در غیاب سیستم کنترل همروندی، هر دو با هم اقدام به خواندن اطلاعات و درج اطلاعات جدید در سیستم میکنند. در این حالت در غیاب سیستم کنترل همروندی تنها آخرین درج در سیستم ثبت میشود. این حالت در شکل 1 نشان داده شده است.
شکل 1 نمایش حالت بروز آوری از دست رفته
حالت دوم حالتی است که در آن اطلاعات صحیح از پایگاه داده استخراج نمیشود. در این حالت فرض کنید دو مشتری بخواهند کارهای ذیل را انجام دهند.
مشتری 1: بخواهد یک چک 1 میلیونی را به حساب X واریز و از حساب Y برداشت نماید.
مشتری 2: بخواهد بیلان حساب مالی X و Y شامل کل موجودی را نمایش دهد.
در غیاب کنترل همروندی همانطور که در شکل 2 نشان داده شدهاست، تزاحم بین پروسس ها بوجود خواهد آمد. فرض کنید در زمانی که مشتری 1 اطلاعات را از حساب Y خوانده و اطلاعات حساب X را دریافت نموده و 1 میلیون از حساب Y برداشت نموده ولی هنوز
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک
خلاصه
مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .
این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .
اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .
از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .
این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .
1- مقدمه
شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .
علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .
یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .
موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .
این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .
یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .
در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .
دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .
ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .
برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .
در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .
شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .
مسئله اصلی که هنوز باید حل شود آموزش است .
حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .
در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .
آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .
دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .
اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .
بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .
اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .
برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .
این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .
با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .
همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
الگوریتم یادگیری ماشین
چکیده
در مورد الگوریتم ماشین حساب ما استفاده از یک بافر برای گرفتن عبارت بطور کامل و سپس تجزیه کردن اجزای (Parse) آن از لحاظ فنی غیر ممکن نیست و تنها بدلیل صورت مسئله قادر به انجام آن نیستیم. اما تصور کنید که اگر قرار بود مرورگرهای وب (Web Browsers) ابتدا تمام محتوای یک صفحه را بخواندند و سپس آن را تجزیه کرده و نمایش دهند چه مقدار زمان کاربر و سرویس دهنده وب به هدر میرفت و ترافیک بیهودهای برروی خطوط ارتباطی حاصل میشد (در اکثر موارد ما با دیدن تنها چند خط از یک صفحه به صفحه دیگری میرویم(.
مقدمه
یک الگوریتم مجوعهی متناهی از دستورالعمل های خوش تعریف برای انجام یک عمل است که با داشتن یک حالت اولیه به حالت پایانی مشخص و متناظری خواهد رسید. (با استدلالی ( heuristic )مقایسه شود(
مفهوم یک الگوریتم معمولاً با مثال دستور اشپزی توضیح داده می شود. هر چند بعضی الگوریتم ها خیلی پیچیده تر هستند. الگوریتم ها معمولاً دارای مراحلی است که تکرار می شود تکرار و یا تا زمان پایان برنامه نیازمند decision هایی (مانند منطق بولی یا نابرابری است. اگر الگوریتم مناسب و نا معیوب نباشد حتی با اجرای درست آن هم مسئله حل نمی شود. برای مثال اجرای الگوریتم سالاد سیب زمینی در صورتی که سیب زمینی در کار نباشد حتی اگر تمام حرکات تهیه سالاد طوری انجام شود مثل اینکه سیب زمینی وجود دارد نا فرجام خواهد ماند.الگوریتم های مختلف ممکن است یک عمل را با دستورات مختلف در مدت زمان، جا، وبا تلاش کمتر یا بیشتری نسبت به بقیه انجام دهد. برای مثال با داشتن دو دستور تهیه ی سالاد سیب زمینی، یکی ممکن است قبل از جوشاندن اول سیب زمینی را پوست بکند در حالی که دیگری این دو مرحله را برعکس انجام دهد، و هر دو این مراحل را برای تمام سیب زمینی ها تکرار می کنند تا وقتی که سالاد سیب زمینی آماده طبخ شود.(مثال ضعیف... چه کسی سیب زمینی ها را جدا جدا می جوشاند؟ و معمولاً تهیه ی سالاد نیازی به پخت و پز ندارد...(
در بعضی کشورها، مثل امریکا، اگر تعبیه فیزیکی الگوریتم ها ممکن باشد ممکن است آن ها به شدت انحصاری شود (برای مثال، یک الگوریتم ضرب ممکن است در واحد محاسبه ی یک ریز پردازنده تعبیه شود (
الگوریتم های رسمی شده(formalized algorithms )
الگوریتم ها به خاطر روش پردازش اطلاعات توسط کامپیوتر اساسی و حیاتی هستند، چون یک برنامه کامپیوتری اساساً یک الگوریتم است که به کامپیوتر می گوید برای انجام یک عمل خاص مثل محاسبه حقوق کارمندان و یا چاپ ورقه گزارش دانش آموزان،چه مراحل خاصی را (با چه نظم خاصی) اجرا کند،.به این صورت، یک الگوریتم را می توان هر دنباله از دستوراتی که قابل اجرا توسط یک Turing complete باشد به حساب آورد.به طور نمونه ای هنگامی که الگوریتم کار پرازش اطلاعات را انجام می دهد، داده از طریق یک وسیله یا منبع ورودی گرفته، به یک وسیله خروجی یاsink نوشته و / یا برای استفاده در زمانی دیگر ذخیره می شود. داده ذخیره شده به عنوان بخشی از حالت درونی(internal state) نهاد مجری الگوریتم تلقی می گردد.برای اعمال محاسباتی از این قبیل، الگوریتم باید به دقت تعریف شود :یعنی طوری مشخص شود که برای حالت مختلف محتمل معتبر باشد. یعنی تمام مراحل شرطی باید به طور سیستماتیک بررسی شود ; حالت به حالت.ضابطه مربوط به هر حالت باید واضح (و محاسبه پذیر باشد(.چون الگوریتم ها لیست دقیقی از گام های دقیق است، نظم محاسبه تقریباً همیشه برای کار کرد الگوریتم اساسی می باشد. همواره فرض می شود دستور ها روشن هستند، و گفته می شود از" بالا آغاز" و"تا پایین کشیده می شوند"، اندیشه ای که به طور رسمی تر توسط جریان کنترل توصیف می شود.تا اینجا ی بحث، رسمی سازی قواعد و قوانین برنامه نویسی امری(imperative programming) را به خود گرفت. این عام ترین مفهوم است، و تلاش دارد با وسایل "مکانیکی" مجزا کاری را توصیف کند؛ عملیات تخصیص، تعیین مقدار یک متغیر، برای این مفهوم از الگوریتم رسمی شده یکتا می باشد .در زیر مثالی از این تخصیص آمده است.برای مفاهیم فرعی ) (alternative تشکیل دهنده یک الگوریتم برنامه نویسی تابعی و برنامه نویسی منطقی را ببینید.
ماشین حساب (آشنایی با Syntax Diagram(
الگوریتم ماشین حسابی با تعریف زیر را بنویسید:
انجام چهار عمل اصلی با اولویت محاسباتی عملگرها طبق آنچه در زیر مشخص شده است:
کد:
+ - عملگر یگانی (Unary)
* /
+ - عملگر دودویی (Binary)
عبارات داخل پرانتز از اولویت بالاتری برخوردارند.
اعداد میتوانند صحیح یا اعشاری باشند.
پایان هر عبارت با علامت سوال (=) مشخص میشود.
خروج از ماشین حساب با ورود حرف ایکس (X) مشخص میشود.
مثال:
کد:
2 * 3 + 4 * 5 =
26
2 * (3 + 4) * 5 =
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
الگوریتم یادگیری ماشین
چکیده
در مورد الگوریتم ماشین حساب ما استفاده از یک بافر برای گرفتن عبارت بطور کامل و سپس تجزیه کردن اجزای (Parse) آن از لحاظ فنی غیر ممکن نیست و تنها بدلیل صورت مسئله قادر به انجام آن نیستیم. اما تصور کنید که اگر قرار بود مرورگرهای وب (Web Browsers) ابتدا تمام محتوای یک صفحه را بخواندند و سپس آن را تجزیه کرده و نمایش دهند چه مقدار زمان کاربر و سرویس دهنده وب به هدر میرفت و ترافیک بیهودهای برروی خطوط ارتباطی حاصل میشد (در اکثر موارد ما با دیدن تنها چند خط از یک صفحه به صفحه دیگری میرویم(.
مقدمه
یک الگوریتم مجوعهی متناهی از دستورالعمل های خوش تعریف برای انجام یک عمل است که با داشتن یک حالت اولیه به حالت پایانی مشخص و متناظری خواهد رسید. (با استدلالی ( heuristic )مقایسه شود(
مفهوم یک الگوریتم معمولاً با مثال دستور اشپزی توضیح داده می شود. هر چند بعضی الگوریتم ها خیلی پیچیده تر هستند. الگوریتم ها معمولاً دارای مراحلی است که تکرار می شود تکرار و یا تا زمان پایان برنامه نیازمند decision هایی (مانند منطق بولی یا نابرابری است. اگر الگوریتم مناسب و نا معیوب نباشد حتی با اجرای درست آن هم مسئله حل نمی شود. برای مثال اجرای الگوریتم سالاد سیب زمینی در صورتی که سیب زمینی در کار نباشد حتی اگر تمام حرکات تهیه سالاد طوری انجام شود مثل اینکه سیب زمینی وجود دارد نا فرجام خواهد ماند.الگوریتم های مختلف ممکن است یک عمل را با دستورات مختلف در مدت زمان، جا، وبا تلاش کمتر یا بیشتری نسبت به بقیه انجام دهد. برای مثال با داشتن دو دستور تهیه ی سالاد سیب زمینی، یکی ممکن است قبل از جوشاندن اول سیب زمینی را پوست بکند در حالی که دیگری این دو مرحله را برعکس انجام دهد، و هر دو این مراحل را برای تمام سیب زمینی ها تکرار می کنند تا وقتی که سالاد سیب زمینی آماده طبخ شود.(مثال ضعیف... چه کسی سیب زمینی ها را جدا جدا می جوشاند؟ و معمولاً تهیه ی سالاد نیازی به پخت و پز ندارد...(
در بعضی کشورها، مثل امریکا، اگر تعبیه فیزیکی الگوریتم ها ممکن باشد ممکن است آن ها به شدت انحصاری شود (برای مثال، یک الگوریتم ضرب ممکن است در واحد محاسبه ی یک ریز پردازنده تعبیه شود (
الگوریتم های رسمی شده(formalized algorithms )
الگوریتم ها به خاطر روش پردازش اطلاعات توسط کامپیوتر اساسی و حیاتی هستند، چون یک برنامه کامپیوتری اساساً یک الگوریتم است که به کامپیوتر می گوید برای انجام یک عمل خاص مثل محاسبه حقوق کارمندان و یا چاپ ورقه گزارش دانش آموزان،چه مراحل خاصی را (با چه نظم خاصی) اجرا کند،.به این صورت، یک الگوریتم را می توان هر دنباله از دستوراتی که قابل اجرا توسط یک Turing complete باشد به حساب آورد.به طور نمونه ای هنگامی که الگوریتم کار پرازش اطلاعات را انجام می دهد، داده از طریق یک وسیله یا منبع ورودی گرفته، به یک وسیله خروجی یاsink نوشته و / یا برای استفاده در زمانی دیگر ذخیره می شود. داده ذخیره شده به عنوان بخشی از حالت درونی(internal state) نهاد مجری الگوریتم تلقی می گردد.برای اعمال محاسباتی از این قبیل، الگوریتم باید به دقت تعریف شود :یعنی طوری مشخص شود که برای حالت مختلف محتمل معتبر باشد. یعنی تمام مراحل شرطی باید به طور سیستماتیک بررسی شود ; حالت به حالت.ضابطه مربوط به هر حالت باید واضح (و محاسبه پذیر باشد(.چون الگوریتم ها لیست دقیقی از گام های دقیق است، نظم محاسبه تقریباً همیشه برای کار کرد الگوریتم اساسی می باشد. همواره فرض می شود دستور ها روشن هستند، و گفته می شود از" بالا آغاز" و"تا پایین کشیده می شوند"، اندیشه ای که به طور رسمی تر توسط جریان کنترل توصیف می شود.تا اینجا ی بحث، رسمی سازی قواعد و قوانین برنامه نویسی امری(imperative programming) را به خود گرفت. این عام ترین مفهوم است، و تلاش دارد با وسایل "مکانیکی" مجزا کاری را توصیف کند؛ عملیات تخصیص، تعیین مقدار یک متغیر، برای این مفهوم از الگوریتم رسمی شده یکتا می باشد .در زیر مثالی از این تخصیص آمده است.برای مفاهیم فرعی ) (alternative تشکیل دهنده یک الگوریتم برنامه نویسی تابعی و برنامه نویسی منطقی را ببینید.
ماشین حساب (آشنایی با Syntax Diagram(
الگوریتم ماشین حسابی با تعریف زیر را بنویسید:
انجام چهار عمل اصلی با اولویت محاسباتی عملگرها طبق آنچه در زیر مشخص شده است:
کد:
+ - عملگر یگانی (Unary)
* /
+ - عملگر دودویی (Binary)
عبارات داخل پرانتز از اولویت بالاتری برخوردارند.
اعداد میتوانند صحیح یا اعشاری باشند.
پایان هر عبارت با علامت سوال (=) مشخص میشود.
خروج از ماشین حساب با ورود حرف ایکس (X) مشخص میشود.
مثال:
کد:
2 * 3 + 4 * 5 =
26
2 * (3 + 4) * 5 =