لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
اثر عناصر آلیاژی بر میکروساختار و استحکام چدن خاکستری :ترجمه: محمود طاهری شهرآئینیدانشجوی کارشناسی دانشگاه شهید رجایی برگرفته از سایت: www.elsevier.com
خلاصه:آزمایشات ریخته گری برای تولید چدنهای خاکستری باترکیباتی در محدوده(درصد وزنی):
Fe–3.2C–wCu–xMo–yMn–zSi که w = 0.78–1.79, x = 0.11–1.17, y = 0.68–2.34 و
z = 1.41–2.32 انجام شده است.این عناصر کلیدی بطور سیستماتیک در طی ریخته گری ماسه ای بصورت میلگردهای با قطر 30-mm برای ارزیابی تاثیرشان بر توسعه میکروساختار و خواص مکانیکی،تغییریافتند.معلوم شد که محدوده میکروساختارها از پرلیت کامل تا ترکیبی از آستنیت باقیمانده و فریت بینیتی به اصطلاح آسفریت (ausferrite) تولید شدند و یک همبستگی خطی مستدل بین کسر حجمی شکستن و استحکام آسفریت مشاهده شد. ترکیب بهینه خواص مکانیکی در یک آلیاژ با ترکیب تقریبی Fe–3.2C–1.0Cu–0.7Mo–0.55Mn–2.0Si بدست آمد که 100% آسفریت بدون کاربیدهای آلیاژی تولید شد. این آلیاژ یک میکروساختار و خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده بدون مشکلات زیاد همراه با آستمپرینگ داشت.کلمات کلیدی: چدن خاکستری، میکروساختار، ریخته گری و آسفریت1- مقدمهچدن خاکستری یک گروه وسیع از آلیاژهای ریختگی آهنی است که معمولا" بوسیله یک میکروساختار از گرافیت ورقه ای (flake graphite) در یک زمینه آهنی مشخص می شود. آن اساسا" یک آلیاژ Fe–C–Si شامل مقادیر کوچکی از عناصر آلیاژی دیگر و بیشترین آلیاژ ریختگی مورداستفاده و با تولید جهانی سالیانه 6 میلیون تن است که چندین برابر دیگر فلزات ریختگی است[1].میکروساختار چدن خاکستری معمولا" شامل گرافیت ورقه ای و یک زمینه پرلیت و یا فریت است که خواص مکانیکی، قابلیت ماشینکاری و غیره به آن بستگی دارد. چدنهای خاکستری معمولی، زمینه پرلیتی و استحکام کششی در محدوده 140 تا 400 Mpa دارند. وسیله اصلی برای بهبود خواص مکانیکی، کاهش کربن معادل است که درصد گرافیت را کاهش و پرلیت را افزایش می دهد. جدول(1) انواع تجاری چدن خاکستری و خواص مکانیکی مربوط به آنها را نشان می دهد.برای بهبود خواص چدن خاکستری، تحقیق بر روی گسترش میکروساختار آسفریت بیش از 40 سال انجام گرفته است[6-2]. یک بهبود مهم ویژه در خواص، نتیجه ای از گسترش چدن خاکستری آستمپر شده است[7-3]. چدنهای خاکستری آستمپر شده به مهندس چاره هایی با ترکیبات فرایندی/موادی معمولی پیشنهاد می دهد[7]. از طریق آستمپرینگ، زمینه فریتی یا پرلیتی، چدن خاکستری به یک ساختار سوزنی شامل 70 تا 80% فریت بینیتی بدون کاربید و آستنیت باقیمانده 20 تا 30% تغییر می یابد. چنین ساختاری به اصطلاح آسفریت است[6]. نشان داده شده است که چنین ساختار زمینه ای، یک چدن خاکستری با یک ترکیب منحصر بفرد از استحکام، مقاومت سایشی، جذب صدا و یا لرزش و تافنس شکست بالا را تولید می کند[6و7].یک عملیات حرارتی معمولی آستمپرینگ چدن خاکستری، آستنیته کردن در دمای 840–900º C برای چند ساعت بر اساس ترکیب و ضخامت ریختگی و آستمپر کردن در 230–425º C است[6و7].در حالی که این برنامه زمانی عملیات حرارتی تولید چدن خاکستری با یک محدوده عالی از خواص ، به انرژی قابل ملاحظه و فضای تولید نیاز دارد و ممکن است باعث آلودگی محیطی بعلاوه اکسیداسیون و ترک در اجزا شود. این مشکلات ، تولید گسترده چدن خاکستری آستمپر شده را محدود کرده اند، بنابراین تحقیق بر روی گسترش چدن خاکستری آسفریتی را بوسیله ریخته گری مستقیم وادار می کنند[5]. کار حاضر قصد دارد نشان دهد که چگونه تغییرات سیستماتیک در اضافه کردن آلیاژی به یک چدن خاکستری معمولی در طی ریخته گری می تواند یک آلیاژ با میکروساختار فریت بینیتی-آستنیتی (آسفریتی) با خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده را تولید کند.جدول(1): ترکیب و خواص مکانیکی کلاسهای مختلف چدن خاکستری
Class
Total carbon (wt.%)
Total silicon (wt.%)
Tensile strength (MPa)
Transverse load on test bar (kg f)
Hardness (HB)
20
3.40–3.60
2.30–2.50
152
839
56
25
-
-
179
987
174
30
3.10–3.30
2.10–2.30
214
1145
210
35
-
-
252
1293
212
2- تجربی2-1- مواد و روش ریخته گری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 99
«تاًثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح»
ظرفیت برشی پیش بینی شده از تیرهای بتن مسلح موجود یک موضوع مهمی است که لازم است به تفصیل بیشتری ذکر شود. توجه در خصوص اینکه آیا کد ارزیابی پل جاری برای انگلستان خیلی محافظه کارانه است هنگامی که مقاومت برش تیرهای بتن موجود ارزیابی می گردد که حاوی مقادیر قابل ملاحظه ای از فولاد می باشد در طی ارزیابی نا دیده گرفته می شود. این مقاله به تاثیرات سودمند چنین فولاد تراکمی ای بر روی استحکام برش تیرهای بتن مسلح توجه دارد. نتایج بررسی آزمایشگاهی با پیش بینی های کد جاری برای استحکام برش تیرهایی مقایسه می شوند که فرض می شوند صرفاً حاوی فولاد کشش می باشد. فشردگی های بعدی با یک راه حل پلاستیسیتة حدّ بالایی انجام می شوند که قادر است تمام تقویت فولاد را در یک تیر بتن در نظر بگیرد. دلایل متعددی وجود دارند که چرا پل ها مخازن پنهان استحکام را، نشان می دهند و عمل غشاء فشاری احتمالاً از همه مهمتر است. با این حال، دلایلی از قبیل حضور فولاد فشاری به استحکام پنهان کمک می کند طوری که تحقیق از این نوع، برای ارزیابی درست و انجام پیش بینی های استحکام لازم است. و نشان داده می شود که حضور فولاد با فشردگی زیاد دارای تأثیر چشمگیری بر روی ظرفیت تیرهای پل بتن مسلح است که دارای تقویت نهایی برش می باشد.
نمادها(نمادگذاری):
Abs مساحت فولاد تحتانی در تیر d عمق مؤثر تیر
Ats مساحت فولاد فوقانی در تیر a طول دهانه برش
D نرخ پراکندگی یا پراکنش انرژی در واحد حجم
bs d فاصله از نقطة دوران تا فولاد کف(تحتانی)
ts d فاصله از نقطه دوران تا فولاد سر(فوقانی)
ED نرخ پراکنش انرژی کل در سیستم
EDc پراکنش انرژی ناشی از بتن (صرفاً)
EDci پراکنش انرژی ناشی از بتن در هر نقطه در امتداد خط ناپیوستگی
EDs پراکنش انرژی ناشی از فولاد (صرفاً)
fc استحکام فشاری مؤثر بتن ( ( fc=yfcu fcn استحکام مکعب فشاری بتن
ft استحکام کشش بتن
fy استحکام تسلیم فولاد
Pهر بار بکار رفته (N )
aزاویة بین جهت (i و خط ناپیوستگی
(بردار جابجایی نسبی در عرض یک خط ناپیوستگی
(iبردار جابجایی نسبی در هر نقطه در امتداد یک خط از ناپیوستگی
IPفاصله از خط دوران تا بار نقطة اول(mm)
Lstirrap طول دهانة برش که بر روی آن رکاب ها(Stirrups) بطور مؤثر لنگر می شوند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
بازار استحکام بخشی به سقف خانه ها داغ است
هرکه بامش بیش، ایزوگامش بیشتر
علی هاشمی - سایه یکتاشاید دغدغه نفوذ سرما و رطوبت به داخل خانه از مشکلاتی ست که در تمامی مناطق دنیا با آن درگیری خاصی دارند، اما این مشکل در کشور ما رنگ و بوی خاصی دارد، به طوری که نوع مهندسی ساختمان ها بازار ایزوگام ها را رونق بخشیده است.سقف های سفیدک زده و زردآب انداخته حال و هوای دریاچه نمک را روی سقف خانه ها نقش بسته و انواع حشرات و بیماری های ناشی از رطوبت را میهمان خانه ها ساخته است.با اینکه سال ها ست از انطباق ساختمان با شرایط آب و هوایی در سراسر دنیا می گذرد و شیروانی های خانه های مناطق مرطوب یادآور چنین انطباق هایی ست، مهندسی سازه های ایرانی تنها در معماری های سنتی و شهرهایی همچون یزد و کرمان قابل تامل است، زیرا با اینکه پیشرفت های نوین علم مهندسی راه و ساختمان با امروز قابل قیاس نبود، اما هنر و شهود معماری سنتی، بسیاری از ناملایمات طبیعت را در خود حل کرده، سیمای زیبایی نیز به چشم انداز شهرها و روستاها بخشیده بود. برخلاف چنین ویژگی هایی که حتی کارشناسان و متخصصان خارجی را مبهوت خود می سازد، نوع ساخت و معماری خانه ها و ساختمان های امروز، هیچ یک از ویژگی های روزگاران گذشته این مرز و بوم را به همراه ندارد؛ سازه هایی که مردمان را چون هجوم سنگ و آهن و آجر دربرگرفته و فقدان نکات ایمنی، آسایشی و هنر اصیل کمتر در آنها یافت می شود.با تمام این تفاصیل و توجیه تقارن با اعمال علم روز در این ساختمان ها به وسیله مهندسان، مشکلاتی پیش پا افتاده که بشر در هزاره های پیشین نیز آنها را حل ساخته بود، این نکته را گوشزد می کند؛ چکه بام ها خبر از ناتوانی رقابت مهندسی امروز با مهندسی سنتی ایران می دهد. ورق زدن تاریخ و مشاهده عایق تخت جمشید به وسیله معماران آن روزگار، در کنار انبوه ساختمان هایی که برخلاف پرداخت هزینه هایی گزاف به منظور عایق ساختمان همچنان سقف های معیوب و غیرعایق دارند، این سئوال را ایجاد می کند که تقصیر متوجه کیست؟در این مواقع تصور عموم بر این است که جنس و نوع عایق، اولین و آخرین عامل چنین نقیصه ای ست. در حالی که جدای از صحت نسبی این دیدگاه، تجربه نشان می دهد مهندسی سازه ها می تواند کیفیت پایین عایق ها، افزایش بارندگی، افزایش اختلاف دما ودیگر عوامل موثر در نفوذ آب به سقف ها را کاهش دهد. برای نمونه نوع شیب بندی و دیگر ملاحظات ساختمانی منجر به بی اثر شدن عایق شده و حتی جمع شدن آب در یک قسمت ساختمان، عایق را پس از چندی، فرسوده و ناکارآمد می سازد.نمونه مهم تاثیر کیفیت مهندسی در بام های برخی مناطق باران زا کاملا مشهود است، بام های شیب دار با سفال هایی که روی هم قرار گرفته اند امکان هر نوع نفوذ آب را به داخل خانه گرفته و تنها در صورت افتادن این سفال ها که براحتی قابل تعویض هستند، آب می تواند نفوذ کند. استفاده از این قانون که آب هیچ گاه مسیر سربالایی را طی نمی کند تمامی ساختمان های این نواحی را از خطر آب گرفتگی سقف ها ایمن ساخته و این مزیت تنها با معماری و مهندسی دقیق صورت می گیرد.گرچه به کارگیری این شیوه در ساختمان های کشور امری بعید به نظر می رسد، راهکارهایی این چنینی می تواند بسیاری مشکلات را از سر راه افرادی که توانایی مالی تعویض متوالی عایق و تقبل هزینه های آن را ندارند کاملا راهگشا باشد.نحوه توزیع و نصب ایزوگام ها نیز نکته ای ست که از سوی مسئولان بایستی پیگیری شود. با اینکه بیش از دو دهه از جایگزینی ایزوگام ها و شیوه های
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
بازار استحکام بخشی به سقف خانه ها داغ است
هرکه بامش بیش، ایزوگامش بیشتر
علی هاشمی - سایه یکتاشاید دغدغه نفوذ سرما و رطوبت به داخل خانه از مشکلاتی ست که در تمامی مناطق دنیا با آن درگیری خاصی دارند، اما این مشکل در کشور ما رنگ و بوی خاصی دارد، به طوری که نوع مهندسی ساختمان ها بازار ایزوگام ها را رونق بخشیده است.سقف های سفیدک زده و زردآب انداخته حال و هوای دریاچه نمک را روی سقف خانه ها نقش بسته و انواع حشرات و بیماری های ناشی از رطوبت را میهمان خانه ها ساخته است.با اینکه سال ها ست از انطباق ساختمان با شرایط آب و هوایی در سراسر دنیا می گذرد و شیروانی های خانه های مناطق مرطوب یادآور چنین انطباق هایی ست، مهندسی سازه های ایرانی تنها در معماری های سنتی و شهرهایی همچون یزد و کرمان قابل تامل است، زیرا با اینکه پیشرفت های نوین علم مهندسی راه و ساختمان با امروز قابل قیاس نبود، اما هنر و شهود معماری سنتی، بسیاری از ناملایمات طبیعت را در خود حل کرده، سیمای زیبایی نیز به چشم انداز شهرها و روستاها بخشیده بود. برخلاف چنین ویژگی هایی که حتی کارشناسان و متخصصان خارجی را مبهوت خود می سازد، نوع ساخت و معماری خانه ها و ساختمان های امروز، هیچ یک از ویژگی های روزگاران گذشته این مرز و بوم را به همراه ندارد؛ سازه هایی که مردمان را چون هجوم سنگ و آهن و آجر دربرگرفته و فقدان نکات ایمنی، آسایشی و هنر اصیل کمتر در آنها یافت می شود.با تمام این تفاصیل و توجیه تقارن با اعمال علم روز در این ساختمان ها به وسیله مهندسان، مشکلاتی پیش پا افتاده که بشر در هزاره های پیشین نیز آنها را حل ساخته بود، این نکته را گوشزد می کند؛ چکه بام ها خبر از ناتوانی رقابت مهندسی امروز با مهندسی سنتی ایران می دهد. ورق زدن تاریخ و مشاهده عایق تخت جمشید به وسیله معماران آن روزگار، در کنار انبوه ساختمان هایی که برخلاف پرداخت هزینه هایی گزاف به منظور عایق ساختمان همچنان سقف های معیوب و غیرعایق دارند، این سئوال را ایجاد می کند که تقصیر متوجه کیست؟در این مواقع تصور عموم بر این است که جنس و نوع عایق، اولین و آخرین عامل چنین نقیصه ای ست. در حالی که جدای از صحت نسبی این دیدگاه، تجربه نشان می دهد مهندسی سازه ها می تواند کیفیت پایین عایق ها، افزایش بارندگی، افزایش اختلاف دما ودیگر عوامل موثر در نفوذ آب به سقف ها را کاهش دهد. برای نمونه نوع شیب بندی و دیگر ملاحظات ساختمانی منجر به بی اثر شدن عایق شده و حتی جمع شدن آب در یک قسمت ساختمان، عایق را پس از چندی، فرسوده و ناکارآمد می سازد.نمونه مهم تاثیر کیفیت مهندسی در بام های برخی مناطق باران زا کاملا مشهود است، بام های شیب دار با سفال هایی که روی هم قرار گرفته اند امکان هر نوع نفوذ آب را به داخل خانه گرفته و تنها در صورت افتادن این سفال ها که براحتی قابل تعویض هستند، آب می تواند نفوذ کند. استفاده از این قانون که آب هیچ گاه مسیر سربالایی را طی نمی کند تمامی ساختمان های این نواحی را از خطر آب گرفتگی سقف ها ایمن ساخته و این مزیت تنها با معماری و مهندسی دقیق صورت می گیرد.گرچه به کارگیری این شیوه در ساختمان های کشور امری بعید به نظر می رسد، راهکارهایی این چنینی می تواند بسیاری مشکلات را از سر راه افرادی که توانایی مالی تعویض متوالی عایق و تقبل هزینه های آن را ندارند کاملا راهگشا باشد.نحوه توزیع و نصب ایزوگام ها نیز نکته ای ست که از سوی مسئولان بایستی پیگیری شود. با اینکه بیش از دو دهه از جایگزینی ایزوگام ها و شیوه های
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
اثر عناصر آلیاژی بر میکروساختار و استحکام چدن خاکستری :خلاصه:آزمایشات ریخته گری برای تولید چدنهای خاکستری باترکیباتی در محدوده(درصد وزنی):
Fe–3.2C–wCu–xMo–yMn–zSi که w = 0.78–1.79, x = 0.11–1.17, y = 0.68–2.34 و
z = 1.41–2.32 انجام شده است.این عناصر کلیدی بطور سیستماتیک در طی ریخته گری ماسه ای بصورت میلگردهای با قطر 30-mm برای ارزیابی تاثیرشان بر توسعه میکروساختار و خواص مکانیکی،تغییریافتند.معلوم شد که محدوده میکروساختارها از پرلیت کامل تا ترکیبی از آستنیت باقیمانده و فریت بینیتی به اصطلاح آسفریت (ausferrite) تولید شدند و یک همبستگی خطی مستدل بین کسر حجمی شکستن و استحکام آسفریت مشاهده شد. ترکیب بهینه خواص مکانیکی در یک آلیاژ با ترکیب تقریبی Fe–3.2C–1.0Cu–0.7Mo–0.55Mn–2.0Si بدست آمد که 100% آسفریت بدون کاربیدهای آلیاژی تولید شد. این آلیاژ یک میکروساختار و خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده بدون مشکلات زیاد همراه با آستمپرینگ داشت.کلمات کلیدی: چدن خاکستری، میکروساختار، ریخته گری و آسفریت1- مقدمهچدن خاکستری یک گروه وسیع از آلیاژهای ریختگی آهنی است که معمولا" بوسیله یک میکروساختار از گرافیت ورقه ای (flake graphite) در یک زمینه آهنی مشخص می شود. آن اساسا" یک آلیاژ Fe–C–Si شامل مقادیر کوچکی از عناصر آلیاژی دیگر و بیشترین آلیاژ ریختگی مورداستفاده و با تولید جهانی سالیانه 6 میلیون تن است که چندین برابر دیگر فلزات ریختگی است[1].میکروساختار چدن خاکستری معمولا" شامل گرافیت ورقه ای و یک زمینه پرلیت و یا فریت است که خواص مکانیکی، قابلیت ماشینکاری و غیره به آن بستگی دارد. چدنهای خاکستری معمولی، زمینه پرلیتی و استحکام کششی در محدوده 140 تا 400 Mpa دارند. وسیله اصلی برای بهبود خواص مکانیکی، کاهش کربن معادل است که درصد گرافیت را کاهش و پرلیت را افزایش می دهد. جدول(1) انواع تجاری چدن خاکستری و خواص مکانیکی مربوط به آنها را نشان می دهد.برای بهبود خواص چدن خاکستری، تحقیق بر روی گسترش میکروساختار آسفریت بیش از 40 سال انجام گرفته است[6-2]. یک بهبود مهم ویژه در خواص، نتیجه ای از گسترش چدن خاکستری آستمپر شده است[7-3]. چدنهای خاکستری آستمپر شده به مهندس چاره هایی با ترکیبات فرایندی/موادی معمولی پیشنهاد می دهد[7]. از طریق آستمپرینگ، زمینه فریتی یا پرلیتی، چدن خاکستری به یک ساختار سوزنی شامل 70 تا 80% فریت بینیتی بدون کاربید و آستنیت باقیمانده 20 تا 30% تغییر می یابد. چنین ساختاری به اصطلاح آسفریت است[6]. نشان داده شده است که چنین ساختار زمینه ای، یک چدن خاکستری با یک ترکیب منحصر بفرد از استحکام، مقاومت سایشی، جذب صدا و یا لرزش و تافنس شکست بالا را تولید می کند[6و7].یک عملیات حرارتی معمولی آستمپرینگ چدن خاکستری، آستنیته کردن در دمای 840–900º C برای چند ساعت بر اساس ترکیب و ضخامت ریختگی و آستمپر کردن در 230–425º C است[6و7].در حالی که این برنامه زمانی عملیات حرارتی تولید چدن خاکستری با یک محدوده عالی از خواص ، به انرژی قابل ملاحظه و فضای تولید نیاز دارد و ممکن است باعث آلودگی محیطی بعلاوه اکسیداسیون و ترک در اجزا شود. این مشکلات ، تولید گسترده چدن خاکستری آستمپر شده را محدود کرده اند، بنابراین تحقیق بر روی گسترش چدن خاکستری آسفریتی را بوسیله ریخته گری مستقیم وادار می کنند[5]. کار حاضر قصد دارد نشان دهد که چگونه تغییرات سیستماتیک در اضافه کردن آلیاژی به یک چدن خاکستری معمولی در طی ریخته گری می تواند یک آلیاژ با میکروساختار فریت بینیتی-آستنیتی (آسفریتی) با خواص مکانیکی قابل مقایسه با چدن خاکستری آستمپر شده را تولید کند.جدول(1): ترکیب و خواص مکانیکی کلاسهای مختلف چدن خاکستری
Class
Total carbon (wt.%)
Total silicon (wt.%)
Tensile strength (MPa)
Transverse load on test bar (kg f)
Hardness (HB)
20
3.40–3.60
2.30–2.50
152
839
56
25
-
-
179
987
174
30
3.10–3.30
2.10–2.30
214
1145
210
35
-
-
252
1293
212
2- تجربی2-1- مواد و روش ریخته گریهدف اصلی از کار حاضر تعیین تاثیر عناصر آلیاژی کلیدی بر توسعه