لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
دانشمند ارشمیدس
ارشمیدس دانشمند و ریاضیدان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. در اینجا سخن از معروفترین استحمامی است که یک انسان در تاریخ بشریت انجام داده است. در داستانها چنین آمده است که بیش از 2000 سال پیش در شهر سیراکوز پایتخت ایالت یونانی سیسیل آن زمان ارشمیدس مکانیکدان و ریاضیدان و مشاور دربار پادشاه یمرون یکی از معروفترین کشفهای خود را در خزینه حمام انجام داد. روزی که او در حمامی عمومی به داخل خزینه حمام پا نهاد و در آن نشست و حین این کار بالا آمدن آب خزینه را مشاهده کرد ناگهان فکری به مغزش خطور کرد. او بلافاصله لنگی را به دور خود پیچید و با این شکل و شمایل به سمت خانه روان شد و مرتب فریاد می زد: یافتم، یافتم به زبان یونانی Heureca! Heureca او چه چیزی یافته بود؟پادشاه به او مأموریت داده بود راز کار جواهر ساز خیانتکار دربار او را کشف و او را رسوا کند. شاه هیرون بر کار جواهر ساز شک کرده بود و چنین می پنداشت که او بخشی از طلایی را که برای ساختن تاج شاهی به وی داده بود برای خود برداشته و باقی آن را با فلز نقره که بسیار ارزانتر بود مخلوط کرده و تاج را ساخته است. هرچند ارشمیدس می دانست که فلزات گوناگون وزن مخصوص متفاوت دارند ولی او تا آن لحظه این طور فکر می کرد ک مجبور است تاج شاهی را ذوب کند، آن را به صورت شمش طلا قالب ریزی کند تا بتواند وزن آن را با شمش طلای نابی به همان اندازه مقایسه کند. اما در این روش تاج شاهی نیز از بین می رفت، پس او مجبور بود راه دیگری برای این کار بیابد. در آن روز که در خزینه حمام نشسته بود دید که آب خزینه بالاتر آمد و بلافاصله تشخیص داد که بدن او میزان معینی از آب را در خزینه حمام پس زده و جابه جا کرده است. او با عجله و سراسیمه به خانه بازگشت و شروع به آزمایش عملی این یافته کرد. او چنین اندیشید که اجسام هم اندازه، مقدار آب یکسانی را جابه جا می کنند ولی اگر از نظر وزنی به موضوع نگاه کنیم یک شمش نیم کیلویی طلا کوچکتر از یک شمش نقره به همان وزن است (طلا تقریباً دو برابر نقره وزن دارد) بنابراین باید مقدار کمتری آب را جابه جا کند. این فرضیه ارشمیدس بود و آزمایشهای او این فرضیه را اثبات کرد. او برای این کار نیاز به یک ظرف آب و سه وزنه با وزنهای مساوی داشت که این سه وزنه عبارت بودند از تاج شاهی، هم وزن آن طلای ناب و دوباره هم وزن آن نقره ناب. او در آزمایش خود تشخیص داد که تاج شاهی میزان بیشتری آب را نسبت به شمش طلای هم وزنش پس می راند ولی این میزان آب کمتر از میزان آبی است که شمش نقره هم وزن آن را جابه جا می کند. به این ترتیب ثابت شد که تاج شاهی از طلای ناب و خالص ساخته نشده بلکه جواهر ساز متقلب و خیانتکار آن را از مخلوطی از طلا و نقره ساخته است. به همین ترتیب ارشمیدس یکی از چشمگیرترین رازهای طبیعت را کشف کرد آن هم اینکه می توان وزن اجسام سخت را با کمک مقدار آبی که جابه جا می کنند اندازه گیری کرد. این قانون (وزن مخصوص) را که امروزه چگالی می گویند «اصل ارشمیدس» می نامند. حتی امروز هم هنوز پس از 23 قرن بسیاری از دانشمندان در محاسبات خود متکی به این اصل هستند. به هر حال ارشمیدس در رشته ریاضیات از ظرفیتهای هوشی بسیار والا و چشمگیری برخوردار بود. او منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد. او توانست سطح و حجم جسمهایی مانند کره، استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین به دست آوردن عدد نیز از کارهای گرانقدر وی است. او کتابهایی درباره خصوصیات و روشهای اندازه گیری اشکال و احجام هندسی از قبیل مخروط منحنی حلزونی و خط مارپیچ، سهمی، سطح کره و استوانه می دانست. علاوه بر آن او قوانینی درباره سطح شیبدار، پیچ اهرم و مرکز ثقل کشف کرد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.