لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
موضوع تحقیق:
شرح حال ریاضی دانان ایران وجهان
( ارشمیدس، خوارزمی، گائوس)
دبیر مربوطه:
جناب آقای خطیب زاده
گردآورنده:
بزقوچانی- قدمیاری
پاییز 1386
مقدمه:
داستان زندگی ریاضی دانان که ما در این کتاب شرح خواهیم داد این موضوع را نشان خواهد داد که یک نفر ریاضی دان می تواند، همچون دیگران، بشری عادی باشد و چه بسا فقیرتر و بدبخت تر از دیگران.
در روابط اجتماعی اغلب ریاضی دانان مردم عادی بوده اند، گرچه در بین ریاضی دانان اشخاص غیر عادی و صاحب حرکات غیر عادی وجود داشته است اما تعداد آنا نسبت به اشخاص غیر عادی که به تجارت یا مشاغل آزاد و غیره اشتغال دارند نیست.
روی هم رفته ریاضی دانان بزرگ مردان یا زنانی بوده اند صاحب همه قوا و نیروهایی که دیگران از آن برخوردارند، عموماً چابک و نیرومند و در خارج از ریاضیات به بسیاری چیزهای دیگر نیز کنجکاو بوده اند.
در مقام مبارزه کاملاً قبول مسئولیت می کردند، و این نکته را هم اضافه کنیم که ما بین آنان کسانی که دارای نبوغ خارق العاده بودند وجود داشته که دارای پستهای بالایی مانند وزارت و مدیران لایقی در رشته های مختلف بوده اند.
ریاضی دانان هرگز مردمانی آشفته و ژنده پوش نبوده اند، طبق آنچه در تاریخچه زندگی ایشان بر می خوریم آنان مانند سایر افراد جامعه به وضع سر و لباس خود توجه داشته اند.
بعضی از ایشان خیلی زیبا و شیک پوش بوده اند. بعضی دیگر لباس عادی می پوشیدند به طوری که جلب توجه کسی را نمی کرد.
ریاضی دانان بزرگ در تکامل فکر علمی و فلسفی نقشی ایفا کرده اند که اهمیت آن از نقش دانشمندان سایر علوم کمتر نیست بلکه دانشمندان سایر علوم به کمک ریاضیات کار خود را تکمیل نموده اند.
ارشمیدس:
ارشمیدس دانشمند و ریاضی دان یونانی در سال 212 قبل از میلاد در شهر سیراکوز یونان چشم به جهان گشود و در جوانی برای آموختن دانش به اسکندریه رفت. ارشمیدس بیشتر دوران زندگیش را در زادگاهش گذرانید و با فرمانروای این شهر دوستی نزدیک داشت. هنگامی که رومیها به سیراکوز حمله بردند، ارشمیدس منجنیقهای شگفت آوری برای دفاع از سرزمین خود اختراع کرد که بسیار سودمند افتاد او توانست سطح و حجم جسمهایی مانند کره- استوانه و مخروط را حساب کند و روش نوینی برای اندازه گیری در دانش ریاضی پدید آورد. همچنین بدست آوردن عدد( ) و وزن مخصوص اجسام از کارهای گرانقدر وی است. او بنیانگذار دو دانش استاتیک و هیدرواستاتیک است. ارشمیدس را بزرگترین دانشمند یونان باستان و پدر دانشهایی می شمارند که دکارت و لایب نیتس آنها را تکامل بخشیدند.
ارشمیدس برای تعیین مساحت اشکالمسطح و محدود به خطوط منحنی و احجام اجسامی که محدود به سطوح منحنی هستند روش های کلی بدست اورد و این روش ها را در مورد خاص بکار برد و به این وسیله توانست دستور سطح دایره و سطح و حجم کره و سطح قطعه ای از سهمی و سطح قسمتی از استوانه را که محصور ما بین دو پیچ متوالی منحنی هلیس( خطی منحنی است که بر استوانه ای رسم شود بطوری که در هر نقطه از آن خط مماس با امتداد ثابتی زاویه ثابتی تشکیل دهد. می توان این منحنی را با خواص دیگر ممتاز ساخت) واقع است بدست آورد. گذشته از ان حجم قطعه کروی ( مقصود حجم قسمتی از کره است که ما بین دو مقطع متوازی قرار دارد. روشی که امروزه در غالب کتب هندسه متوسطه بکار می رود بتقریب همان روش ارشمیدس است) و حجم حاصل از دوران مستطیل به دور یک ضلع ( استوانه) و حجم حاصل از دوران یک مثلث به دور یک ضلع ( یک یا دو مخروط) و بالاخره احجام حاصل از دوران سهمی و هذلولی و بیضی را بدور محورشان بدست آورد.
وی برای محاسبه عدد « » پی، یعنی نسبت محیط دایره به قطر آن روشی بدست آورد و ثابت کرد که عدد محصور مابین 1 3 و 10 3 است.
7 71
گذشته از آن روشهای مختلف برای تعیین جذر تقریبی اعداد بدست داد و از مطالعه آنها معلوم می شود که وی قبل از ریاضی دانان هندی با کسرهای متصل یا مداوم متناوب آشنایی داشته است.