دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

محاسبه انتقال گرما در سطوح نانومقیاس 20 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

محاسبه انتقال گرما در سطوح نانومقیاس

دانشمندان با استفاده از یک نانونوک، با منبع گرمایی نانومقیاس، توانسته‌اند یک سطح موضعی را بدون تماس با آن گرم کنند؛ این کشف راهی به سوی ساخت ابزارهای گرمایی ذخیره اطلاعات و نانودماسنج‌ها خواهد بود.

همه ساله نیاز بشر به ذخیره اطلاعات بیشتر و بیشتر می‌شود. درک چگونگی انتقال گرما در مقیاس نانو لازمه کاربرد این فناوری تأثیرگذار در ذخیره اطلاعات است. دانشمندان سراسر جهان سعی دارند تا فناوری‌های جایگزینی برای سیستم‌های ذخیره اطلاعات کنونی بیابند تا پاسخگوی نیاز روزافزون جوامع امروزی به ذخیره اطلاعات باشد؛ فناوری گرمایی ذخیره اطلاعات از جمله گزینه‌هایی است که به آن رسیده‌اند.

در این روش، با استفاده از یک لیزر، دیسک مورد نظر برای ذخیره اطلاعات را گرم کرده و به این ترتیب فرایند ثبت مغناطیسی پایدار می‌شود، به طوری که نوشتن داده‌ها روی آن آسان‌تر شده، پس از خنک شدن آن می‌توان داده‌ها را مجدداً بازیابی نمود. با استفاده از این روش، مشکل بحرانی حد ابرپارامغناطیسی که دستگاه‌های ضبط مغناطیسی با آن مواجه‌اند، برطرف می‌شود.

در روش‌های کنونی دانشمندان بیت‌های اطلاعاتی را که در دمای اتاق کار می‌کنند، تا اندازه معینی کوچک می‌کنند، اما این بیت‌ها با این کار از لحاظ مغناطیسی ناپایدار شده، از محل خود خارج می‌شوند، در نتیجه اطلاعات روی آنها پاک می‌شود.

بررسی‌های اخیر دانشمندان فرانسوی درباره انتقال گرما بین نوک و سطح به پیشرفت مهمی در زمینه ذخیره گرمایی اطلاعات و دیگر کاربردها منجر شده است. آنها گرمایی را که بیشتر از طریق هوا و به شیوه رسانش، بین نوک سیلیکونی و یک سطح انتقال می‌یابد، محاسبه کردند.

Pierre-Olivier Chapuis از محققان این گروه می‌گوید: ”انتقال گرما در سطح ماکروسکوپی به خوبی شناخته شده است (وقتی برخورد مولکول‌ها در حالت تعادل موضعی ترمودینامیکی باشد با تابع پخش فوریه بیان می‌شود). همچنین انتقال گرما را می‌توان در یک نظام بالستیک خالص (وقتی که هیچ برخوردی بین مولکول‌ها وجود ندارد) محاسبه نمود. اما محاسبه انتقال گرما در نظام میانی، وقتی که مولکول‌ها با هم برخورد دارند، همچنان یک چالش به شمار می‌آید.“

دانشمندان در آزمایش خود از یک نوک دارای منبع گرمایی به ابعاد 20 nm که در فاصله بین صفر تا 50 نانومتری بالای سطح قرار می‌گیرد، استفاده کرده‌اند.

مولکول‌های هوای بین نوک و سطح، در تماس با این نوک داغ، گرم شده و روی سطح دیسک قرار می‌گیرند و گاهی هم قبل از آن با دیگر مولکول‌ها برخورد می‌کنند. این محققان برای اولین بار با استفاده از قانون بولتزمن درباره حرکت گازها، توانستند توزیع گرمایی در این مقیاس و نیز سطوح شارگرمایی را تعیین کنند. آنها نشان دادند که انتقال و انتشار گرما از نوک به سطح در مدت چند ده پیکوثانیه و بدون آن که تماس بین نوک و سطح برقرار شود، انجام می‌گیرد. آنها همچنین دریافتند که در فاصله کمتر از 10 nm این نوک داغ می‌تواند ضمن حفظ شکل، ناحیه‌ای به پهنای 35 nm را گرم کند و در بیشتر از این فاصله، شکل از بین رفته و لکه گرمایی به طور قابل توجهی افزایش می‌یابد.

نانوتکنولوژی در صنایع نیمه‌هادی

صنایع نیمه‌هادی در سیر تکامل خود در حال رسیدن به نقط‌های است که توانایی آن برای تولید نقاط کوچکتر با مشکلاتی جدی همچون اثرات کوانتومی و نوسانات سطوح اتمی روبرو خواهد شد.

مشکلات دیگر در راه پیشرفت CMOS عبارتند از مصرف بالا، اتلاف حرارت و هزینه بسیار بالای ساخت. این مسائل در آینده مانعی سخت برای تولید نیمه‌هادی‌های کارآمد خواهد بود. به گفته NanoMarkets ، نانوتکنولوژی به ادامه پیشرفت و تولید CMOS کمک خواهد کرد و همچنین فناوری‌های جدید را قادر خواهد ساخت تا گوی سبقت را در جلب رضایت بازار از CMOS بربایند.غول‌های بزرگ صنعتی همچون فری‌اسکیل ‌، آی‌بی‌اِم، اینفینئون و اینتل پشتوانة مهمی برای نانوحافظه‌ها به حساب می‌آیند.

یک گزارش جدید از NanoMarkets بیانگر این مطلب است که همان‌طورکه روش‌های کنونی لیتوگرافی به پایان راه خود رسیده‌اند، ابزار‌هایی که برای توسعه، تولید و آزمایش CMOS به کار می‌روند، نیز باید بر پایة نانوتکنولوژی طرح‌ریزی گردند. پرتوافکن مستقیم الکترونیکی که در تولید ASIC به کار می‌رود، نمونه‌های از ابزاری است که به کمک نانوتکنولوژی بوجود آمده‌است. اما نانومارکتز معتقد است که کاربرد واقعی نانوتکنولوژی در تولید محصولات جدید، با توجه به خصوصیات مواد مقیاس نانو می‌باشد. بخش‌هایی از صنعت نیمه‌هادی که بیشترین تأثیر نانوتکنولوژی در آنها دیده می‌شود خارج از مقوله CMOS قرار دارند. به گفته نانومارکتز این موضوع در موارد زیر به وضوح دیده می‌شود.

حافظه غیرفرار: حافظه غیرفرار یکی از عوامل تقویت محاسبات سیار است. اما با توجه به اینکه حجم و سرعت فناوری Flash محدود می‌باشد، حافظه‌های جدید که در طراحی آنها از نانوتکنولوژی بهره گرفته شده است، کارایی بهتری را از خود نشان داده‌اند. FRAM و MRAM نمونه‌هایی از این نوع حافظه‌ها هستند.

الکترونیک پلیمری: سونی، زیراکس و سایرین آماده‌اند که محصولات الکترونیک لایه نازک را وارد بازار کنند. الکترونیک پلیمری، برخلاف CMOS، از خصوصیات حرارتی بسیار خوبی برخوردار است و هزینه‌ تولید در حجم کم را پایین می‌آورد. این خصوصیات امکان تولید محصولات جدیدی را به وجود می‌آورد. در سال 2006 نمایشگر‌های بزرگ رولی و همچنین برچسب‌های RFID با قیمت پایین تولید خواهد شد که امکان استفاده از آنها برای اجناس یک‌بار‌مصرف فراهم خواهد شد

نانوحسگر: نانوحسگرها نسبت به رقبای خود از آستانه تشخیص بسیار پایین‌تری برخوردارند. آنها قادرند در زمینه کشف امراض بیولوژیک نقش مهمی را ایفا کنند. به گونه‌ای که در مورد اعلام وجود سرطان، از سرعت بسیار زیادی برخوردارند

گزارش NanoMarkets بیانگر این مطلب است که نانوتکنولوژی به‌زودی می‌تواند در مدیریت حرارتی و اتصالات داخلی پر‌سرعت، به میزان قابل‌توجهی کمک نماید. در زمینه اتصالات داخلی پرسرعت می‌توان از نانولوله‌ها استفاده نمود زیرا توانایی آنها در انتقال جریان از مس خیلی بیشتر است و می‌توان آنها را به روش‌های قابل انطباق با CMOS‌ها رشد داد (اینفینئون در سال 2002 این قابلیت را نشان داد). از نانولوله‌ها می‌توان خنک‌کننده‌های بسیار خوبی برای رفع مشکلات حرارتی ساخت (همانند قطعاتی که اینتل از سال 2002 به بعد به کارشان گرفت) و یا می‌توان با ایجاد جرقه بین آنها جریانی از هوای خنک تولید نمود



خرید و دانلود  محاسبه انتقال گرما در سطوح نانومقیاس 20 ص


محاسبه انتقال گرما در سطوح نانومقیاس 20 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

محاسبه انتقال گرما در سطوح نانومقیاس

دانشمندان با استفاده از یک نانونوک، با منبع گرمایی نانومقیاس، توانسته‌اند یک سطح موضعی را بدون تماس با آن گرم کنند؛ این کشف راهی به سوی ساخت ابزارهای گرمایی ذخیره اطلاعات و نانودماسنج‌ها خواهد بود.

همه ساله نیاز بشر به ذخیره اطلاعات بیشتر و بیشتر می‌شود. درک چگونگی انتقال گرما در مقیاس نانو لازمه کاربرد این فناوری تأثیرگذار در ذخیره اطلاعات است. دانشمندان سراسر جهان سعی دارند تا فناوری‌های جایگزینی برای سیستم‌های ذخیره اطلاعات کنونی بیابند تا پاسخگوی نیاز روزافزون جوامع امروزی به ذخیره اطلاعات باشد؛ فناوری گرمایی ذخیره اطلاعات از جمله گزینه‌هایی است که به آن رسیده‌اند.

در این روش، با استفاده از یک لیزر، دیسک مورد نظر برای ذخیره اطلاعات را گرم کرده و به این ترتیب فرایند ثبت مغناطیسی پایدار می‌شود، به طوری که نوشتن داده‌ها روی آن آسان‌تر شده، پس از خنک شدن آن می‌توان داده‌ها را مجدداً بازیابی نمود. با استفاده از این روش، مشکل بحرانی حد ابرپارامغناطیسی که دستگاه‌های ضبط مغناطیسی با آن مواجه‌اند، برطرف می‌شود.

در روش‌های کنونی دانشمندان بیت‌های اطلاعاتی را که در دمای اتاق کار می‌کنند، تا اندازه معینی کوچک می‌کنند، اما این بیت‌ها با این کار از لحاظ مغناطیسی ناپایدار شده، از محل خود خارج می‌شوند، در نتیجه اطلاعات روی آنها پاک می‌شود.

بررسی‌های اخیر دانشمندان فرانسوی درباره انتقال گرما بین نوک و سطح به پیشرفت مهمی در زمینه ذخیره گرمایی اطلاعات و دیگر کاربردها منجر شده است. آنها گرمایی را که بیشتر از طریق هوا و به شیوه رسانش، بین نوک سیلیکونی و یک سطح انتقال می‌یابد، محاسبه کردند.

Pierre-Olivier Chapuis از محققان این گروه می‌گوید: ”انتقال گرما در سطح ماکروسکوپی به خوبی شناخته شده است (وقتی برخورد مولکول‌ها در حالت تعادل موضعی ترمودینامیکی باشد با تابع پخش فوریه بیان می‌شود). همچنین انتقال گرما را می‌توان در یک نظام بالستیک خالص (وقتی که هیچ برخوردی بین مولکول‌ها وجود ندارد) محاسبه نمود. اما محاسبه انتقال گرما در نظام میانی، وقتی که مولکول‌ها با هم برخورد دارند، همچنان یک چالش به شمار می‌آید.“

دانشمندان در آزمایش خود از یک نوک دارای منبع گرمایی به ابعاد 20 nm که در فاصله بین صفر تا 50 نانومتری بالای سطح قرار می‌گیرد، استفاده کرده‌اند.

مولکول‌های هوای بین نوک و سطح، در تماس با این نوک داغ، گرم شده و روی سطح دیسک قرار می‌گیرند و گاهی هم قبل از آن با دیگر مولکول‌ها برخورد می‌کنند. این محققان برای اولین بار با استفاده از قانون بولتزمن درباره حرکت گازها، توانستند توزیع گرمایی در این مقیاس و نیز سطوح شارگرمایی را تعیین کنند. آنها نشان دادند که انتقال و انتشار گرما از نوک به سطح در مدت چند ده پیکوثانیه و بدون آن که تماس بین نوک و سطح برقرار شود، انجام می‌گیرد. آنها همچنین دریافتند که در فاصله کمتر از 10 nm این نوک داغ می‌تواند ضمن حفظ شکل، ناحیه‌ای به پهنای 35 nm را گرم کند و در بیشتر از این فاصله، شکل از بین رفته و لکه گرمایی به طور قابل توجهی افزایش می‌یابد.

نانوتکنولوژی در صنایع نیمه‌هادی

صنایع نیمه‌هادی در سیر تکامل خود در حال رسیدن به نقط‌های است که توانایی آن برای تولید نقاط کوچکتر با مشکلاتی جدی همچون اثرات کوانتومی و نوسانات سطوح اتمی روبرو خواهد شد.

مشکلات دیگر در راه پیشرفت CMOS عبارتند از مصرف بالا، اتلاف حرارت و هزینه بسیار بالای ساخت. این مسائل در آینده مانعی سخت برای تولید نیمه‌هادی‌های کارآمد خواهد بود. به گفته NanoMarkets ، نانوتکنولوژی به ادامه پیشرفت و تولید CMOS کمک خواهد کرد و همچنین فناوری‌های جدید را قادر خواهد ساخت تا گوی سبقت را در جلب رضایت بازار از CMOS بربایند.غول‌های بزرگ صنعتی همچون فری‌اسکیل ‌، آی‌بی‌اِم، اینفینئون و اینتل پشتوانة مهمی برای نانوحافظه‌ها به حساب می‌آیند.

یک گزارش جدید از NanoMarkets بیانگر این مطلب است که همان‌طورکه روش‌های کنونی لیتوگرافی به پایان راه خود رسیده‌اند، ابزار‌هایی که برای توسعه، تولید و آزمایش CMOS به کار می‌روند، نیز باید بر پایة نانوتکنولوژی طرح‌ریزی گردند. پرتوافکن مستقیم الکترونیکی که در تولید ASIC به کار می‌رود، نمونه‌های از ابزاری است که به کمک نانوتکنولوژی بوجود آمده‌است. اما نانومارکتز معتقد است که کاربرد واقعی نانوتکنولوژی در تولید محصولات جدید، با توجه به خصوصیات مواد مقیاس نانو می‌باشد. بخش‌هایی از صنعت نیمه‌هادی که بیشترین تأثیر نانوتکنولوژی در آنها دیده می‌شود خارج از مقوله CMOS قرار دارند. به گفته نانومارکتز این موضوع در موارد زیر به وضوح دیده می‌شود.

حافظه غیرفرار: حافظه غیرفرار یکی از عوامل تقویت محاسبات سیار است. اما با توجه به اینکه حجم و سرعت فناوری Flash محدود می‌باشد، حافظه‌های جدید که در طراحی آنها از نانوتکنولوژی بهره گرفته شده است، کارایی بهتری را از خود نشان داده‌اند. FRAM و MRAM نمونه‌هایی از این نوع حافظه‌ها هستند.

الکترونیک پلیمری: سونی، زیراکس و سایرین آماده‌اند که محصولات الکترونیک لایه نازک را وارد بازار کنند. الکترونیک پلیمری، برخلاف CMOS، از خصوصیات حرارتی بسیار خوبی برخوردار است و هزینه‌ تولید در حجم کم را پایین می‌آورد. این خصوصیات امکان تولید محصولات جدیدی را به وجود می‌آورد. در سال 2006 نمایشگر‌های بزرگ رولی و همچنین برچسب‌های RFID با قیمت پایین تولید خواهد شد که امکان استفاده از آنها برای اجناس یک‌بار‌مصرف فراهم خواهد شد

نانوحسگر: نانوحسگرها نسبت به رقبای خود از آستانه تشخیص بسیار پایین‌تری برخوردارند. آنها قادرند در زمینه کشف امراض بیولوژیک نقش مهمی را ایفا کنند. به گونه‌ای که در مورد اعلام وجود سرطان، از سرعت بسیار زیادی برخوردارند

گزارش NanoMarkets بیانگر این مطلب است که نانوتکنولوژی به‌زودی می‌تواند در مدیریت حرارتی و اتصالات داخلی پر‌سرعت، به میزان قابل‌توجهی کمک نماید. در زمینه اتصالات داخلی پرسرعت می‌توان از نانولوله‌ها استفاده نمود زیرا توانایی آنها در انتقال جریان از مس خیلی بیشتر است و می‌توان آنها را به روش‌های قابل انطباق با CMOS‌ها رشد داد (اینفینئون در سال 2002 این قابلیت را نشان داد). از نانولوله‌ها می‌توان خنک‌کننده‌های بسیار خوبی برای رفع مشکلات حرارتی ساخت (همانند قطعاتی که اینتل از سال 2002 به بعد به کارشان گرفت) و یا می‌توان با ایجاد جرقه بین آنها جریانی از هوای خنک تولید نمود



خرید و دانلود  محاسبه انتقال گرما در سطوح نانومقیاس 20 ص


تحقیق در مورد گرما و انرژی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 13 صفحه

 قسمتی از متن .doc : 

 

گرما مادر انرژی‌ها

نور یکی از مباحث و پدیده هایی است که از قرن هیجدهم دانشمندان را به خود معطوف کرده است . دوگانه بودن خواص نور ، یکی از مهم ترین عامل جذب دیگران به خود بوده است .

نور یکی از مباحث و پدیده هایی است که از قرن هیجدهم دانشمندان را به خود معطوف کرده است . دوگانه بودن خواص نور ، یکی از مهم ترین عامل جذب دیگران به خود بوده است . الکترون ها نیز همانند نور دارای خواص موجی و مادی می باشند ، هنگامی که الکترون های یک اتم ، انرژی دریافت می کنند به سطوح بالای اتم می روند که حالت برانگیختن به اتم دست داده می شود . هنگامی که الکترون ها از سطوح انرژی بالاتر به سطوح انرژی پایین تر می روند ، آن مقدار انرژی که دریافت کرده اند را به صورت نور پس می دهند .

ارتعاش اتم ها باعث تولید نور می شود ، و نور گسیل شده از الکترون های یک اتم ، در یک جهت و راستا قرار دارند . اما نور های گسیلی از مجموعه اتم ها در تمام جهات و به خط مستقیم سیر می کنند . در لیزر نور های گسیلی در یک جهت و راستا است .

نور را می توان در فرآیند های فیزیکی ، واکنش های شیمیایی ، سوختن و شکاف های هسته ای ، مشاهده کرد . قبل از شروع در مورد تولید نور در این فرآیند ، بهتر است ابتدا بحثی در مورد گرما داشته باشیم . با پی بردن به ماهیت گرما ، می توانیم نور را به آسانی بشناسیم . گرما موجی است که طول موجش بزرگتر از طول موج نور مرئی است .

هنگامی که امواج گرما انرژی دریافت می کنند ، طول موج آن ها کاهش می یابد و با دریافت انرژی به طور متداول ، این امواج در محدوده طیف رنگی ( نور مرئی ) قرار می گیرند ، که در این حالت ما ، این امواج گرما را به صورت نور مشاهده می کنیم .این امواج با دریافت انرژی بیشتر ، از محدوده نور مرئی خارج می شوند ( مانند شکاف های هسته ای) .

پس امواج گرما در دو حالت ، نامرئی هستند : امواجی که طول موجشان بیشتر از طول موج پرتو فرو سرخ و همچنین امواجی که طول موجشان کمتر از طول موج پرتو فرا بنفش است . با این ایده ، عقیده همفری دیوی مبتنی بر اینکه نور از تمرکز گرما در یک نقطه ایجاد می شود ، اثبات می شود .

پس به این نتیجه می رسیم که مبنای نور گرما ست . حال به بحث اول خود بر می گردیم ، و ابتدا از تولید نور در فرآیند فیزیکی می پردازیم : اگر به یک لامپ نگاه کرده باشید متوجه می شوید که عامل روشنایی آن یک رشته فلزی است که می درخشد ، و یا اگر به یک آهن گداخته ای توجه کرده باشید ، می بینید که آهن بر اثر حرارت روشنایی بدست آورده است .

‌● عوامل انتشار نور در این فرآیند ها :

تمام مواد از ذرات بسیار ریزی ( مولکول ها و اتم ها ) تشکیل شده اند که این مواد پیوسته در حال حرکتند . در ترمو دینامیک جنبش مولکول ها را گرما می نامند ، پس مواد در خود گرما دارند ، بنابراین از مواد امواج گرمایی تولید می شود . هنگامی که این مواد انرژی دریافت می کنند ، امواج گرمایی آن ها نیز با دریافت این مقدار انرژی طول موجشان کاهش پیدا می کند ، ودر نتیجه در محدوده نور مرئی قرار می گیرند .

فلز مقاوم رسانایی است که مقاومت الکتریکی آن زیاد است .

هنگامی که آن را در مدار می گذاریم و جریان را از آن عبور می دهیم ، الکترون های حامل انرژی در مدار ، بر اثر بر خورد با اتم های فلز ، مقداری از انرژی خود را به فلز منتقل می کنند ، و از این طریق امواج گرمای فلز ، انرژی دریافت می کنند . و در نهایت ما این امواج گرمایی را به صورت نور مشاهده خواهیم کرد .

طرز و مبنای ساختار روشنایی لامپ اینگونه است . وهمچنین می توان با حرارت دادن برخی از فلزات ، به امواج گرمایی آن ها انرژی داد . (البته موادی که از این طریق برای تولید نور مورد استفاده قرار می گیرند ، باید نقطه ذوبشان بالا باشد ، تا انرژی دریافتی باعث ذوب و تغییر حالتشان نشود ) .

واکنش های شیمیایی زمانی رخ می دهند که در طی یک فرآیند ، پیوند میان دو اتم یا دو یون شکسته شود و از طریق تشکیل پیوند جدید ، یک ماده جدید ایجاد می شود .

برای شکستن پیوند مقداری انرژی مصرف و بر اثر تشکیل پیوند مقداری انرژی آزاد می شود . انرژی مبادله شده در این واکنش ها به صورت گرما ست . اگر گرما انرژی بیشتری را دریافت کند ، آنگاه به نور تبدیل می شود .

پس اساس و پایه تبادل انرژی در واکنش های شیمیایی ، انرژی گرمایی است . می دانیم که پیوندها بر اثر تبادل یا به اشتراک گذاشتن الکترون های لایه ظرفبت ایجاد می شود . الکترون ها بر اثر اختلاف پتانسیل الکتریکی از نقطه ای به نقطه ای دیگر جابجا می شوند .

اگر الکترون از سطح انرژی بالاتر به سطح پایین تر برود ، مقداری از انرژی پتانسیل آن کاهش و به صورت انرژی جنبشی تبدیل می شود ، که می توان از انرژی آن در فعالیت های مختلف استفاده کرد . اما اگر بخواهیم الکترون را از سطح انرژی پایین به سطح بالا ببریم ، باید مقداری انرژی به آن بدهیم . تشکیل و شکستن پیوندها نیز بر اساس ایجاد اختلاف پتانسیل الکتریکی است .

هنگامی که پیوندی تشکیل می شود ، الکترون های لایه ظرفیت یک اتم از سطح انرژی بالاتر ( اتمی که الکتروگا تیوی آن کم است ) به سطح انرژی پایین تر (اتمی که الکتروگاتیوی آن زیاد است ) می رود و درنتیجه در این مسیر مقداری انرژی آزاد می کند . اما هنگامی که پیوند شکسته می شود ، الکترون از سطح انرژی پایین تر به سطح انرژی بالاتر منتقل می شود ، که برای این کار انرژی لازم است . به همین دلیل است که شکستن پیوند گرماگیر و تشکیل آن گرماده .

در یک واکنش شیمیایی فقط پیوند هایی که حساس و ضعیف و یا در برابر پیوند های مواد دیگر ناپایدار هستند (ناپایداری پیوندها بر اثر اختلاف پتانسیل الکتریکی بین دو محدوده اتم ایجاد می شود )، می شکنند . و از طریق تشکیل پیوند جدید ، مواد جدیدی حاصل می شوند .

پس در یک واکنش شیمیایی بر اثر شکسته شدن و تشکیل پیوندها ، گرما مبادله می شود . انرژی یک واکنش شیمیایی برابر است با مجموع انرژی آزاد شده بر اثر تشکیل پیوند ، و انرژی لازم برای شکستن پیوند .

اگر انرژی لازم برای شکستن پیوندها کمتر از انرژی آزاد شده بر اثر تشکیل پیوند باشد ، آنگاه واکنش گرماده است ،که در این واکنش ها می توان گرما و نور مشاهده کرد . سوختن تمام هیدروکربنات ها ، گرماده است .

انرژی چیست ؟



خرید و دانلود تحقیق در مورد گرما و انرژی


تحقیق درمورد اثرات گرما و رطوبت بالا بر تولید مثل گاو

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 2

 

اثرات گرما و رطوبت بالا بر تولید مثل گاو

دکتر عبدالرسول دهقانی

افزایش حرارت و رطوبت محیط در تابستان می تواند موجب تغییرات فیزیولوژیکی و رفتاری درگاوها ودرنتیجه کاهش موفقیتهای تولید مثل گردد. این تغییرات عموما در نتیجه (استرس گرما) بوده وشامل موارد ذیل است:

1.افزایش تنفس.

2.افزایش درجه حرارت رکتوم.

3.افزایش مصرف آب.

4.کاهش غذای مصرفی.

5.کاهش وزن.

6.کاهش فعالیت.

البته استرس حرارتی خیلی بالا باعث عدم تعادل ، کلاپس((Collaps و در نهایت مرگ دام خواهد شد.

علاوه براین علائم ،تغییراتی در اندام تناسلی گاو نروماده در اثر استرس گرما اتفاق می افتدکه ممکن است باعث کاهش باروری در آنها گردد. آستانه حرارت محیطی که در آن تغییرات فوق رخ می دهد به خوبی روشن نیست بلکه استرس گرما بسته به طول مدت وشدت آن اثرات خود را روی اعضای تناسلی به جای می گذارد . حرارت محیطی بالا که برای هفته ها ثابت بماند ممکن است اثرات زیان آور خود را در اندام تنا سلی نشان دهد . شب های خنک به کاهش استرس گرما کمک خواهد کرد و ممکن است که اثر استرس گرمائی روز را جبران کند .

دیگر عواملی که باعث کاهش اثراسترس گرمایی می شوند عبارتند از :

1.تهویه کافی(چه مکانیکی و چه طبیعی ).

2. وجود سایه وآب آشامیدنی.

3.استفاده مناسب از آب مثل ایجاد غبار آب وکاهش حرارت در اثر تبخیر آن.

 

تاثیر استرس گرما بر گاونر:

علائم استرس گرما در گاو نر با افزایش حرارت وثابت ماندن در 90 درجه فارنهایت (2/32 درجه سانتیگراد) بروز می کند. حرارت محیطی 100 درجه فارنهات (7/37 درجه سانتیگراد) خطر ناک بوده و ممکن است علائم پیشرفته استرس گرما را ایجاد کند . بسیاری از داده ها در مطالعات تجربی موید تاثیر استرس گرما بر کیفیت منی گاو نر می باشد. تغییرات بعدی استرس گرما می تواند هنگام ارزیابی منی مشاهده گردد وآن شامل تغییرات در شکل ، سر و دم سلول اسپرم می باشد.

پوشش گذاری بر روی اسکروتوم بیضه در گاو نر می تواند 4-1 درجه فارنهایت(2/2-6/. درجه سانتیگراد) حرارت پوستی اسکروتوم را افزایش دهد . این عمل آزمایشی موجب ایجاد شرائط استرس گرمائی می شود. پوشش گذاری بر روی اسکروتوم گوساله های نر یک ساله به مدت 72-24 ساعت موجب کاهش سلولهای طبیعی اسپرم شده است . این کاهش از 2-1 هفته بعد از پوشش گذاری اتفاق میافتد.وقتی این استرس بر داشته می شود ، کیفیت منی تا 4-1 هفته به همان صورت ادامه می یابد . بسته به طول مدت استرس گرمائی کیفیت منی تقریبا تا 8-4 هفته بعد از آن به سطح قبل از استرس باز می گردد. در مکانهائی که دامها به مدت زیادی تحت شرائط آزمایشات استرس گرما و هوای گرم قرار گرفته اند (95-88 درجه فارنهایت معادل 35-31 درجه سانتیگراد به مدت هشت هفته) ، نتایج مشابهی به دست آمده است و دامهــــــــای فوق بعد از هشت هفته کـــــه استرس بر داشته شده به شرائـــط قبلی خود برگشته اند.

نتایج عملی استرس گرمائی بر روی گاوهای نر به خوبی مشخص نیست. تغییرات در کیفیت منی ممکن است به کاهش باروری منجر شود و خصوصا اگر که گاو نر موجود بارور کننده گله ،تنها گاو نر قبل از استرس گرما بوده است . آزمایشات نشان داده که گاوهای نر در بروز علائم استرس و نشان دادن حساسیت نسبت به استرس گرمایی متفاوت می باشند و بصورت انفرادی ممکن است گاو نری باشد که در مقابل استرس گرماعلائم چندانی نشان ندهد در حالی که سایرین دارای علائم شدید باشند . چنانچه گاو نری در معرض استرس گرما قرار گرفته و1 الی 2 هفته بعد این گاو در برنامه همزمانی روی تعدادی از گاو ها به کار گرفته شود ،ممکن است کاهش زیادی درباروری گاو ها اتفاق افتد. با این وجود تحت شرایط بسیاری که در فیلد وجود دارد با یک گاو نر نرمال غیرمحتمل است که استرس گرمائی حاد اساساً به تنهایی بتواند باروری گاو را تحت تاثیر خود قرار دهد. اطلاعات داده ای موجود اجازه ی ارزیابی دقیق میزان تاثیرگذاری استرس گرما بر روی باروری در شرایط مختلف مدیریتی در فیلد را نمی دهد .

 

با کاربرد مدیریت تولید مثلی صحیح ممکن است استرس گرما به شرح ذیل در گاو نرکاهش یابد :

1-استفاده بهینه از گاو نر(نسبت 1 به 20 برای گوساله های نر یکساله به گاوهای ماده و نسبت 1 به 40 برای گاوهای نر بالغ).

2-تهیه سایه و تهویه مناسب (نصب فن (Fan ) یا استفاده از جریان باد به صورت طبیعی)

3- استفاده از گاوهای نر با باروری بالا.

4-تهیه میزان کافی آب با کیفیت مناسب و مواد معدنی.

5-کاهش استرس های دیگر شامل حشرات مزاحم ، عفونت سم ، و غیره.

6-نگهداری گاو نر در شرائط وضعیت بدنی خوب.

7-گردش گاوهای نر بین مزارع (اگر که مزارع دیگری در دسترس است) این کار باعث افزایش مقاومت گاونر حساس به استرس گرمائی و جبران استرس فوق می شود.

 

اثرات استرس گرما بر تولید مثل گاو ماده:

افزایش استرس گرما به بیش از 86 درجه فارنهایت (30 درجه سانتیگراد) ممکن است که روی هورمونها در گاو ماده تاثیر گذار باشد. کاهش طول زمان فحلی و کم شدن شدت علائم آن ممکن است که یکی از اثرات استرس گرما باشد. استرس گرما در زمان باروری و یا بلافاصله 10-7 روزبعد از آن ممکن است که باعث کاهش ریت باروری ( conception rate ) گردد. این خصوصا وقتی به وقوع می پیوندد که گاو ها به استرس گرما عادت نداشته باشند.این تغییرات نه تنها شامل نارسائی در بــــاروری تخمک است بلکه اساسا موجب افزایش مرگ زود رس جنین نیز در گــــــاو می باشد.

بامرگ زودرس جنین در رابطه با استرس گرما ، گاو ظرف 21 روز به فحلی باز می گردد. در واقع جنین قبل از شناسائی توسط مادر از بین رفته و آبستنی زایل گردیده است.بنابر این گاو مجددا ظرف 21 روز به فحلی باز می گردد.

کاهش باروری در گاوها، بیشترین احتمال، متعاقب استرس گرما می باشد.اما در برخی از تلیسه ها هم ممکن است کاهش باروری اتفاق افتد..

درحالی که بطور سنتی غا لب توجهات معطوف به اثرات کاهش باروری در گاو نر است، اما این واقعیت مهم است که استرس گرما بر روی باروری گاو ماده موثر می باشد.

بنا بر این استرس گرما خصوصا در زمان اجرای برنامه همزمانی باید مورد توجه قرار گیرد. در یک برنامه همزمانی در زمان بروز فحلی برای اجتناب از استرس آب و هوای گرم و یا به کار گیری ابزار مدیریتی در جهت کاهش این استرس برای حصول یک نتیجه خوب ، باید مد نظر قرار گیرد.



خرید و دانلود تحقیق درمورد اثرات گرما و رطوبت بالا بر تولید مثل گاو


تحقیق در مورد گرما

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 7 صفحه

 قسمتی از متن .doc : 

 

گرما

گرما نوعی انرژی است که به علت اختلاف دما بین دو سیستم، از یکی به دیگری منتقل می‌شود. (گرما همواره در حال عبور از مرزهای سیستم است.)

تاریخچه درک مفهوم فیزیکی گرما

تصادفی نیست که نیمه اول سده نوزدهم شاهد پیشرفت‌های فراوان و رشد بینش‌های عمیق درباره ماهیت‌های گرما بودیم. در اواخر سده هژدهم انقلاب صنعتی از انگلستان به قاره اروپا و آن سوی اقیانوس اطلس گسترش یافت .

پیش از سال ۱۸۳۰ تصور می‌‌کردند که گرما و خواص گرمایی مواد با پدیده‌های مکانیکی الکتریکی ومغناطیسی ارتباطی ندارند. بنا بر نظریهٔ کالریک که در آن زمان رایج بود. مقدار گرمای هر جسم متناسب با مقداری از سیال کالریک بود که در جسم وجود داشت یعنی هر چه مقدار سیال کالریک آن نیز بیشتر بود انبساط گرمایی را که از پدیده‌های آشنا به شمار می‌‌آمد این طور توجیه می‌‌کردند که برای پذیرش سیال کالریک اضافی فضایی بیشتر لازم است. هر چند دادن گرما به جسم هیچ تغییر قابل اندازه گیری در جرم آن ایجاد نمی‌کرد و این امر را با معضل روبرو کرده بود اما هواداران این نظریه برای حل مشکل می‌‌گفتند که کالریک یک سیال است (سنجش ناپذیر) یا (آذرین) یعنی سیالی بدون جرم است.

هرچند که نظریه کالریک را پیش از پایان نیمه اول قرن نوزدهم کنار گذاشتند. میراث آن واحد گرما، یعنی کالری هنوز هم کاربرد فراوانی دارد

این واقعیت که ماشین بخار ،با استفاده از گرمای ناشی از سوختن چوب یا زغال سنگ کار مکانیکی انجام می‌‌دهند

نماد و واحد گرما

واحد گرما در دستگاه SI، ژول است.

گرما را با نماد Q نمایش می‌دهیم

انرژی گرمایی

گرما شکلی از انرژی است . این انرژی برای اهداف مختلفی از قبیل گرم نمودن خانه و پخت غذا استفاده می شود.

انرژی حرارتی به 3 طریق قابل انتقال است

1 – هدایت

2 – انتقال

3 – تابش

زمانیکه انرژی مستقیماً از یک شئ به شئ دیگر عبور می کند به آن هدایت می گویند .  اگر یک ظرف سوپ برروی اجاق را با قاشق فلزی هم بزنید ، قاشق گرم خواهد شد. بدین ترتیب گرما از محیط گرم سوپ به قاشق سرد منتقل می شود.

فلزات هادی های بسیار خوبی برای انرژی گرمایی هستند، اما چوب و پلاستیک چنین خاصیتی ندارند. این گونه هادی های بد را عایق گویند. به همین دلیل است که معمولاً ظرف از جنس فلز بوده اما دستة آن از جنس پلاستیک قوی است.

انتقال، عبارت است از حرکت گازها و سیالات از یک محل سردتر به محل گرمتر . اگر ظرف سوپ از جنس شیشه باشد، می توان حرکت جریانات انتقالی در ظرف را مشاهده نمود. سوپ گرمتر از ناحیة پایین ظرف، که حرارت بیشتری دارد، به سمت بالا، که سردتر است، حرکت می کند. سپس سوپ سردتر به سمت پایین حرکت نموده و مکان سوپ گرمتر را اشغال می کند. این حرکت باعث ایجاد یک الگوی چرخشی درون ظرف می شود (به شکل توجه کنید).

بادی که ما حس می کنیم غالباً ناشی از جریانات انتقالی است. این امر توسط وزش بادهای نزدیک اقیانوس به سهولت قابل درک است. هوای گرم سبکتر از هوای سرد بوده و بنابراین اوج می گیرد. در خلال روز، هوای سرد روی آب حرکت نموده و در خشکی جایگزین هوایی می شود که در اثر دمای زمین اوج گرفته است. اما به هنگام شب جهت این جایگزینی تغییر می کند، به عبارت دیگر بعضی اوقات سطح آب گرمتر و خشکی سردتر است.

*تابش، شکل نهایی حرکت انرژی گرمایی است . نور و گرمای خورشید از طریق هدایت و انتقال نمی تواند به ما برسد زیرا فضا تقریباً به طور کامل خالی است . هیچ گونه عاملی برای انتقال انرژی خورشید به زمین

کار و گرما گرما نوعی انرژی است که از اجسام گرم به اجسام سرد منتقل می شود. موتورهای حاوی گاز داغ ... ما بدون « موتورهای گرمایی » نمی توانیم به نقاط دور دست مسافرت کنیم. در این موتورها از سوخت برای ایجاد گازهای داغ منبسط شده ودرنتیجه ایجاد حرکت، استفاده می شود. همچنین، این موتورها توان اتومبیلها وقایقها وموشکها را تأمین می کنند وژنراتورهای برق را راه اندازی می کنند. توربینهای بخار ... در نیروگاهها به کمک توربینهای بخار، گرمای تولید شده را به انرژی الکتریکی ( برق ) تبدیل می کنند. در مرکز این توربینها چرخی قرار دارد که از یکسری پره تشکیل شده و به یک میلة گردان وصل است. درون دیگ، آب تحت فشار زیادی جوشیده وبخاری با فشار بسیار زیاد تولید می کند. این بخار با شدت به پره های توربین برخود کرده و موجب چرخش آنها می شود. در یک توربین بخار که با دقت طراحی وساخته شده باشد، تنها یک سوم انرژی بخار صرف چرخاندن پره ها می شود. موتورهای بنزینی ... در موتورها ی بنزینی، دراثر یک انفجار، گاز بسیار داغی ایجاد می شود. این گاز به جای خروج از موتو، موجب حرکت یک پیستون می شود. در این نوع موتورها، مخلوطی از قطرات بنزین وهوا به عنوان سوخت موتور مورد استفاده قرار می گیرد. این مخلوط در داخل سیلنر ( استوانه ) توسط جرقةئ شمع منفجر می شود وگاز بسیار داغی تولید می کند. این گاز داغ، پیستون را به شدت به طرف پایین می راند. داخل یک موتور بنزینی معمولی چه اتفاقی می افتد ؟ … پیستون یک موتور بنزینی چهار ضربه ای به ترتیب، به طرف پایین، بالا، پایین وبالا حرکت می کند. حرکت پیستون به طرف پایین وبالا یک ضربه نا میده می شود و هر ضربه اثر متفاوتی بر گازهای داخل سیلندر دارد. این ضربه ها به همین ترتیب و مدام تکرار می شوند. انبساط جامدات چرا گرما جامدات را منبسط می کند ؟… وقتی یک جسم جامد گرم می شود، مولکولهای آن با انرژی بیشتری ارتعاش می کنند وفاصلة مولکولها از



خرید و دانلود تحقیق در مورد گرما