لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
منطق حاکم بر پروسة کنترل تأسیسات
منطق حاکم بر قسمت هواساز
هواساز دارای دو ورودی است یکی از هوای آزاد و دیگری ورودی از هوای بر گشتی و بر روی هر کدام از این ورودی ها یک دسپر وجود دارد که دمپر روی هوای برگشتی به صورت دستی کنترل می شود و دمپر مربوط به هوای آزاد توسط یک محرک (Actuator) به صورت On/off کنترل می گردد.
هوا بعد ا ورود به هواساز وارد بخش فیلتر می گردد و بعد از آنجا به بخش فن می رود بخش فن فشار هوا را زیاد می کند و آن را به بخش رطوبت زن می فرستند تنها ارتباط بین بخش فن و بخش رطوبت زن از طریق فن است و بقیه فضاها توسط ورقهای فلزی پوشانیده شده است در این قسمت برای اطلاع از اینکه موتور کار می کند یا خیر و یا اینکه آیا برای موتور مشکلی پیش آمده است یا خیر ( مانند اینکه تسمة فن پاره شده با شد) از یک سوئیچ اختلاف فشار(Diffrentiod Pressure switchi ) استفاده می کنند این سوئیچ دارای دو سر نمونه برداری است که یک سر آن به قسمت فن ویک سر دیگر آن به قسمت بعد از فن ( بخش رطوبت زن) وصل وb از تیغة Ne این وسیله استفاده می شود هنگامی که به صورت عادی موتور در حال کار است تیغة Ne آن بسته می شود و یک سیگنال به PLC می فرستند مبنی بر اینکه فن در حال کارکردن است ولی هنگامی که فن به هر دلیلی خاموش شود این سوئیچ باز شده و دیگر سیگنالی را به PLC نمی فرستد.
رنج کار DPS بین 200-1000(pa) برای این نوع سیستم هواساز می باشد.
بعد از این قسمت هوا به بخش رطوبت زن منتقل می گردد، همان طور که در بخش قبل توضیح داده شد این بخش فقط در زمستانها مورد استفاده قرار می گیرد( به علت اینکه هوای تهران در تابستان دارای رطوبت کافی است) در این بخش بخار آب که توسط یک شیر کنترلی کنترل می شود به نازلهای مربوط به رطوبت زن فرستاده می شود تا به هوا رطوبت اضافه کنند برای اندازه گیری میزان رطوبت در یک فضای عمومی یک سنسور و PLC با توجه به میزان رطوبت شیر کنترلی در مسیر رطوبت زن را کنترل می کند.
سنسور رطوبت سنج از نوع ولتاژی (1-10V) است و دارای زمان پاسخ 35(s) است.
و برای اضافه کردن رطوبت هوا در مسیر نازل های رطوبت زن از یک شیر کنترلی استفاده می گردد. این شیر کنترلی از دو قسمت تشکیل شده است
1- شیر خطی (LiNeow Vawe) 2- محرکت خطی (Lineew valve aetuator) که این قسمت روی هم سوار شده و تشکیل شیر کنترلی را می دهند شیر خطی استفاده شده در این پروژه از نوع گلویی (Globe) با حرکت خطی است بدین معنا که میزان خروجی شیر با حرکت میلة کنترل شیر (Stem) نیست خطی دارد.
محرک الکتریکی خطی هم برای کنترل شیر خطی استفاده شده است. این محرک یک موتور سنکرون است که برای تغذیه به برق 247ac احتیاج دارد سیگنالی که این محرک برای کنترل دریافت می کند می تواند (0-10v) یا (2-10v) باشد که می توان هر یک را با توجه به سیستم انتخاب نمود.
این محرک همچنین یک سیگنال خروجی 2-10v برای نشان دادن وضعیت شیر نیز ارسال می کند که به آن موقعیت صحیح محرک گفته می شود و وقتی که Steml کاملا کشیده است سیگنال 10v را به Ple می فرستد
همچنین این محرک در حالت خطا (System Failare) می توان تنظیم کرد که شیر چقد باز باشد که عبارت از 0%و 5% و100%
بعد از این قسمت هوا وارد ناحیه کویل ها می شود که در این قسمت دو کویل به صورت مجزا با کانالهای عبور هوای منتقل از هم قرار دارد.
یکی از کوپلها ، کوپل آب سرد است و دیگری کوپل بخار ترتیب استفاده از این کوپل ها بدین شکل است که در تابستان کوپل آب سرد فعال و کوپل بخار غیر فعال است و در زمستان کوپل بخار فعال و کوپل آب سرد غیر فعال است. بر روی مسیر کوپل آب سرد هیچ وسیله کنترلی قرار نمی گیرد ولی بر رومی کوپل بخار برای کنترل میزان بخار یک شیر کنترلی و برای جلوگیری از یخ زدگی هم یک سنسورد ها قرار می گیرد. البته دمای هوا بعد از عبور از کوپلها توسط سنسورهای دما اندازه گیری شده و به PLC فرستاده می شود.
در مسیر هوا، بعد از کوپل آب سرد یک سنسور دما از نوع PT 1000 و مناسب برای نصب در داکت است و درارای زمان پاسخ 30(s) درسرعت 5m/s است.
در مسیر هوا، بعد از کوپل آب گرم یک سنسور دما از نوع PT 1000 وجود دارد که دارای طولب 306 متر است و این سنسور میزان دمای متوسط در کل طول را محاسبه می کند و بوسیلة آن شیر کنترلی بخار را که در مسیر ورودی به کوپل بخار قرار دارد را کنترل می کند بطوریکه وقتی که دمای محفظة اختلاط دمای هوای گرم بیش از 40 درجه شود شیر کنترلی کاملاً بسته می شود در مسیر بخار هم از همان شیر و محرک که برای کنترل رطوبت زن بود استفاده شده است.
در زمستان وقتی که به هر دلیلی بخار وارد کوپل نشود با توجه به اینکه مقداری مایع درون کوپل بخار وجود دارد و همچنین هوای آزاد هم در تماس با کوپل قرار دارد امکان دارد درصورت سرد بودن هوا آب درون کوپل بخار یخ زده و کوپل بترک ، برای مقابله با این مشکل از یک سنسور هوا که دارای تبغه یک پل دو راهه است (SPdt) که می تواند مدار آلارم را در نقطة معین شده (Set point) فعال کند طول سنسور حدود 6 متر است که دو کوپل بخار پیچیده می شود این سنسور وقتی عمل کرد بعدا از برگشت به شرایط عادی به صورت اتوماتیک Reset می شود.
این سنسور را روی 5 درجة سانتی گراد تنظیم می کنیم وقتی که سنسور عمل کرد فرمان به Ple می فرستد و Ple دمپر هوای آزاد را که به صورت On/off است می بندد.
خروجی Ne این سنسور در مدار قرار دارد که یک راه را فعال می کنند و تیغه های را به ترتیب در مدارهای چراغ سیگنال و ورودی Ple قرار دارد.
بعد از عبور از کوپل ها به قسمت دمپرها می رسد که از آنجا با کانالها به ناحیه های (Zone) مختلف می رود، هوای ورودی به هر کانال از دو مسیر مجزای کوپل آب سرد و کوپل بخار تأمین می گردد البته میزان آن با دمپر کنترل می گردد. محور دمپرهای روی محفظة بعد از کوپل بخار محور دمپرهای روی محفظة بعد از کوپل آب سرد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 65
دانشگاه آزاد اسلامی واحد بجنورد
موضوع:
آزمایشگاه سیستمهای کنترل خطی
زیر نظر استاد محترم:
جناب آقای مهندس اعظمی
تهیه و تنظیم :
بهنام نادری - مرتضی محمدی
پاییز 1385
به نام خدا
آزمایش شماره (1):
آشنایی با دستگاه شبیه ساز فرآیند:
1-1)Set value:
خروجی set value را به نمایشگر سمت چپ داده و با تغییر آن ملاحظه میشود که LED ها با توجه به مقدار ولتاژ در بالا یا پائین مبدا قرار میگیرند که مبین ولتاژ DC میباشد. که از 10 تا 10- ولت قابل تغییر است.
2-1)Disturbance:
این قسمت قابلیت تولید موج مربعی و سینوسی با دامنه و فرکانس متغییر دارد. خروجی سینوسی را به نمایشگر سمت چپ داده ملاحضه میشود که LEDها به طور پیوسته از مینیمم به ماکزیمم و برعکس روشن میشوند. حال اگر خروجی مربعی باشد LEDها فقط در نقاط ماکزیمم و مینیمم پیک روشن میشود.
3-1) انتگرال گیر:
در این مرحله ازآزمایش ابتدا یک موج مربعی به ورودی انتگرالگیر میدهیم و از خروجی یک موج مثلثی میگیریم ؛ وبه کمک رابطه مربوطه Ti را محاسبه میکنیم.از آنجا که انتگرال یک سیکل کامل صفر میشود(سطح زیر منحنی ) بنابراین انتگرال را در نیم سیکل محاسبه می کنیم .حال خروجی که با فرکانس 100 هرتز و ولتاژ 2 ولت پیک تا پیک تنظیم شده است را به ورودی انتگرالگیر میدهیم و ورودی و خروجی را به طور همزمان در اسکوپ مشاهده میکنیم. چون در این حالت انتگرالگیر به اشباع میرود توسط set value مقدار DC به آن اضافه میکنیم تا از اشباع خارج شود.
بعد از انجام آزمایش به نتایج زیر می رسیم :
4-1) مشتقگیر:
در حالتیکه است خروجی انتگرال گیر را به ورودی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
کنترل الکترونیکی موتور دیزل (EDC)
شرایط فنی
امروزه، در ورای پیشرفتهائی که در زمینهی تزریق سوخت موتور دیزل صورت گرفته، کاهش مصرف سوخت و افزایش در توان و گشتاور، فاکتورهای بسیار مهمی به شمار میآیند. در گذشته، اهمیت این فاکتورها موجب استفادهی بیشتر از موتورهای دیزل با تزریق مستقیم (DI) بوده است. در مقام مقایسه با موتورهای دیزل با پیش محفظه و یا مجهز به محفظهی گردابی، که به نام موتورهای با تزریق غیر مستقیم (IDI) معروفند، موتورهای با تزریق مستقیم دارای فشار تزریق بیشتری هستند. این امر منجر به اختلاط بهتر سوخت- هوا گشته و احتراق در ان کاملتر صورت میگیرد. در موتورهای با تزریق مستقیم، با توجه به این واقعیت که اختلاط بهتر انجام میشود و به علت عدم وجود پیش محفظه و یا محفظه گردابی، هیچ گونه تلفات ناشی از سریز سوخت وجود ندارد و نسبت به موتورهای با تزریق غیر مستقیم، مصرف سوخت 15-10 درصد کاهش مییابد.
علاوه بر این، موتورهای مدرن امروزی بیشتر در معرض مقررات سخت مربوط به گاز اگزوز و صدا هستند. این امر باعث شده است که از سیستم تزریق سوخت موتور دیزل، انتظارات بیشتری مطرح شود، از جمله:
- فشارهای بالا در تزریق سوخت،
- منحنی بنیادیتری از آهنگ سوختدهی،
- شروع تزریق متغیر،
- تزریق پیلوتی،
- سازگاری مقدار سوخت تزریقی، فشار تقویت یافته، و کمیت سوخت تزریقی در یک مرحلهی کاری معین،
- کمیت سوخت راهانداز وابسته به درجهی حرارت،
- کنترل دور آرام مستقل از بار وارده بر موتور،
- تنظیم سرعت مطلوب با توجه به مصرف سوخت و بازده،
- به کارگیری چرخش دوبارهی گاز اگزوز، EGR با کنترل خودکار،
- کاهش در تولرانسها و افزایش در دقت، در تمام طول عمر مفید وسیلهی نقلیه.
گاورنرهای مکانیکی متداول (وزنههای گریز از مرکز) با به کارگیری چندین وسیلهی اضافهشده، شرایط متنوع در حین کار را ثبت میکنند تا تشکیل مخلوط با کیفیت بالا تضمین شود. بنابراین، این نوع گاورنرها به یک کنترل سادهی دستی در موتور محدود میشوند، در صورتی که عمل کنندههای مهم و متنوعی وجود دارند که امکان ثبت آنها توسط این وسائل وجود ندارد و یا اگر هم ثبت شوند، سرعت کار مطلوب نخواهد بود.
مرور کلی سیستم
در سالهای گذشته، به علت افزایش، چشمگیر در توان محاسبهای میکروکنترلرهای موجود در بازار، تبعیت کنترل الکترونیکی دیزل (EDC) از مقررات و شرایطی را که پیشتر یادآور شدیم را ممکن ساخته است.
برخلاف خودروهای دیزلی مجهز به پمپهای انژکتور ردیفی یا آسیابی متداول، رانندهی یک وسیلهی نقلیه کنترل شده توسط EDC نمیتواند هیچ گونه اثر مستقیم روی پمپ انژکتور داشته باشد، به عنوان مثال کنترل مقدار سوخت تزریقی که به طور متداول به وسیلهی پدال گاز و یا سیم گاز انجام میشود، در اینجا حاصل متغیرهای عمل کنندهی متنوعی از جمله وضعیت کاری، دادههای توسط راننده، آلایندههای گاز اگزوز و نظائر آن است.
بدین معنی که یک سیستم ایمنی پیشرفتهای باید به کار برده شود تا خطاها و ایرادات را تشخیص دهد و به نسبت شدت و حدت، راهکارهای مناسب برای رفع آنها را ارائه دهد (به عنوان مثال: محدودیت گشتاور، یا راندن اظطراری خودرو در گسترهی دور آرام (رساندن خودرو به کارگاه). سیستم EDC هم چنین امکان تبادل بین مقادیر به دست آمده در این سیستم با مقادیر حاصل از سایر سیستمهای الکترونیکی در خودرو به وجود آید (به عنوان مثال با سیستم کنترل کشش (TCS) و کنترل الکترونیکی تعویض دنده.) بدین ترتیب، این سیستم میتواند با کل سیستم خودرو ادغام شود.
پردازش دادههای EDC
سیگنالهای ورودی
حسگرها همراه با عمل کنندهها، وسیله ارتباطی بین خودرو و واحد پردازش دادههای آن هستند. سیگنالهای حاصل از حس گرها، از طریق مدار الکتریکی محافظ و اگر لازم باشد از طریق مبدلهای سیگنال و آمپلیفایرها، وارد یک واحد و یا واحدهای متعدد کنترل الکترونیکی (ECU) میشوند.
- سیگنالهای ورودی پیوسته (مثال: اطلاعات حاصل از حسگرهای پیوسته مربوط به مقدار هوای مکیده شده توسط موتور، درجه حرارت هوای ورودی و حرارت خود موتور، ولتاژ باطری و نظائر آنها) به وسیله مبدل پیوسته/ گسسته در ریز پردازنده ECU، به مقادیر گسسته تبدیل میشوند.
- سیگنالهای ورودی گسسته (مثال: سیگنالهای کلید قطع و وصل، یا سیگنال حسگر گسسته از قبیل پالسهای سرعت دورانی از حسگر Hall میتوانند به طور مستقیم توسط ریزپردازندهها پردازش میشوند.
- به منظور از بین بردن پالسهای تداخل کننده، سیگنالهای پالسی شکل که از حسگرهای القائی دریافت میشوند و حاوی اطلاعاتی مانند دور موتور و علامت تنظیم موتور هستند، توسط مدار ویژهای در ECU بهبود یافته و به موج مربعی تبدیل میشوند.
اصلاح سیگنال، بسته به میزان پیچیدگی داخلی حسگر، به طور کامل و یا نسبی در داخل حسگر می تواند انجام شود. شرایط کاری که در نقطهی نصب پیش میآید تعیین کنندهی میزان بارگذاری حسگر است.
اصلاح سیگنال
مدار محافظ برای محدود ساختن سیگنالهای ورودی در حد حداکثر ولتاژ از پیش تعیین شده به کار میرود. سیگنال اصلی با استفاده از صافی، تقریباً به طور کامل از وجود سیگنالهای تداخلی آزاد شده و سپس تقویت مییابد تا بتواند با ولتاژ ورودی واحد ECU متناسب باشد.
پردازش سیگنال در ECU
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 56
دانشگاه آزاد اسلامی
واحد شهرری
رشته شیمی کاربردی
گزارش کارآموزی:
آزمایشگاه کنترل کیفیت
محل کارآموزی:
شرکت داروسازی تهران دارو
استاد راهنما:
جناب آقای دکتر یوسفی
دانشجو:
مهری طالبی هاشم آبادی
نیمسال 88-87
فهرست مطالب
عنوان صفحه
فصل اول: تاریخچه شرکت تهران دارو
1-1- تاریخچه و معرفی شرکت 2
1-2- ادارات شرکت داروسازی تهران دارو 3
1-1-2- اداره مسئول فنی و تضمین کیفیت 5
2-1-2اداره تولید 5
3-1-2- اداره فورمولاسیون و تحقیقات 5
4-1-2- اداره کنترل کیفیت 6
5-1-2- اداره بازرگانی 6
6-1-2- اداره برنامهریزی و انبارها 6
7-1-2- اداره فنی و مهندسی 6
8-1-2- اداره امور اداری و پرسنلی 7
فصل دوم: دارو
2-1- تعریف دارو 9
2-2- طبقهبندی داروها 9
2-3- نام داروها 10
2-4- متابولیسم داروها 12
2-5- عواملی که بر متابولیسم موثرند 13
2-6- مراحل متابولیسم دارو 14
فصل سوم: آزمایشهای کنترل کیفی
1- آزمایشهای کنترل کیفیت 21
3-1-1- آزمایش باز شدن برای قرصها و کپسولها 22
3-1-2- آزمایش باز شدن برای قرصهای آنتریک کوتد 24
3-1-3- آزمایش باز شدن شیافها و شیافهای واژینال 24
3-1-4- آزمایش انحلال برای قرص ها و کپسولها 24
3-1-5- آزادسازی دارو 24
3-1-6- یکنواختی واحدهای دارویی 25
3-1-7- سختی قرصها 26
3-1-8- فرسایش قرصها 26
3-1-9- ویسکوزیته 26
فصل چهارم: آزمایشات انجام شده در آزمایشگاه کنترل کیفیت
4-1: روش آنالیز قرص بوسپیراکس ® 5 و 10 29
4-2: روش آنالیز قرص کارودیلول mg25 و 1205 و 6025 32
4-3: روش آنایز کپسول فلوکستین 10 و 20 36
4-4: روش آنالیز قرص وکسام mg50 40
4-5: روش تعیین مقدار قرص استامینوفن کدئین 10/300 44
4-6: روش تعیین مقدار قرص آلپرازولام 5 و 0 و 1 48
4-7: روش تعیین مقدار قرص کوتریکسول® اطفال و بزرگسال 50
فهرست منابع 54
چکیده
آزمایشگاه کنترل کیفیت شرکت تهران دارو شامل کنترلهای فیزیکی و شیمیایی، میکروبی و کنترل حین تولید میباشد. آزمایشهای فیزیکی و شیمیایی مانند نقطه ذوب و تست حلالیت و تستهای فیزیکی مجموعاً کنترلهای فیزیکی و شیمیایی میباشد. آزمایشات در قسمت دستگاهی توسط انواع دستگاههای کروماتوگرافی مانند (GC, HPLC) و انواع دستگاههای طیفسنجی مانند IR, UV-Vis و POLARIMETR و KARL-FISHER انجام میپذیرد. کنترلهای میکروبی بر روی مواد اولیه و محصولات هر دو انجام میشود. این آزمایشات شامل کنترل مواد از نظر وجود و رشد میکروب در آنهاست. در این آزمایشات میزان پرزرداتیوها ـ مواد جلوگیری کننده از پیدایش و رشد میکروبها را اندازهگیری میکنند. در قسمت کنترلهای حین تولید، آزمایشهای در رابطه وزن سنجی، سختی، ضخامت و زمان باز شدن و فرسایش به طور اختصاصی بر روی قرصها انجام میشود. آزمایشات ذکر شده روی مواد اولیه در خط تولید و محصولات مختلف انجام میگیرد. تستهای ادواری تا مدتزمان انقضای محصول به صورت ماهیانه روی محصولات تولیدی که روانه بازار شدهاند صورت میگیرد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 207
دانشگاه آزاد اسلامی
واحد شهر ری
گزارش کارآموزی
عنوان :
کنترل کیفیت
محل کارآموزی :
شرکت ایران – ترانسفو
استاد راهنما :
جناب آقای دکتر نوجوان
استاد کارآموزی :
جناب آقای مهندس اکبری
تهیه و تنظیم :
ناهید شفیعی
تابستان 1386
«به نام خدا»
تشکر و سپاس
با حمد و سپاس خداوند که به من توفیق تحقیق کردن را عنایت فرمود و با عرض تشکر از کلیه مسئولین که با حوصله و صبر اینجانب را یاری کرده و به سوالات پاسخ گفتند و راه را هموار نمودند .
در رابطه با این تحقیق باید عرض کنم که با پیشرفت علم و در نتیجه نیاز به نیروی برق و همچنین افزایش برق رسانی در مناطق دور افتاده ما را پیش از پیش به تولید برای نیازمند می سازد .
از این جهت من خود را موظف دانستم در این رابطه تحقیقاتی داشته و اطلاعاتی ، هر چند مختصر درباره درباره تولید این دستگاه عرض نمایم .
با تشکر و سپاس فراوان
ناهید شفیعی – تابستان 1374
فهرست مطالب
عنوان صفحه
فصل اول :
تاریخچه شرکت ایران – ترانسفو
اصول و طرز کارترانس
آزمایشگاه شیمی مواد
مواد مورد آزمایش در آزمایشگاه
فصل دوم : روغن ترانسفورماتور
مقدمه
انواع روغنها
روال ساخت انواع روغن ها
ترکیب شیمیایی روغن ها
ارزیابی خواص برش های روغن و روغن پایه
روغن ترانسفورمر
کاربرد روغن در ترانسفورماتور
خواص روغن
استانداردهای روغن های عایق
مشخصات روغن ترانسفورماتور
خواص فیزیکی روغن
ویسکوزیته روغن
نقطه اشتعال در محیط بسته
دانسیته یا چگالی روغن
نقطه ریزش
خواص الکتریکی روغن ترانسفورماتور
استقامت دی الکتریک یا ولتاژ شکست عایقی
ضریب تلفات عایقی
مقاومت مخصوص عایقی
خواص شیمیایی روغن ترانسفورماتور
ساختمان مولکولی روغن های عایق
سولفور خورنده
مقدار رطوبت در روغن
پایداری در مقابل اکسیداسیون
عدد خنثی سازی
رسوب یا لجن ته نشینی
افزودن مواد ضد اکسیداسیون در روغن
مخلوط کردن انواع مختلف روغن