دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد مثلث 9 ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 9 صفحه

 قسمتی از متن .doc : 

 

مثلث

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p → s2=p(p-a)(p-b)(p-c)→ یعنی →

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.

مثلث متساوی‌الاضلاع

از ویکی‌پدیا، دانشنامهٔ آزاد

مثلث متساوی‌الاضلاع

مثلث متساوی‌الاضلاع یک چندضلعی منتظم است.

ضلع‌ها و نقطه‌ها

۳

نمادهای شلافی

{۳}

نمودار کوکستر–دینکین

گروه متقارن

دوسطحی (D۳)

زاویه داخلی(درجه

°۶۰

مثلث متساوی الاضلاع یا سه‌پهلوبرابر در هندسه به مثلثی گفته می‌شود که سه ضلع آن برابر باشند.

ویژگی‌ها

با فرضِ این‌که درازای اضلاع مثلث متساوی‌الاضلاع باشد، خواهیم داشت:

مساحت:

محیط:

شعاع دایرهٔ محیطی:

شعاع دایرهٔ محاطی:

و ارتفاع: .

این روابط را می‌توان از قضیه فیثاغورس نتیجه گرفت.

یک مثلث متساوی‌الاضلاع ۳ خطّ تقارن دارد.

دایره

پرش به: ناوبری, جستجو

برای دیگر کاربردهای نام دایره به صفحهٔ دایره (ابهام‌زدایی) مراجعه کنید.



خرید و دانلود تحقیق در مورد مثلث 9 ص


تحقیق درباره مثلث خیام

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

مثلث خیام

۱

۱ ۱

۱ ۲ ۱

۱ ۳ ۳ ۱

۱ ۴ ۶ ۴ ۱

۱ ۵ ۱۰ ۱۰ ۵ ۱

شش سطر نخست از مثلث خیام

به آرایش هندسی مثلث‌شکل ضرایب بسط دوجمله‌ای، مثلث خیام،یا مثلث خیام-پاسکال گویند.

نام گذاری و تاریخچه

مثلث خیام را در برخی منابع به ندرت مثلث خیام-پاسکال-نیوتن نیز می‌گویند. این مثلث در زبان‌های گوناگون نام‌های دیگری نیز دارد در زبان انگلیسی مثلث پاسکال، ایتالیایی مثلث تارتالیا و در زبان چینی مثلث یانگ هویی نام گرفته. در آثار متون سانسکریدِ پینگالا ریاضی‌دان هندی نشانه‌هایی از استفاده از این بسط دیده می‌شود، در همان دوران عمر خیام ریاضی‌دان ایرانی ادعای کشف روشی جبری برای به دست آوردن ضرایب بسط دو جمله‌ای می‌کند ولی متاسفانه کتاب «مشکلات الحساب» کتابی که اثبات‌های این ادعا در آن آمده هنوز کشف نشده ولی در آثار طوسی تأثیر گرفته از او ضرایب را تا توان ۱۲ می‌توان دید[۱]. بعد از او در قرن ۱۲ میلادی در آثار یانگ هویی ریاضی‌دان چینی، شکل مثلث به چشم می‌خورد. در قرن ۱۶ میلادی ریاضی‌دان ایتالیایی تارتالیا هم از خود این مثلث را به جا گذاشته و پس از یک قرن پاسکال ریاضی‌دان فرانسوی هم دوره با نیوتون روی این بسط و مثلث حسابی آن کار کرد

مثلث خیام-پاسکال مثلثی از اعداد است که هر عدد از جمع دو عدد بالای خودبدست می آید.

از این مثلث می توانید در محاسبه عبارتهای مختلفی استفاده کنید.

مثلا در محاسبه حاصل عباراتی چون (a+b)n. عدد های این مثلث ضرایب عبارات هستند.

1 (a+b)0

11 (a+b)1

121 (a+b)2

1331 (a+b)3

...

مثلا برای محاسبه(a+b)۶به ردیف هفتم مثلث مراجعه می کنیم که و از اعداد آن به عنوان ضرایب ساتفاده می کنیم.

(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6

یا در مسائلی همچون این سوال:

احتمال افتادن گلوله در محل مشخص شده را

محاسبه کنید.

ابتدا شماره های مثلث خیام-پاسکال را در خانه ها می نویسیم:

مشاهده می کنید که تعداد راه های ورود گلوله به محل مورد نظر برابر عدد آن محل در مثلث خیام پاسکال است.همچنین مجموع احتمالات برابر مجموع اعداد آخرین ستون است.یعنی در این سوال احتمال برابر 32/5 است.

توجه داشته باشید که مجموع اعداد در ردیف n ام برابر است با: 2n

در این برنامه شما تعداد ردیف مورد نظر را وارد می کنید و برنامه مثلث خیام پاسکال را تا آن ردیف محاسبه می کند.

 



خرید و دانلود تحقیق درباره مثلث خیام


تحقیق درباره مثلث خیام پاسکال

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

مثلث خیام پاسکال

بسیاری عقیده دارند که مثلث حسابی پاسکال را باید مثلث حسابی خیام نامید و برخی پا را از این هم فراتر گذاشته اند .

و معتقد اند که دو جمله ای نیوتون را باید دوجمله ای خیام نامید . اندکی در این باره دقت کنیم.

همه کسانی که با جبر مقدماتی آشنایی دارند ،"دستور نیوتن" را درباره بسط دوجمله ای میشناسند. این دستور برای چند حالت خاص (وقتی n عددی درست و مثبت باشد) چنین است:

(a+b)0 = 1 (1) (a+b)1 = a+b (1,1) (a+b)2 = a2+2ab+b2 (1,2,1) (a+b)3 = a3+3a2b+3ab2+b3 (1,3,3,1) (a+b)4 = a4+4a3b2+6a2b2+4a2b3+b4 (1,4,6,4,1). . .

اعداد داخل پرانتزها، معرف ضریبهای عددی جمله ها در بسط دوجمله ای است. بلیز پاسکال (Blaise Pascal) فیلسوف و ریاضی دان فرانسوی که کم وبیش با نیوتون همزمان بود، برای تنظیم ضریبهای بسط دوجمله ای، مثلثی درست کرد که امروز به "مثلث حسابی پاسکال" مشهور است. طرح این مثلث برای نخستین بار در سال 1665 میلادی در "رساله مربوط به مثلث حسابی "چاپ شد.مثلث حسابی چنین است:

1 1 11 2 1 1 3 3 11 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 دراین مثلث از سطر سوم به بعد هر عددبرابر با مجموع اعداد بالا و سمت چپ آن در سطر قبل است و بنابراین میتوان آنرا تا هر جا که للازم باشدادامه داد. هرسطر این مثلث ضریبهای بسط دوجمله ای را در یکی از حالتها بدست میدهد بطوری که n همان شماره سطر باشد.

ضریبهای بسط دوجمله ای (برای توانهای درست و مثبت) حتا در سده دوم پیش از میلاد البته به صورت کم و بیش مبهم برای دانشمندان هندی روشن بوده است .باوجود این حق این است که دستور بسط دو جمله ای با نام نیوتن همراه باشد زیرا نیوتن آن را برای حالت کلی و وقتی n عددی کسری یا منفی باشد در سال 1676میلادی بکاربرد.که البته در این صورت به یک رشته بی پایان تبدیل میشود.

اما در باره مثلث حسابی وضریبهای بسط دوجمله ای در حالت طبیعی بودن n. از جمله، دستور بسط دو جمله ای را میتوان در "کتاب حساب مخفی" میخائیل شتیفل جبردان آلمانی (که در سال 1524 چاپ شد) پیدا کرد.

در سال 1948 میلادی،پاول لیوکی آلمانی،مورخ ریاضیات،وجود دستور نیوتن را برای توانهای طبیعی ،دز کتاب "مفتاح الحساب"(1427 میلادی) غیاث الدین جمشید کاشانی کشف کرد. بعدها س.آ.احمدوف ،مورخ ریاضیات و اهل تاشکند، دستور نیوتون وقانون تشکیل ضریبهای بسط دوجمله ای را،در یکی از رساله های نصر الدین توسی،ریاضیدان بزرگ سده سیزدهم میلادی ،کشف کرد (این رساله توسی درباره محاسبه بحث میکند). چه جمشید کاشانی وچه نصرالدین توسی ،این قاعده را ضمن بررسی قانون های مربوط به ریشه گرفتن از عددها آورده اند.

همچنین براساس آگاهی هایی که داریم حکیم عمر خیام رساله ای داشته که خود رساله تاکنون پیدا نشده ولی از نام آن "درستی شیوه های هندی در جذر وکعب "اطلاع داریم ،کهدر آن به تعمیم قانونهای هندی درباره ریشه دوم و سوم ،برای هر ریشه دلخواه پرداخته.لذا خیام از "دستور نیوتن" اطلاع داشته.

اما بنا به اسناد تاریخی معتبر قانونهای مربوط بهضریبهای بسط دوجمله ای وطرح مثلث حسابی تا سده دهم میلادی(برابر چهارم هجری) جلو میرود و به کرجی (ابوبکر محمد بن حسن حاسب کرجی ریاضیدان سده ده و یازده میلادی) پایان میپذیرد .بنابراین حتی" مثلث حسابی پاسکال" را هم از نظر تاریخی نمیتوان "مثلث حسابی خیام " نامید.

فواره رومی و مثلث خیام پاسکال

آب با آهنگ یک(یعنی واحد وزن بر واحد زمان)به داخل کاسه می ریزد در دو طرف این کاسه

آب به طور متقارن با آهنگ ۲/۱لبریز شده و به داخل دو کاسه مشابه می ریزد آب این دو کاسه

نیز لبریز شده و به داخل کاسه زیر آنها می ریزد بدین صورت که با آهنگ ۴/۲ به کاسه وسطی

می ریزد و فقط با آهنگ ۴/۱ به داخل کاسه های کناری فرو می ریزد.

صورت این کسرها ۱.۲.۱ میباشد که همان مقادیر ردیف دوم در مثلث پاسکال هستند.



خرید و دانلود تحقیق درباره مثلث خیام پاسکال


تحقیق درباره مثلث برمودا 12 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

مثلث برمودا

محقق: جلیل پرباله

رشته: دوم ریاضی

دبیر محترم: جناب آقای نهبندانی

دبیرستان هوشمند محمودیه 3

پاییز 1386

فهرست

مقدمه ......................................................................................... 1

موقعیت مثلث برمودا .......................................................................2

منطقه وحشت ............................................................................... 3

بخش‌ها و مناطق ............................................................................3

مشاهدات و گزارشات ......................................................................4

علل فرضی طبیعی.……..……………………………………….. 5

علل فرضی غیر طبیعی .……………..…………………………... 5

سیاست ………….……………………………………………...6

داستانی عجیب ...............................................................................7

خبرگزاری دانشجویان ایران .............................................................8

هواپیماهای مهم مفقود شده ................................................................9

کشتیهای مهم مفقود شده ..................................................................11

نتیجه گیری ..................................................................................13

مقدمه

مثلث برمودا محلی است وهم‌انگیز که در آن صدها هواپیما و کشتی در هوا و دریا ناپدید شده‌اند. بیش از هزار نفر در این منطقه وحشت گم شده‌اند، بدون اینکه حتی یک جسد یا قطعه پاره‌ای از یک هواپیما یا کشتی مفقود شده ، به جا بماند.

برمودا در اوایل سده 15 میلادی کشف شد. برخی منابع سال ۱۵۰۳ میلادی را تاریخ دقیق کشف جزایر برمودا عنوان کرده اند. اما بر طبق مدارک و آثار موجود، قطعا جزایر برمودا تا سال ۱۵۱۱ میلادی و در حالی که پیتر مارتیر آنگیرا در کتابش به آن اشاره کرده بود، کشف شده بود.

همچنین در سال ۱۵۱۱ میلادی، در دفاتر مستعمراتی کشور اسپانیا به ثبت رسیده بود. در مدارک به جای مانده نام دریانورد اسپانیایی به نام خوآن دو برمودز به عنوان کاشف جزایر برمودا به ثبت رسیده است. در قرن پانزدهم، کشتی‌های اسپانیایی و پرتغالی از جزایر برمودا برای تازه کردن آذوقه و بارگیری آب آشامیدنی استفاده میکردند. اما شایعات مربوط به وجود ارواح و شیاطین در جزیره و وجود طوفان‌های مهیب موسمی که به این باورها می‌افزود، باعث گشت تا اسپانیایی‌ها که در آنزمان مالکان مطلق جزایر شده بودند، در آنجا سکنی نگزینند و از جزایر برمودا با نام «جزایر شیطان» یاد کنند.

موقعیت مثلث برمودا

مثلث برمودا واقعا یک مثلث نیست، بلکه شباهت بیشتری به یک بیضی (و شاید هم دایره‌ای بزرگ) دارد که در روی بخشی از اقیانوس اطلس در سواحل جنوب شرقی آمریکا واقع است. راس آن نزدیک برمودا و قسمت انحنای آن از سمت پایین فلوریدا گسترش یافته و از پورتوریکو گذشته ، به طرف جنوب و شرق منحرف شده و از میان دریای سارگاسو عبور کرده و دوباره به طرف برمودا برگشته است. طول جغرافیایی در قسمت غرب مثلث برمودا 80 درجه است، بر روی خطی که شمال حقیقی و شمال مغناطیسی بر یکدیگر منطبق می‌گردند. در این نقطه هیچ انحرافی در قطب نما محاسبه نمی‌شود.

وینسنت گادیس که مثلث برمودا را نامگذاری کرده، آن را به صورت زیر توصیف می‌کند: « یک خط از فلوریدا تا برمودا ، دیگری از برمودا تا پورتویکو می‌گذرد و سومین خط از میان باهاما به فلوریدا بر می‌گردد. »

این محل فتنه‌انگیز و تقریبا باور نکردنی اسرار غیر قابل توصیف جهان را به خود اختصاص داده است. مثلث برمودا نامش را در نتیجه ناپدید شدن 6 هواپیمای نیروی دریایی همراه با تمام سرنشینان آنها در پنجم دسامبر 1945 کسب کرد. 5 فروند از این هواپیماها به دنبال اجرای ماموریتی عادی و آموزشی ، در منطقه مثلث ، پرواز می‌کردند که با ارسال پیامهایی عجیبی درخواست کمک کردند. هواپیمای ششم برای انجام عملیات نجات ، به هوا برخاست که هر شش هواپیما به طرز فوق‌العاده مشکوکی مفقود شدند.

آخرین پیامهای مخابره شده آنها با برج مراقبت حاکی از وضعیت غیر عادی ، عدم روئیت خشکی ، از کار افتادن قطب نماها یا چرخش سریع عقربه آنها و اطمینان نداشتن از موقعیتشان بود. این در حالی بود که شرایط جوی برای پرواز مساعد بود و خلبانان و دیگر سرنشینان افرادی با تجربه و ورزیده بودند. با وجود مدتها جستجو هیچ اثری از قطعه شکسته ، لکه روغن ، آثاری از اجسام شناور ، خدمه یا تجمع مشکوکی از کوسه‌ها دیده نشد. هیچ حادثه‌ای چه قبل و چه بعد از آن ، تا این حد حیرت‌آورتر از ناپدید شدن دسته جمعی هواپیماهای مذکور نبوده است. در حوادثی مشابه در این منطقه ‌قایقها و کشتیهایی مفقود شده‌اند (قربانیان مثلث برمودا)، در برخی موارد هم فقط خدمه و سرنشینان ناپدید گشته‌اند.

منطقه وحشت

همه روزه هواپیماهای متعددی بر فراز مثلث برمودا پرواز می‌کنند. کشتیهای بزرگ و کوچک در آبهای آن در حال تردند و افراد زیادی برای بازدید ، به این منطقه مسافرت می‌کنند، بدون آنکه اتفاقی بیفتد. از طرف دیگر ، در دریاها و اقیانوسها در سراسر دنیا ، کشتیها و هواپیماهای زیادی مفقود شده و می‌شوند. پس چرا فقط مثلث برمودا از بقیه مناطق تفکیک شده است. علت این است که اولا هیچ امیدی برای یافتن حتی اثر و نشانه‌ای وجود ندارد. ثانیا در هیچ منطقه دیگر چنین ناپدید شدنهای بی دلیل ، بیشمار و نامعلوم روی نداده و به این خوبی ثبت نشده است.



خرید و دانلود تحقیق درباره مثلث برمودا 12 ص


تحقیق درباره مثلث 9 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

مثلث

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p → s2=p(p-a)(p-b)(p-c)→ یعنی →

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.

مثلث متساوی‌الاضلاع

از ویکی‌پدیا، دانشنامهٔ آزاد

مثلث متساوی‌الاضلاع

مثلث متساوی‌الاضلاع یک چندضلعی منتظم است.

ضلع‌ها و نقطه‌ها

۳

نمادهای شلافی

{۳}

نمودار کوکستر–دینکین

گروه متقارن

دوسطحی (D۳)

زاویه داخلی(درجه

°۶۰

مثلث متساوی الاضلاع یا سه‌پهلوبرابر در هندسه به مثلثی گفته می‌شود که سه ضلع آن برابر باشند.

ویژگی‌ها

با فرضِ این‌که درازای اضلاع مثلث متساوی‌الاضلاع باشد، خواهیم داشت:

مساحت:

محیط:

شعاع دایرهٔ محیطی:

شعاع دایرهٔ محاطی:

و ارتفاع: .

این روابط را می‌توان از قضیه فیثاغورس نتیجه گرفت.

یک مثلث متساوی‌الاضلاع ۳ خطّ تقارن دارد.

دایره

پرش به: ناوبری, جستجو

برای دیگر کاربردهای نام دایره به صفحهٔ دایره (ابهام‌زدایی) مراجعه کنید.



خرید و دانلود تحقیق درباره مثلث 9 ص