لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 32
مقدمه ای بر تکنولوژی ماشینکاری
تکنولوژی صنعتی از زمانهای قدیم که همه چیز به صورت دستی ساخته می شده آغاز وتا زمان حال که تولید به روشهای تمام اتوماتیک انجام می شود ، ادامه دارد . دراین تحولات ، ماشینهای ابزار نقش مهمی ایفا کرده اند .
بدون وجود ماشینهای ابزار هیچ هواپیما ، خودرو ، تلویزیون وکامپیوتری وجود نداشت . بسیاری از محصولات دیگر صنعتی ، پزشکی ، تفریحی وخانگی نیز بدون استفاده از ماشینهای قابل ساخت نیستند . مثلاً اگر ماشینهای ابزار نبودند ، کشاورزان در عوض تراکتور باید با استفاده از گاوآهن دست ساز زمینهای زراعی را شخم می زدند .
بسختی می توان محصولی را یافت که برای تولید آن به صورت مستقیم یا غیر مستقیم ، نیاز به یک ماشین ابزار وجود نداشته باشد . امروزه هیچ کشوری در جهان ، بدون استفاده از ماشینهای ابزار پیشرفته قادر نخواهد بود در بازار رقابت اقتصادی موفق باشد .
یک نکته مهم در رابطه با تکنولوژی تولید مدرن وجود دارد که باید برآن تاکید نمود . کارهای ماهرانه صنعتی ، نظیر قالبسازی ، ابزارسازی وماشینکاری دقیق را باید هم ارزش با تحصیلات دانشگاهی در نظر گرفت . در صنایع مدرن امروزی ، تقریباً از کارهای عادی وغیرماهرانه خبری نیست .
سیر تکامل ماشینهای ابزار
ماشینهای ابزار گروهی از ماشینها هستند که می توانند همانند خودشان را بسازند یا به عبارت دیگر انواع ماشینهای ابزار را با آنها تولید کرد . ماشینهای ابزار در انواع واندازه های مختلفی ساخته می شوند . ماشینهای ابزار کوچک را می توان بر روی یک میز کار نصب کرد ودر مقابل ماشینهای ابزار سنگین ممکن است تا چندصد تن وزن داشته باشند .
سوالی در مورد پیدایش ماشینهای ابزار ، شبیه به این سوال مطرح است که : ابتدا مرغ به وجود آمده یا تخم مرغ ؟ . یعنی می توان این سوال را مطرح کرد که چگونه می توان یک ماشین ابزار را بدون وجود ماشینهای ابزار دیگر به وجود آورد ؟
ماشینهای ابزار اولیه
اولین ماشینهای ابزار ، یعنی ماشینهای تراش ودرل کمانی با دست ساخته شدند وتاریخ پیدایش آنها به 1200 سال قبل از میلاد باز می گردد . تا قبل از پایان قرن هفدهم میلادی ، ماشینهای تراش تنها قادر به براده برداری موادی مانند چوب ، عاج وفلزات نرم مانند قلع یا مس بودند . تمام این ماشینها با نیروی ماهیچه ای به حرکت درمی آمدند . با ساختن ماشینهای تراش که محرکه آنها به صورت رفت وبرگشتی بود وتوسط یک تخته رکاب پایی به حرکت درمی آمد ، انسان قادرشد ماشینهای تراش را به صورت پیوسته دریک جهت به گردش درآورد . ماشینهای تراش پیشرفته تر به کمک چرخ لنگرهای بزرگ واز طریق چرخش یک چرخ آبی یا نیروی انسان وحیوان به گردش درمی آمدند . انرژی موجود در چرخ لنگر از طریق یک سیستم تسمه وپولی به چند ماشین تراش انتقال می یافت . هنگامی که جیمزوات بر روی اختراع معروف خود ماشین بخار کار می کرد . به زودی دریافت که این موتور نیازمند سیلندرهایی با سطح داخلی دقیق وتراش خورده است . این ماشین نوعی ماشین تراش مخصوص سوراخ تراشی بود که چرخ سوراخ تراشی نام گرفت .(شکل1) .
این ماشین توسط مخترع انگلیسی جان ویلکینسون در سال 1774 کامل شد وبا نیروی یک چرخ آبی به گردش درمی آمد . این ماشین قادر بود سوراخهای تا قطر را با دقت (برابر با ضخامت یک سکه کوچک ، که درآن زمان دقت خوبی محسوب می شد ) تراش دهد . این ماشین همانند دیگر ماشینهای فلزتراش درآن دوره ، قابلیت تنظیم وکنترل ابزار برشی نداشت . بنابراین پس ازهر بار تراشکاری لازم بود یک مکانیک (اولین ماشینکارهای آن دوران) ، بعداز باز کردن ابزار برشی ، آن را در موقعیت جدید ببندد ، در حدود سال 1800 میلادی . اولین ماشین تراش که قادر بود پیچهای دقیق را بتراشد ، توسط هنری مادسلی که یک استادکار ابزارساز بود طراحی وساخته شد . همان طور که در( شکل 2) دیده می شود ، یک پیچ دست ساز توسط چرخدنده هایی به محور کارگیر ماشین وصل شده وتواماً ابزار برشی را نیز در طول قطعه کار به حرکت درمی آورد . او همچنین یک سیستم کشویی برروی ابزارگیر ماشین در نظر گرفته بود که به وسیله آن می توانست موقعیت ابزار را پس از هر بار تراشیدن قطعه کار ، به دقت تنظیم کند . ماشین تراش مادسلی ، پدربزرگ تمام ماشینهای براده برداری مدرن امروز محسوب می گردد .
با نگاهی به گذشته می توان دریافت که انقلاب صنعتی ، بدون دستیابی به یک منبع انرژی ارزان یعنی ماشین بخار ، هرگز اتفاق نمی افتاد . تاقبل از ظهور ماشین بخار ، لازم بود کارگاههای صنعتی را در کنار یک منبع انرژی آبی احداث کنند وشاید در این مکانها نیروی انسانی ومواداولیه کافی وجود نداشت . با دستیابی واحدهای صنعتی به انرژی ارزان ، این امکان فراهم شد که کارخانه ها را در مکانهای مناسبی که هم نیروی انسانی کافی وجود داشت وهم فروش
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 29
مقدمه ای بر تکنولوژی ماشینکاری
تکنولوژی صنعتی از زمانهای قدیم که همه چیز به صورت دستی ساخته می شده آغاز وتا زمان حال که تولید به روشهای تمام اتوماتیک انجام می شود ، ادامه دارد . دراین تحولات ، ماشینهای ابزار نقش مهمی ایفا کرده اند .
بدون وجود ماشینهای ابزار هیچ هواپیما ، خودرو ، تلویزیون وکامپیوتری وجود نداشت . بسیاری از محصولات دیگر صنعتی ، پزشکی ، تفریحی وخانگی نیز بدون استفاده از ماشینهای قابل ساخت نیستند . مثلاً اگر ماشینهای ابزار نبودند ، کشاورزان در عوض تراکتور باید با استفاده از گاوآهن دست ساز زمینهای زراعی را شخم می زدند .
بسختی می توان محصولی را یافت که برای تولید آن به صورت مستقیم یا غیر مستقیم ، نیاز به یک ماشین ابزار وجود نداشته باشد . امروزه هیچ کشوری در جهان ، بدون استفاده از ماشینهای ابزار پیشرفته قادر نخواهد بود در بازار رقابت اقتصادی موفق باشد .
یک نکته مهم در رابطه با تکنولوژی تولید مدرن وجود دارد که باید برآن تاکید نمود . کارهای ماهرانه صنعتی ، نظیر قالبسازی ، ابزارسازی وماشینکاری دقیق را باید هم ارزش با تحصیلات دانشگاهی در نظر گرفت . در صنایع مدرن امروزی ، تقریباً از کارهای عادی وغیرماهرانه خبری نیست .
سیر تکامل ماشینهای ابزار
ماشینهای ابزار گروهی از ماشینها هستند که می توانند همانند خودشان را بسازند یا به عبارت دیگر انواع ماشینهای ابزار را با آنها تولید کرد . ماشینهای ابزار در انواع واندازه های مختلفی ساخته می شوند . ماشینهای ابزار کوچک را می توان بر روی یک میز کار نصب کرد ودر مقابل ماشینهای ابزار سنگین ممکن است تا چندصد تن وزن داشته باشند .
سوالی در مورد پیدایش ماشینهای ابزار ، شبیه به این سوال مطرح است که : ابتدا مرغ به وجود آمده یا تخم مرغ ؟ . یعنی می توان این سوال را مطرح کرد که چگونه می توان یک ماشین ابزار را بدون وجود ماشینهای ابزار دیگر به وجود آورد ؟
ماشینهای ابزار اولیه
اولین ماشینهای ابزار ، یعنی ماشینهای تراش ودرل کمانی با دست ساخته شدند وتاریخ پیدایش آنها به 1200 سال قبل از میلاد باز می گردد . تا قبل از پایان قرن هفدهم میلادی ، ماشینهای تراش تنها قادر به براده برداری موادی مانند چوب ، عاج وفلزات نرم مانند قلع یا مس بودند . تمام این ماشینها با نیروی ماهیچه ای به حرکت درمی آمدند . با ساختن ماشینهای تراش که محرکه آنها به صورت رفت وبرگشتی بود وتوسط یک تخته رکاب پایی به حرکت درمی آمد ، انسان قادرشد ماشینهای تراش را به صورت پیوسته دریک جهت به گردش درآورد . ماشینهای تراش پیشرفته تر به کمک چرخ لنگرهای بزرگ واز طریق چرخش یک چرخ آبی یا نیروی انسان وحیوان به گردش درمی آمدند . انرژی موجود در چرخ لنگر از طریق یک سیستم تسمه وپولی به چند ماشین تراش انتقال می یافت . هنگامی که جیمزوات بر روی اختراع معروف خود ماشین بخار کار می کرد . به زودی دریافت که این موتور نیازمند سیلندرهایی با سطح داخلی دقیق وتراش خورده است . این ماشین نوعی ماشین تراش مخصوص سوراخ تراشی بود که چرخ سوراخ تراشی نام گرفت .(شکل1) .
این ماشین توسط مخترع انگلیسی جان ویلکینسون در سال 1774 کامل شد وبا نیروی یک چرخ آبی به گردش درمی آمد . این ماشین قادر بود سوراخهای تا قطر را با دقت (برابر با ضخامت یک سکه کوچک ، که درآن زمان دقت خوبی محسوب می شد ) تراش دهد . این ماشین همانند دیگر ماشینهای فلزتراش درآن دوره ، قابلیت تنظیم وکنترل ابزار برشی نداشت . بنابراین پس ازهر بار تراشکاری لازم بود یک مکانیک (اولین ماشینکارهای آن دوران) ، بعداز باز کردن ابزار برشی ، آن را در موقعیت جدید ببندد ، در حدود سال 1800 میلادی . اولین ماشین تراش که قادر بود پیچهای دقیق را بتراشد ، توسط هنری مادسلی که یک استادکار ابزارساز بود طراحی وساخته شد . همان طور که در( شکل 2) دیده می شود ، یک پیچ دست ساز توسط چرخدنده هایی به محور کارگیر ماشین وصل شده وتواماً ابزار برشی را نیز در طول قطعه کار به حرکت درمی آورد . او همچنین یک سیستم کشویی برروی ابزارگیر ماشین در نظر گرفته بود که به وسیله آن می توانست موقعیت ابزار را پس از هر بار تراشیدن قطعه کار ، به دقت تنظیم کند . ماشین تراش مادسلی ، پدربزرگ تمام ماشینهای براده برداری مدرن امروز محسوب می گردد .
با نگاهی به گذشته می توان دریافت که انقلاب صنعتی ، بدون دستیابی به یک منبع انرژی ارزان یعنی ماشین بخار ، هرگز اتفاق نمی افتاد . تاقبل از ظهور ماشین بخار ، لازم بود کارگاههای صنعتی را در کنار یک منبع انرژی آبی احداث کنند وشاید در این مکانها نیروی انسانی ومواداولیه کافی وجود نداشت . با دستیابی واحدهای صنعتی به انرژی ارزان ، این امکان فراهم شد که کارخانه ها را در مکانهای مناسبی که هم نیروی انسانی کافی وجود داشت وهم فروش کالاهای تولید شده نیز بدون استفاده از ماشینهای ابزار ممکن نبود ، زیرا برای ساخت سیلندرهای ماشینهای بخار لازم بود ، داخل تراشی قطعات فلزی با دقت مناسب انجام شود .
ساخت ماشین فرز ، پیشرفت مهم دیگری در زمینه توسعه ماشینهای ابزار محسوب می شود . ماشین فرز در اصل از تغییر درطرح اولیه ماشین تراش به وجود آمد . درسال 1820 ، الای میتنی که یک مخترع وتولیدکننده امریکایی بود ، برای تولید انبوه تفنگ یک ماشین مخصوص را طراحی کرد . ماشین فرز ویتنی (شکل 3) قادر بود قطعات قابل تعویض تفنگ را تولید کند . تاقبل از آن زمان ، قطعات تفنگ به صورت دستی ساخته می شدند ودربسیاری موارد ، قطعه یک تفنگ رانمی توانستند در تفنگ مشابه دیگر نصب کنند . ماشین فرزویتنی مجهز به سیستم پیشروی مکانیزه بود ، ولی یک عیب داشت . دراین ماشین
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 55
فرایند ماشینکاری سایشی
سنگزنی
متداولیرین فرآینده ماشینکاری سایشی سنگزنی است. دراین فرآیند دانههای ساینده به شکل یک چرخ به یکدیگر چسبانیده شدهاند. عملکرد یک چرخ سمباده بشدت تابع ماده چسباننده و همچنین آرایش فضایی دانههای سایند (موسوم به ساختار) آن است.
ساختار چرخ سمباده- چگونگی قرار گرفتن ذرات ساینده نسبت به یکدیگر ساختار نامیده میشود. اگر دانهها خیلی نزدیک هم باشند "فشرده" و اگر دور از یکدیگر باشند "باز" نامیده میشوند. چرخهای سمبادهای که دارای ساختار باز هستند حفرههای تراشة بزرگتر ولی در عوض لبه های برندة کمتر در واحد سطح دارند. (شکل7-27)
در سنگزنی تراشههاکوچکند، ولی اصول مکانیزم تشکیل آنها همان فشردن و برش است که در فصل 21 برای تراشکاری معمولی فلزات مورد بحث قرار گرفت. در شکل(8-27) تراشههای فولادی حاصل از فرآیند سنگزنی با بزرگ نمایی زیاد نشان داده شده است. دراین تراشهها همان ویژگیها پیشانی برش و ساختار لایهای تراشههای دیگر فرآیندهای ماشینکاری دیده میشود غالباُ تراشهها آنقدر انرژی حرارتی دارند که میسوزند و یا در هوا ذوب میشوند. اگر در حین سنگزنی از سیال تراشکاری استفاده نشود، تراشه های سوزان بصورت جرقه مشاهده میشوند. در حالیکه در سنگزنی سرعت تراش بالاست، مقادیر تغذیه و عمق تراش کوچکند و در نتیجه اعداد توان مصرفی ویژه بسیار بالاست. از آنجا که عمل تراشیدن نسبت به خراشیدن یا ساییدن قطعاکارآیی بیشتری دارد. شکستن دانهها و بیرون آمدن آنها از داخل چسب پدیدهای طبیعی در جهت تیز نگه داشتن دانههاست. باکند شدن دانهها نیروی تراش بیشتر میشود و تمایل دانهها برای شکستن یا خارج شدن چسباننده افزایش می یابد.کنده شدن دانهها با تغییر چسب موسوم به درجه کنترل میشود.
بنابراین درجه به معنی این است که دانههابا چه قدرتی در چرخ نگه داشته میشوند. در واقع، درجه به دو عامل زیر بستگی دارد: 1-استحکام ماده چسباننده 2-مقدار ماده چسباننده به عنوان عامل اتصال دانهها. عامل دوم در شکل (9-27) نشان داده شده است. معمولاً چرخهای سمباده متخلخل هستند و دانهها ساینده با ایستگاههایی از مادة چسباننده در کنار هم نگه داشته میشوند. اگر در یک چرخ سمباده سطح مقطع ایستگاها بزرگتر باشد نیروی لازم برای شکستن دانه و آزاد کردن آن نسبت به نوعی که دارای ایستگاههای کوچکتر است، بیشتر خواهد بود. اگر نیروی کمیبرای کندن دانهها مورد نیاز باشد، آنرا نرم مینامند. معمولاً چرخها را در یکی از دو طبقه نرم یا سخت طبقه بندی میکنند و معیار آن استحکام کلی چرخ حاصل از استحکام چسب و
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
شبیهسازی ماشینکاری الکتروشیمیایی (ECM)
سید مهدی مروج، ایرج میرزایی ، حسن شیروانی
ارومیه- دانشگاه ارومیه دانشکده فنی گروه مکانیک
sm_moravvej@yahoo.com
چکیده
در این پژوهش به مدلسازی روند ماشینکاری الکتروشیمیایی (Electro Chemical Machining)، که یکی از روشهای غیر سنتی و جدید ماشینکاری میباشد، پرداخته میشود. هدف از شبیهسازی این فرآیند کاهش هزینههای مربوط به مدلسازی و ساخت قالبهای ماشینکاری، زمان و غیره میباشد. در این راستا، با بکارگیری رویکرد قدرتمند گسستهسازی با روش اجزاء محدود، مدلسازی انجام گرفته و معادلات حاکم بر فرآیند حل شده و فرسایش در هر گام زمانی برآورد میگردد. دستاوردها نشان از توانایی بسیار بالای این رویکرد در بازآفرینی رایانهای این فرآیند دارد. دستاوردها، با ماشینکاری رایانهای پره توربین نشان داده شده است.
.
واژههای کلیدی : ماشینکاری الکترو شیمیای- برش آندی- اجزاء محدود- ECM
.
مقدمه
ماشینکاری الکتروشیمیایی که گاهی اوقات با نام برشکاری کاتدی نیز از آن یاد میشود یکی از روشهای اخیر ماشینکاری، با توانایی بالا برای استفاده، میباشد. پایه و اساس فرآیند جدید نمیباشد اما کاربرد فرآیند بعنوان یک ابزار فلزکاری بدیع میباشد. گسترش وسیع این فرآیند را میتوان در راستای نیاز به ماشینکاری مواد سفت و سخت، افزایش یافتن هزینه تلاش و کوشش دستی و نیاز به پیکربندیهای ماشینکاری فرآتر از توانایی ماشینکاریهای مرسوم جستجو کرد.
یکی از برتریهای توانمند ECM در ماشینکاری سطحهای هندسی پیچیده سه بعدی میباشد، بگونهای که اثر ابزار برش بر روی قطعه کار باقی نمیماند. عمر زیاد ابزار کار از ویژگیهای بارز این روش میباشد، بطوریکه میتوان قطعات خیلی زیادی را تنها با یک سری قالب ساخت. ماشینکاری فلزات و آلیاژها، بدون توجه مقاومت و سختی آنها، از دیگر تواناییهای قابل بیان این روش میباشد. هرچند این تواناییها را میتوان مشترک با روش Electric Discharge Machining, EDM یافت اما سطح ماشینکاری شده عاری از تنش و پرداخت سطح بسیار بالا (5 میکرون) جذابیتهای اضافی این روش میباشد، ]1[. ناگفته نماند که نرخ ماشینکاری مواد سخت با ECM، در مقایسه با روشهای مرسوم بیشتر است.
کاربردهای عملی ماشینکاری الکتروشیمیایی به تنهایی برای برداشت فلز از یک سطح بکار نمیرود بلکه میتواند برای پروفیل کردن یک قطعه نیز مورد استفاده قرار گیرد. بیشتر، پرههای توربین گاز و بخار با این روش ماشینکاری میشوند و این تلاش نیز مدلسازی نمونه ای از این قطعات را نشان میدهد.
2- فرآیند ECM
میشل فارادی دریافت که اگر دو الکترود در داخل مایعی رسانا قرار بگیرند و به آنها جریان مستقیم اعمال گردد روکشی از ذرات فلز آند بر روی سطح فلز کاتد بوجود خواهد آمد. این فرآیند، در صنعت، سالها بانام آبکاری انجام میگیرد. با تغییرات ویژهای، ECM دگرگون شده آبکاری میباشد. فرآیند ECM از ابزار و یا الکترودی که پیشتر شکل داده شده است استفاده میکند. از این دیدگاه که در ماشینکاری، مواد از روی قطعهکار برداشته میشود کاتد ابزار و آند قطعهکار میباشد. همچنین الکترولیتی در فاصله کوچک تامین شده بین قطعهکار و ابزار پمپ میشود، شکل 1.
شکل 1- طرحواره ماشینکاری الکتروشیمیایی
شکل 1 اجزای پایهای فرآیند را که شامل ابزار، قطعهکار، الکترولیت و منبع تغذیه میباشد، نشان میدهد.
ECM فرآیندی پویا میباشد بگونهای که در آن ابزار با نرخ ثابت به سوی قطعهکار حرکت کرده و همچنین مرز قطعهکار پیوسته فرسایش یافته و تغییر میکند و این روند تا بهدست آمدن شکل نهایی محصول تکرار میگردد.
هنگام بازآافرینی رایانهای در هر تکرار چگالی جریان محاسبه شده و بر اساس آن مقدار فرسایش سطح برآورد گشته و مرز سطح تغییر میکند.
3- تئوری حاکم در شکلدهی با ECM
تئوری ECM و حل مدلهای دو یا سه بعدی آن ساده نمیباشد و تنها روشهای عددی است که میتواند معادلات دیفرانسیل را برای هندسههای پیچیده بازگشایی کرده و پاسخ آنرا بدست آورد که در این شبیه سازی نیز استفاده شده است. اما حل تحلیلی و دقیق بعضی مدل ساده یکبعدی ممکن میباشدکه جهت تفهیم بهتر نحوه مدلسازی در زیر به آن پرداخته میشود. نخست ساده سازیهایی برای حل مدل یکبعدی ساده بصورت زیر در نظر گرفته میشود:
1- ابزار و قطعه کار دارای رسانایی بالا در قیاس با محلول الکترولیت میباشند و همچنین سطح ابزار و سطح کار هم پتانسیل هستند.
2- ولتاژ وابسته به واکنش الکتروشیمیایی در الکترودها صفر است از این رو قانون اهم مستقیما بکار میرود.
3- خواص سیستم یکنواخت بوده و به جهت بستگی ندارد.
4- جریان الکترولیت تاثیر مهمی بر رسانایی ویژه الکترولیت ندارد و این مقدار در عملیات ECM ثابت باقی میماند.
5- کل جریان برای براده برداری بکار میرود.
در این شرایط نرخ تغییر فاصله بین ابزار و قطعهکار، ، نسبت به سطح ابزار از قانون فارادی بدست میآید ]2-3[:
(1)
که در آن وزن اتمی، ظرفیت یون حل شده، ثابت فارادی، چگالی فلز آند، قطعه کار، سرعت پیشروی ابزار و شدت جریان است. شدت جریان از قانون اهم به شکل زیر بدست میآید:
(2)
در معادله بالا رسانایی الکترولیت و اختلاف پتانسیل است. با قرار دادن در معادله 2، معادله 3 حاصل میشود:
(3)
و در حل معادله فوق دو حالت عملی را میتوان بررسی کرد که در ادامه آورده شدهاند.
الف) سرعت پیشروی ابزار صفر
پاسخ برای در مدت زمان بصورت زیر بهدست میآید:
(4)
که در آن فاصله ماشینکاری اولیه است. همانگونه که دیده میشود فاصله دهنه با ریشه دوم زمان بهصورت نامحدود زیاد میشود، شکل 2 (الف). این حالت اغلب در پلیسهگیری با ECM به کارمیرود که در آن ناهمواریهای سطح در چند ثانیه برداشته شده و نیازی به حرکت مکانیکی الکترود نیست.
ب) سرعت پیشروی ثابت
ابزار با سرعت ثابتی به طرف قطعه کار حرکت میکند. پاسخ معادله 3 به شکل بدست میآید:
(5)
توجه شود که فاصله دهنهها به یک مقدار پایدار نزدیک میشود.
(6)
این حالت ECM که در آن فاصله تعادلی بدست میآید به طور گسترده در تولید مجدد شکل کاتد ابزار روی قطعهکار بکار میرود. نمایش شماتیک حل معادله 5 در شکل 2 (ب) مشاهده میشود.
شکل 2- تغییرات فاصله دهانه با مدت زمان ماشینکاری الف )سرعت پیشروی الکترود صفر ب) سرعت پیشروی ثابت
در حالتهای دو و سه بعدی با هندسه پیچیده و مرزهای منحنی معادله 2 برقرار نمیباشد. این عدم برقراری بهسبب توزیع غیر یکنواخت پتانسیل الکتریکی در الکترولیت میباشد. از این رو برای بدست آوردن میدان شدت جریان باید از رابطه زیر استفاده کرد ]4[:
(7)
که در آن پتانسیل از حل معادله لاپلاس، معادله 8، در هر نقطه از الکترولیت بهدست میآید.
(8)
و در آخر قانون فارادی:
(9)
برای محاسبه سرعت پسروی آند به کار میرود.
روشهای مختلفی از جمله روش کاملا تحلیلی، روش گرافیکی- قیاسی و غیره برای حل این معادلات به کار رفته است. به علت پیچیدگی مساله شکلدهی در ECM، بکارگیری این روشهای در مسایل عملی مشکل است. بدون شک روشهای عددی کامپیوتری عملیترین راه حلها را پیشنهاد میدهند و شاید بهرهجویی هنرمندانه از آنها تا اندازهای زیاد طراحی تجربی و مرسوم ابزار را به دست تاریخ پسپارد.
4- اجزاء محدود ECM
روش اجزاء محدود رویکردی توانمند برای تحلیل عددی طیف وسیعی از مسایل مهندسی میباشد. تحلیل تنش و تغییر شکل سازههای بزرگ و پیچیده، بررسی مسایل انتقال حرارت و جریان سیال و غیره پهنههای گسترده برای حضور اجزائ محدود میباشد ]5[.
همانگونه که پیشتر اشاره شد اغلب در مسایل دو بعدی برای بدست آوردن شدت جریان باید از روشهای عددی کمک گرفت. در این تلاش روش اجزاء محدود برای این منظور انتخاب شده است. و همچنین برای برپایی معادلات اجزاء محدود از ANSYS کمک گرفته شده است و با رویکردی برگرفته از آنالوژی میان معادلات حرارت و مغناطیس از المان PLANE 55 که المانی حرارتی میباشد ]6[ برای مدلسازی الکترولیت استفاده شده است. در روند اجرای برنامه شدت جریان در میدان الکترولیت بهدست آمده و با استفاده از اصل فارادی مقدار خوردگی فلز قطعهکار محاسبه شده سپس مرزهای قطعه کار جابجا شده و میدان هندسی الکترولیت با توجه به این جابجایی دوباره ساخته و با المان یاد شده دوباره مشبندی میشود و دوباره تحلیل تا انتها ادامه میبابد . شکل 3 ابزار کار، قطعهکار، هندسه میدان الکترولیت و مشبندی الکترولیت نمونه اجرا شده را نشان میدهد.
شکل 3- مدل هندسی اولیه ساخته شده (بالا)، مشبندی الکترولیت (پایین)
شایان ذکر است که نرمافزار ANSYS تنها برای حل معادلههای حاکم بکار گرفته شده است و برای شبیهسازی روند فرآیند ECM برنامه جداگانهای با نام ECMSIM نوشته شده است. این برنامه نوشته شده شامل 14 فایل به زبان پایه برنامه Ansys میباشد . جهت رویت بعضی از فایل ها و نحوه ارتباط آنها با یکدیگر و ههچنین وظیفه هریک از این فایلها در این شبیه سازی میتوایند به مرجع 4 مراجعه کنید.
در روند برنامه باید شرط تعادل پیش از شرط خاتمه گنجانده شود. به دیگر سخن، نخست قطعهکار باید به صورت شکل نهایی، اما