دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

حل معادلات عددی دیفرانسیل

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 220

 

پایا ن نامه کارشناسی

حل عددی معادلات دیفرانسیل

استاد راهنما:

دکتر جلال الدین ایزدیان

گرد آورنده:

زهرا سالاری

زمستان 1383

فهرست

مقدمه – معرفی معادلات دیفرانسیل 4

بخش اول – حل عددی معادلات دیفرانسیل معمولی 20

فصل اول – معادلات دیفرانسیل معمولی تحت شرط اولیه 20

فصل دوم – معادلات دیفرانسیل معمولی تحت شرایط مرزی 66

فصل سوم – معادلات دیفرانسیل خطی 111

بخش دوم – حل عددی معادلات دیفرانسیل جزئی 125

فصل اول – حل معادلات عددی هذلولوی 128

فصل دوم – حل معادلات عددی سهموی 146

فصل سوم – حل معادلات عددی بیضوی 164

فصل چهارم – منحنی های مشخصه 184

مقدمه

معرفی معادلات دیفرانسیل

معادله در ریاضیات وقتی با اسم خاص و صورت خاص می آید خود به تنهایی مسأله ای را نمایش می دهد که در آن می خواهیم مجهولی را بدست آوریم.

کاربرد معادله دیفرانسیل از نظر تاریخی با معرفی مفهوم های مشتق و انتگرال آغاز گردید. ساده ترین نوع معادله دیفرانسیل آن دسته از معادلاتی هستند که مشتق تابع جواب را داشته باشیم. که چنین محاسبه ای به پاد مشق گیری و انتگرال گیری نامعین موسوم است.

معادلات دیفرانسیل وابستگی بین توابع و مشتق های توابع را نشان می دهد. که از لحاظ تاریخی به طور طبیعی از زمان کشف مشتق به وسیله نیوتن ولایب نیتس آغاز می شود. (قرن هفدهم میلادی). که با رشد سریع علم و صنعت در قرن بیستم روشهای عددی حل معادلات دیفرانسیل مورد توجه قرار گرفتند که توسعه و پیشرفت کامپیوتر ها در پایان قرن بیستم



خرید و دانلود  حل معادلات عددی دیفرانسیل


تحقیق درباره حل مسایل مقدار اولیه – مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیرخطی بوسیله شبکه‌های عصبی (مقاله)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

مقاله چند بعدی

حل مسایل مقدار اولیه- مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیر خطی بوسیله شبکه های عصبی مصنوعی پیشخور.

چکیده

در این مقاله روش جدید عمومی برای حل علمی مسایل مقدار اولیه- مرزی دستگاه معادلات جزئی بخصوص مراتب بالا و غیرخطی در یک ابرمکعب سیلندری ارائه می شود. این روش یک روش مش- فری بوده و جدایی بفرم بسته تحلیلی تولید میکند. ترکیبی از مفاهیم شبکه های عصبی مصنوعی و ابزارهای بهینه سازی چند بعدی در این روش بکار میرود. بوسیله مفاهیم تقریب توابع چندمتغیر، وابسته به مباحث شبکه های عصبی مصنوعی پیشخوار و نیز بکمک هم محلی در نقاطی مشخص، حل مسئله مقدار اولیه- مرزی به مسئله بهینه سازی نامتغیر یک تابع انرژی تبدیل میگردد. بعبارت دقیقتر یک جواب آزمون عصبی برای مسئله مقدار اولیه- مرزی متشکل از مجموع دو قسمت در نظر میگریم: قسمت اول در شرایط اولیه- مرزی (زمانی- فضایی) صدق میکند، درحالیکه قسمت دوم شامل متغیرهای لازم برای مینیمم سازی تابع خطای مسئله میباشد و بکمک یک شبکه عصبی سه لایه و پیشخور شبیه سازی گشته و برای صدق در دستگاه معادلات دیفرانسیل مسئله آموزش میبیند. این روش را میتوان بعنوان تعمیمی مناسب از روشهای معینی در نظر گرفت. کاربرد این روش جدید صرفنظر از نوع شرایط اولیه- مرزی در دامنه ای از یک معادله دیفرانسیل معمولی تا دستگاهی از معادلات دیفرانسیل جزئی متغیر است.

کلمات کلیدی:

دستگاه معادلات دیفرانسیل جزئی وابسته بزمان- مسایل مقدار اولیه- مرزی- شبکه های مصنوعی پیشخور- یادگیری نظارت بهینه سازی نامقید چندبعدی.

1.مقدمه:

در علوم مهندسی اغلب سیستمهای دنیای واقعی که با معادلات دیفرانسیل توصیف شده اند، شامل چندین شرط اولیه یا مرزی وابسته به شرایط فیزیکی مسئله نیز میباشند. مهمترین شاخص در مورد هر مسئله مقدار اولیه- مرزی برای یک دستگاه معادلات دیفرانسیل جزئی عبارتست از خوش‌خیمی آن یعنی وجود و یکتایی جواب مسئله بسته بنوع معادلات و نیز نوع شرایط اولیه- مرزی قابل بحث است. مانند سایر مسایل روشهای زیادی هر چند مشکل، برای حل غیرتحلیلی چنین مسایلی وجود دارد از قبیل روشهای جداسازی متغیرها، تبدیلات انتگرالی، تغییر مختصات، تغییر متغییر وابسته، معادلات انتگرال و . . . ارزش این روشها زمانی مشخص تر میشود که برای مسایلی بکار بروند که جواب تحلیلی نداشته یا جواب تحلیلی‌شان مستقیما قابل محاسبه نباشد. این ارزش در صورت توانایی بکارگیری روش برای دستگاه معادلات دیفرانسیل جزئی (وابسته بزمان) از مراتب بالا و غیرخطی، دوچندان میشود.

در ریاضیات کاربردی عبارتند از همگرایی، پایدار علمی، سازگاری و خوشحالی عددی آنها. سه دسته مجزا برای این روشهای حل غیرتحلیلی میتوان در نظر گرفت: روشهای تغییراتی، روشهای بسطی و روشهای علمی. در روشهای تغییراتی معادلات دیفرانسیل مسئله را بهمراه شرایط اولیه- مرزی آن بیک مسئله مینیمم سازی تابعکی مناسب در یک فضای تابعی تبدیل کرده و با حل این مسئله بهینه سازی جواب مسئله اصلی را بدست میاوریم. مهمترین مشکل چنین روشهایی تعریف مناسب تابعکهای مورد نیاز میباشد.

در روشهای بسطی (طیفی و شبه طیفی) مانند روشهای هم محلی و گالرکین یا روشهای سری فوریه، سری وزنوله متناهی جواب تقریبی مسئله را بکمک یک دسته از توابع پایه ای (چندجمله ایهای متعامد) در نظر گرفته و با تحویل مسئله اصلی بیک دستگاه معادلات (خطی) ضرایب مجهول سری مذکور را بدست میاوریم مهمترین مشکلات این روشها نحوه انتخاب توابع پایه ای و چگونگی محاسبه ضرایب مجهول، میباشد.

تا اینجا روشهای مزبور همگی بدون مش میباشند. در مقابل، روشهای علمی طبق معمول بر پایه گستر سازی دامنه تعریف مسئله به تعدای المان، محلی بوسیله یک مجموعه از پیش تعیین شده و متناهی از نقاط گرهی بنام مش، استوار هستند و جواب را در این مجموعه متناهی از نقاط بدست میدهند.

مهمترین مشکلات چنین روشهایی عبارتست از اسلوب المان، خواص حل کنندة اصلی و محاسبات مربوط به تولید مش. از میان روشهای علمی برای حل مسایل مقدار اولیه- مرزی معادلات دیفرانسیل جزئی، مشهورترینشان روشهای تفاضلات، المان محدود، حجم محدود و المان مرزی میباشند.

اکثر کارهای پیشین در حل مسایل مقدار اولیه امرزی معادلات دیفرانسیل جزئی در یک دامنة ابر مکعبی بکمک شبکه های عصبی پیشخور، به اصل جایگذاری تقریب تابع جواب که بوسیلة خواص تقریب زنندگی



خرید و دانلود تحقیق درباره حل مسایل مقدار اولیه – مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیرخطی بوسیله شبکه‌های عصبی (مقاله)


تحقیق درباره حل مسایل مقدار اولیه – مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیرخطی بوسیله شبکه‌های عصبی (مقاله)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

مقاله چند بعدی

حل مسایل مقدار اولیه- مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیر خطی بوسیله شبکه های عصبی مصنوعی پیشخور.

چکیده

در این مقاله روش جدید عمومی برای حل علمی مسایل مقدار اولیه- مرزی دستگاه معادلات جزئی بخصوص مراتب بالا و غیرخطی در یک ابرمکعب سیلندری ارائه می شود. این روش یک روش مش- فری بوده و جدایی بفرم بسته تحلیلی تولید میکند. ترکیبی از مفاهیم شبکه های عصبی مصنوعی و ابزارهای بهینه سازی چند بعدی در این روش بکار میرود. بوسیله مفاهیم تقریب توابع چندمتغیر، وابسته به مباحث شبکه های عصبی مصنوعی پیشخوار و نیز بکمک هم محلی در نقاطی مشخص، حل مسئله مقدار اولیه- مرزی به مسئله بهینه سازی نامتغیر یک تابع انرژی تبدیل میگردد. بعبارت دقیقتر یک جواب آزمون عصبی برای مسئله مقدار اولیه- مرزی متشکل از مجموع دو قسمت در نظر میگریم: قسمت اول در شرایط اولیه- مرزی (زمانی- فضایی) صدق میکند، درحالیکه قسمت دوم شامل متغیرهای لازم برای مینیمم سازی تابع خطای مسئله میباشد و بکمک یک شبکه عصبی سه لایه و پیشخور شبیه سازی گشته و برای صدق در دستگاه معادلات دیفرانسیل مسئله آموزش میبیند. این روش را میتوان بعنوان تعمیمی مناسب از روشهای معینی در نظر گرفت. کاربرد این روش جدید صرفنظر از نوع شرایط اولیه- مرزی در دامنه ای از یک معادله دیفرانسیل معمولی تا دستگاهی از معادلات دیفرانسیل جزئی متغیر است.

کلمات کلیدی:

دستگاه معادلات دیفرانسیل جزئی وابسته بزمان- مسایل مقدار اولیه- مرزی- شبکه های مصنوعی پیشخور- یادگیری نظارت بهینه سازی نامقید چندبعدی.

1.مقدمه:

در علوم مهندسی اغلب سیستمهای دنیای واقعی که با معادلات دیفرانسیل توصیف شده اند، شامل چندین شرط اولیه یا مرزی وابسته به شرایط فیزیکی مسئله نیز میباشند. مهمترین شاخص در مورد هر مسئله مقدار اولیه- مرزی برای یک دستگاه معادلات دیفرانسیل جزئی عبارتست از خوش‌خیمی آن یعنی وجود و یکتایی جواب مسئله بسته بنوع معادلات و نیز نوع شرایط اولیه- مرزی قابل بحث است. مانند سایر مسایل روشهای زیادی هر چند مشکل، برای حل غیرتحلیلی چنین مسایلی وجود دارد از قبیل روشهای جداسازی متغیرها، تبدیلات انتگرالی، تغییر مختصات، تغییر متغییر وابسته، معادلات انتگرال و . . . ارزش این روشها زمانی مشخص تر میشود که برای مسایلی بکار بروند که جواب تحلیلی نداشته یا جواب تحلیلی‌شان مستقیما قابل محاسبه نباشد. این ارزش در صورت توانایی بکارگیری روش برای دستگاه معادلات دیفرانسیل جزئی (وابسته بزمان) از مراتب بالا و غیرخطی، دوچندان میشود.

در ریاضیات کاربردی عبارتند از همگرایی، پایدار علمی، سازگاری و خوشحالی عددی آنها. سه دسته مجزا برای این روشهای حل غیرتحلیلی میتوان در نظر گرفت: روشهای تغییراتی، روشهای بسطی و روشهای علمی. در روشهای تغییراتی معادلات دیفرانسیل مسئله را بهمراه شرایط اولیه- مرزی آن بیک مسئله مینیمم سازی تابعکی مناسب در یک فضای تابعی تبدیل کرده و با حل این مسئله بهینه سازی جواب مسئله اصلی را بدست میاوریم. مهمترین مشکل چنین روشهایی تعریف مناسب تابعکهای مورد نیاز میباشد.

در روشهای بسطی (طیفی و شبه طیفی) مانند روشهای هم محلی و گالرکین یا روشهای سری فوریه، سری وزنوله متناهی جواب تقریبی مسئله را بکمک یک دسته از توابع پایه ای (چندجمله ایهای متعامد) در نظر گرفته و با تحویل مسئله اصلی بیک دستگاه معادلات (خطی) ضرایب مجهول سری مذکور را بدست میاوریم مهمترین مشکلات این روشها نحوه انتخاب توابع پایه ای و چگونگی محاسبه ضرایب مجهول، میباشد.

تا اینجا روشهای مزبور همگی بدون مش میباشند. در مقابل، روشهای علمی طبق معمول بر پایه گستر سازی دامنه تعریف مسئله به تعدای المان، محلی بوسیله یک مجموعه از پیش تعیین شده و متناهی از نقاط گرهی بنام مش، استوار هستند و جواب را در این مجموعه متناهی از نقاط بدست میدهند.

مهمترین مشکلات چنین روشهایی عبارتست از اسلوب المان، خواص حل کنندة اصلی و محاسبات مربوط به تولید مش. از میان روشهای علمی برای حل مسایل مقدار اولیه- مرزی معادلات دیفرانسیل جزئی، مشهورترینشان روشهای تفاضلات، المان محدود، حجم محدود و المان مرزی میباشند.

اکثر کارهای پیشین در حل مسایل مقدار اولیه امرزی معادلات دیفرانسیل جزئی در یک دامنة ابر مکعبی بکمک شبکه های عصبی پیشخور، به اصل جایگذاری تقریب تابع جواب که بوسیلة خواص تقریب زنندگی



خرید و دانلود تحقیق درباره حل مسایل مقدار اولیه – مرزی دستگاه معادلات دیفرانسیل جزئی مرتبه بالا غیرخطی بوسیله شبکه‌های عصبی (مقاله)


مقاله درباره دیفرانسیل انتگرال

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

1-آشنایی

حساب دیفرانسیل و انتگرال تاحدود زیادی عبارت است از مطالعه میزانهای تغییر کمیات. لازم است که ببینیم وقتی شناسه x به عددی نزدیک می‌شود،‌ رفتار مقدار f(x) تابع f چگونه است. این امر ما را به ایده حد می‌رساند.

مثال: تابع f را با فرمول

 

وقتی این فرمول معنی دارد، تعریف کنید. لذا f به ازای هر x که مخرج x-3 صفر نباشد، یعنی ، تعریف شده است وقتی x به 3 نزدیک شود،‌مقدار f(x) چه خواهد شد؟ به 9 و در نتیجه نزدیک می‌شود. به علاوه x-3 به 0 نزدیک می‌گردد. چون صورت و مخرج هر دو به 0 نزدیک می‌شوند.

با این حال اگر صورت را تجزیه کنیم، می‌بینیم که

 

چون با نزدیک 3 شدن x ، x+3 به 6 نزدیک می‌شود، تابع ما با نزدیک 3 شدن به x به 6 نزدیک خواهد شد. شیوه ریاضی بیان این امر آن است که بنویسیم.

 

این عبارت خوانده می‌شود: حد وقتی x به 3 نزدیک شود 6 است.

توجه کنید که وقتی x به عددی غیر از 3 نزدیک شود مشکلی نداریم. مثلا وقتی x به 4 نزدیک شود،‌ به 7 و 3-x به 1 نزدیک خواهد شد، لذا،

 

2-خواص حدها

در مثال قبل بعضی از خواص واضح حد تلویحا فرض شده بود. حال آنها را به طور صریح می‌نویسیم.

خاصیت یک .

 

این خاصیت مستقیما از مفهوم حد نتیجه می‌شود.

خاصیت دو،‌اگر c ثابت باشد،

 

وقتی x نزدیک a شود، مقدار c مساوی c می‌ماند.

خاصیت سه . اگر c ثابت بوده و f تابع باشد،

 

چند مثال.

 

 

خاصیت چهار ، اگر f و g تابع باشند:

 

در این صورت وجود ندارد. وقتی x از چپ به 1 نزدیک شود (یعنی‌از طریق مقادر x<1) ،‌f(x) به 1 نزدیک می‌گردد. ولی وقتی x از راست به 1 نزدیک شود یعنی، از طریق مقادیر x>1) ، f(x) به 2 نزدیک می‌گردد.

توجه کنید که وجود یا عدم وجود حد f(x) وقتی نه به مقدار f(a) بستگی دارد و نه حتی لازم است f در a تعریف شده باشد. هرگاه ، آنگاه L عددی است،‌که با رفتن x به قدر کافی نزدیک به a ، می‌توان f(x) را به دلخواه به آن نزدیک کرد. مقدار L (یا وجود L) با رفتار f در مجاورت a معین می‌شود نه با مقدارش در a (اگر چنین مقداری حتی موجود باشد) .

مسائل حل شده :

8-1-حدود زیر را (در صورت وجود ) بیابید.

الف) ب)

پ) ت)

حل. (الف) هر دوی و 1/y وقتی 2 y ( دارای حدند، لذا، طبق خاصیت پنچ

 

ب) در اینجا باید به طور غیر مستقیم عمل کرد. تابع وقتی 0 x( دارای حد است . لذا، با فرض وجود این حد، خاصیت پنج ایجاب می‌کند که

 

نیز موجود باشد. ولی این امر ممکن نیست ، لذا،

 

موجود نخواهد بود.

(پ)

(ت) وقتی x از راست به 2 نزدیک می‌شود ( یعنی 2 x> ) ،‌[x] مساوی 2 می‌ماند ولی وقتی x از چپ به 2 نزدیک شود (یعنی 2 x<)، [x] مساوی 1 خواهد ماند. لذا، وقتی x به 2 نزدیک شود،‌عدد منحصر به فردی وجود ندارد که [x] بدان نزدیک گردد. پس وجود نخواهد داشت.

2-حد

 

(این حد در حساب دیفرانسیل اهمیت خواهد داشت) را برای هر یک از توابع زیر بیابید:

(الف) ب)

پ)



خرید و دانلود مقاله درباره دیفرانسیل انتگرال


تحقیق در مورد معادله دیفرانسیل

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .docx ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 7 صفحه

 قسمتی از متن .docx : 

 

معادله دیفرانسیل

معادله دیفرانسیل معادله‌ای است بیانگر یک تابعی از یک یا چندین متغیر وابسته و مشتقهای مرتبه های مختلف آن متغیرها. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیست‌شناسی و ستاره‌شناسی) طبیعی‌ترین بیان ریاضی خود را در زبان معادلات دیفرانسیل می‌یابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، بویژه در هندسه و نیز در مهندسی و اقتصاد و بسیاری از زمینه‌های دیگر علوم فراوان‌اند.

معادلات دیفرانسیل در بسیاری پدیده های علوم رخ می دهند. هر زمان که یک رابطه بین چند متغیر با مقادیر مختلف در حالت ها یا زمان های مختلف وجود دارد و نرخ تغییرات متغیرها در زمان های مختلف یا حالات مختلف شناخته شده است میتوان آن پدیده را با معادلات دیفرانسیل بیان کرد.

به عنوان مثال در مکانیک، حرکت جسم بوسیله سرعت و مکان آن در زمان های مختلف توصیف می شود و معادلات نیوتن به ما رابطه بین مکان و سرعت و شتاب و نیروهای گوناگون وارده بر جسم را میدهد. در چنین شرایطی می توانیم حرکت جسم را در قالب یک معادله دیفرانسیل که در آن مکان ناشناخته جسم تابعی از زمان است بیان کنیم.

شاخه بندی

متدهای حل معادلات دیفرانسیل بسیار مرتبط با نوع معادله هستند. معادلات دیفرانسیل را به طور کلی به دو دسته می توان تقسیم کرد.

معادلات دیفرانسیل عادی: در این نوع معادلات تابع جواب دارای تنها یک متغیر مستقل است.

معادلات دیفرانسیل جزیی: در این نوع معادلات تابع جواب دارای چندین متغیر مستقل می باشد.

هر دو نوع این معادلات را می توان از دیدگاه خطی یا غیر خطی بودن تابع جواب هم دسته بندی کرد.

مجسم سازی جریان هوا به داخل لوله که با معادلات ناویر-استوکس ، مدل سازی شده‌است، مجموعه‌ای از معادلات دیفرانسیل جزئی

معادلات دیفرانسیل مشهور

قانون دوم نیوتن در دینامیک (مکانیک)

معادلات همیلتون در مکانیک کلاسیک

معادلات ماکسول در الکترومغناطیس

معادلات پواسن

مسئله منحنی کوتاه‌ترین زمان.

فرمول انیشتین.

قانون گرانش نیوتن.

معادله موج برای تار مرتعش.

نوسانگر همساز در مکانیک کوانتومی.

نظریه پتانسیل.

معادله موج برای غشای مرتعش.

معادلات شکار و شکارچی.

مکانیک غیر خطی.

مسئلهٔ مکانیکی آبل.

نوع (عادی یا جزئی)

معادله شامل متغیر مستقل x ، تابع (y = f(x و مشتقات f را یک معادله دیفرانسیل عادی می‌نامیم.

معادله ای متشکل از یک تابع مجهول با بیش از یک متغیر مستقل همراه با مشتقات جزئی آن معادله دیفرانسیل جزئی می نامیم.

مرتبه

که عباترت است از مرتبه مشتقی که بالاترین مرتبه را در معادله دارد.

درجه

نمای بالاترین توان مشتقی که بالاترین مرتبه را در معادله دارد، پس از حذف مخرج کسرها و رادیکالهای مربوط به متغیر وابسته و مشتقاتش. معمولا یک معادله دیفرانسیل مرتبه n جوابی شامل n ثابت دلخواه دارد، این جواب را جواب عمومی می‌نامند.

ساختار

معادلات دیفرانسیل ساختارهای متفاوتی هستند و هر ساختار ویژگیهای متفاوتی دارد:

معادلات مرتبه اول از درجه اول

با متغیرهای جدایی پذیر

همگن

خطی )برنولی(

با دیفرانسیلهای کامل

معادلات مرتبه دوم

معادلات خطی با ضرایب ثابت: الف) همگن ب) ناهمگن.

تکنیکهای تقریب زدن: الف) سریهای توانی ب) روشهای عددی.

صور مختلف معادلات دیفرانسیل

معادله دیفرانسیل مرتبه اول از درجه اول را همواره می‌توان به صورت زیر در آورد که در آن M و N معرف توابعی از x و y هستند.

Mdx + Ndy = 0

در معادله فوق هرگاه M فقط تابعی از x و N فقط تابعی از y باشد. به صورت معادله جدایی پذیر مرتبه اول است. در این صورت با انتگرال گیری از هر جمله جواب بدست می‌آید. یعنی:

M(x) dx+ ∫N(y) dy = C∫

معادله دیفرانسیل همگن

گاه معادله دیفرانسیلی را که متغیرهایش جدایی پذیر نیستند با تعویض متغیر می‌توان به معادله‌ای تبدیل کرد که متغیرهایش جدایی پذیر باشند، چنین معادله‌ای را همگن می‌نامند. معادله دیفرانسیل خطی مرتبه اول را همیشه می‌توان به صورت متعارف زیر در آورد که در آن P و Q توابعی از x هستند.



خرید و دانلود تحقیق در مورد معادله دیفرانسیل