لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 25
« تاثیر الیاف پروپیلن بر روی خواص بتن های با قدرت زیاد »
خلاصه:
علاوه بر خصوصیات خوب بتن بااستحکام بالا بعضی از خواص عملکرد ضعیف در مورد چکش خواری و مقاومت به آتش را دارد. اخیراً کاربرد الیاف پلی پروپیلن برای برطرف کردن این ضعف ها بوده است و ناشی از خواص عالی آنها و قیمت کم آنها می باشد. استفاده از یک مقدار معین الیاف در مخلوط بتن، 2/0 درصد حجم بر روی خواص مکانیکی اصلی بتن های با استحکام بالا تاثیر نمی گذارد هم در بتن تازه و سخت شده ولی به شکست لاکتیل بتن ترد نیز منجر گردید.
1ـ مقدمه:
بتن با استحکام بالا مزایای بسیاری را در بهره برداری ناشی از خواص مکانیکی خوب و نفوذ پذیری کم و مقاومت بالاتر در برابر حملات مکانیکی یا شیمیایی به ساختار بتن نشان می دهد. با چنین خصوصیاتی شخص این ماده را استفاده می کند بویژه برای سازه هایی که تحت تاثیر شرایط محیط میباشند مثلاً سازه های دریایی و پل های بزرگ تا ظرفیت حمل بار ساختاری را افزایش دهد درحالی که دوام کافی برای سازه ها تضمین میشود. اگرچه بتن با استحکام بالا مزایای بسیاری را دربارة خواص مکانیکی بتن و جنبه های اقتصادی ساختمان پیشنهاد می کند، رفتار ترد ماده برای کاربردهای زلزله باقی می ماند. چون استحکام و چکش خواری آنها نسبت معکوس دارند، بتن های با استحکام بالا تردتر از بتن های با استحکام معمولی می باشند. بخش الاستیک خطی در مرحلة قبل از اوج منحنی تنش ـ کرنش یک بتن مسلح با استحکام بالا بسیار افزایش می یابد. تقریباً 95% بار اوج. پس از حصول بار اوج منحنی تنش ـ کرنش به سرعت افت می کند که برای یک ماده ترد نمونه می باشد. انرژی جذب شده در طی فاز الاستیک به نسبت یکنواخت در آغاز ترک و انتشار آن در فرایند شکست، پراکنده نمیشود طوری که یک رشد ترک پایدار تا شکست بتن، حاصل نمی شود. این امر یک شکست شدید بتن را سبب می شود و سطوح شکست زبر می باشد ودرهم قفل شدن سطوح ترک اساساً کاهش می یابد. بعلاوه، نفوذ پذیری بسیار کم بتن با استحکام زیاد باعث مشکلات بعدی می گردد. یکی از آنها مقاومت به آتش است. در آتش دمای بتن بسرعت افزایش می یابد. بنابراین بدلیل مقدار خیلی کمی از سوراخ های موئینه. آب که هنوز هیدراته نمی شود، می تواند خودش را در بخش داخلی بتن حبس نماید. در نتیجه، فشار بخار آب در حال توسعه نمی تواند بر روی تخلخل های موئینه ریلاکس شود که تا حدی به تنش های کشش داخلی منجر می شود. در این حالت، آب پیوند یافته شیمیایی توسط فرایند هیدراسیون نیز می تواند تبخیر شود. برای غلبه بر چنین مشکلاتی، الیاف پروپیلن اغلب در حال حاضراستفاده می شوند که ناشی از بهای سودمند و خواص مفید آنها است. الیاف پروپیلن اساساً باعث می شود که رفتار چکش خواری زیاد شود و از طرف دیگر برای بهبود مقاومت به آتش بتن با استحکام بالا بکار می رود. چون الیاف در 160 درجه سانتی گراد ذوب می شوند. آنها مجراهای انبساطی زیادی در حالت آتش سوزی تولید میکنند و انتقال مایع و بخار برای رها شدن فشارهای داخلی امکان پذیر میشود. ، این امر می تواند مانع از پوسته
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
خواص حرارتی، صوتی و الکتریکی بتن
کلیات
خواص حرارتی بتن نیز مانند خواص مقاومتی ممکن است با تغییرات در مصالح، نسبت های اختلاط و روش های ساخت تغییر نماید. آشنایی با خواص حرارتی بتن جهت طرح و پیش بینی اجرای انواع زیادی از سازه های بتنی مورد نیاز است. گرچه بتن از نظر قابلیت عایق سازی عموما بر فلزات و سنگ های طبیعی تفوق جسته است، ولی در دمای اتاق موادی چون آزبست، منیزیم پودر شده، چوب معدنی و چوب معدنی و چوب پنبه پودر شده از این نظر برتر هستند. در درجه حرارت های زیاد، موادی مانند منیزیم پودر شده و خاک دیرگداز از نظر عایق سازی بسیار بهتر هستند. ارزش حفاظت کنندگی بتن در درجه حرارتهای زیاد که درآتش سوزی های بسیار بزرگ به اثبات رسیده است، ناشی ازمقاومت بالای آن در مقابل آتش به همراه هدایت نسبتا کم و مقاومت زیاد آن است. خواص حرارتی بتن سخت شده که برای مهندس اهمیت دارد، عبارتند از: هدایت حرارتی، گرمای ویژه، انتشار حرارت، ضریب انبساط حرارتی و افزایش دمای آدیاباتیک به علاوه تاثیر دما بر روی خواص مقاومتی را باید شناخت.
هدایت حرارتی
هدایت حرارتی عبارت است از آهنگ عبور حرارت ازمیان ماده ای با سطح و ضخامت واحد وقتی که تغییر دمای واحد بین دو وجه ماده وجود دارد. این خاصیت در رابطه با تغییرات دما دربتن حجیم وهمچنین خواص تقطیر و عایق سازی دیوارها و دال ها دارای اهمیت است. تعاریف و مقادیر عددی برای ضرایب مختلف در مرجع شماره (1) ارائه گردیده است.
ضرایب مختلفی که جهت محاسبه افتهای حرارتی به کار می روند، به شرح ذیل است:
K : هدایت حرارتی یکماده همگن بین رویه وجه گرمتر و رویه وجه سردتر، ژول بر ثانیه بر متر مربع سطح بر هر درجه اختلاف دما در هر متر ضخامت
C: قابلیت هدایت حرارتی یک عایق (دیوار) بین رویه وجه گرمتر و رویه وجه سردتر، ژول بر ثانیه بر متر مربع بر هر درجه اختلاف دما برای ضخامت معین (غالبا مشخص شده به عنوان مثال برای واحدهای بنایی بتنی cm10، cm 20، cm 30)
J: هدایت سطحی ، نرخ زمان جریان بین یک واحد سطحی از یک رویه و هوای پیرامونی (fi رویه داخلی و fo رویه خارجی را مشخص می کند) ژول بر ثانیه بر متر مربع بر هر درجه اختلاف دما a = قابلیت هدایت حرارتی یک فاصله از جنس هوا، ژول بر ثانیه بر متر مربع بر هر درجه اختلاف دما.
R: مقاومت حرارتی، عکس قابلیت هدایت مانند و غیره. ضریب کلی انتقال یک دیوار مرکب را می توان با محاسبه مقاومت کل یا جمع زدن معکوس ضرایب هدایت برای بخش های جداگانه دیوار مرکب به دست آورد:
که x1,x2 ضخامت مواد مختلف هستند.
U: ضریب کلی انتقال حرارت، ژول بر ثانیه بر متر مربع بر هر درجه اختلاف دما بین هوای روی وجه گرمتر یک عایق و هوای روی وجه سردتر
روش های محاسبه افت از میان ساختمان یک دیوار مشخص و همچنین تغییرات دما بین وجوه سرد و گرم دیوار در شکل های 10-1و10-2 ارائه شده است.
ضرایب عددی مختلف از راهنمای حرارتی، برودتی و تهویه مطبوع استخراج شده است.
ترکیبات کانی شناسی سنگدانه ها تاثیر زیادی بر روی هدایت حرارتی دارد.
بازالت و تراخیت هدایت حرارتی کم، کوارتز هدایت حرارتی زیاد و دولومیت وسنگ آهک هدایت حرارتی نسبتا بالایی دارند.
هدایت حرارتی سنگدانه های سبک تقریبا متناسب با دانسیته آنها است. رابطه تقریبی بین هدایت حرارتی و دانسیته
جای شکل
قسمت
مقاومت
تغییر دما (F°)
مقاومت سطح خارجی
30cm قطعه بنایی رس منبسط شده و cm5 پوشش سیمان پرتلند هوا
mm 5/12 عایق جامد
mm 5/12 پلاستر
مقاومت سطح داخلی
17/0
46/2
91/0
51/1
15/0
68/0
3=90(88/5÷ 17/0)
38=90(88/5÷ 32/2)
14=90(88/5÷ 91/0)
23=90(88/5÷ 51/1)
2=90(88/5÷ 51/1)
=90(88/5÷ 61/1)
خشک شده در کوره در شکل 10-3 نشان داده شده است. مقدار هوای بتن تاثیر قطعی در کاهش هدایت حرارتی دارد. نتایج آزمایش ها حاکی از این است که هدایت حرارتی بتن با شن و ماسه معمولی و همچنین بتن با سنگدانه سبک، با افزایش مقدار رطوبت بتن سخت شده افزایش می یابد. همچنین در صورت افزایش دمای بتن سخت شده از 157-تا 24 درجه سانتی گراد، هدایت حرارتی بتن دارای شن و ماسه معمولی کاهش می یابد و در بتن دارای سنگدانه های سبک، فقط تغییر اندکی در هدایت حرارتی ایجاد می شود.
هدایت حرارتی و تقطیر
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 16
بررسی اثر زانتان و کاراگینان بر خواص حلالیت ایزوله پروتئین سویا
لیدا جهانیان، سید علی مرتضوی، محسن برکتین و زهره حمیدی اصفهانی
چکیده
محدودیت هایی در استفاده از پروتئین سویا مانند حلالیت کم و طعم نامطلوب آن وجود دارد. در این پژوهش سعی گردید که خواص عملکردی پروتئین سویا توسط دو صمغ زانتان و کاراگینان بهبود یابد. زانتان در چهار سطح 0، 04/0، 09/0 و 13/0 درصد و کاراجینان در سطوح 0، 03/0، 07/0 و 09/0 درصد (در محلول) استفاده شد و صفتهای حجم سرم، حجم رسوب و ضریب حلالیت نیتروژن مورد ارزیابی قرار گرفت.
نتایج آماری نشان داد که نمونه های دارای 13/0 درصد زانتان، 13/0 درصد زانتان و 07/0 درصد کاراجینان ، 13/0 درصد زانتان و 09/0 درصد کاراجینان و 09/0 درصد زانتان و 09/0 درصد کاراجینان دارای کمترین حجم سرم و رسوب و بالاترین میزان حلالیت بودند.
مقدمه
دربسیاری از مواد غذایی، پروتئین و پلی ساکارید بصورت توأم وجود دارد. در فرمولاسیون مواد غذایی کلوئیدی، ازپروتئینها به دلیل خواص امولسیون کنندگی و تولید کف و از کربوهیدراتها بعنوان نگهدارنده آب و قوام دهنده استفاده میشود. علاوه بر این پروتئینها و کربوهیدراتها در ماده غذایی ایجاد بافت و ساختار مناسب مینمایند1,2)).
واکنش پروتئین - پلی ساکارید عمدتاً الکترواستاتیکی است و قدرت واکنش به pH و قدرت یونی بستگی دارد. این واکنش می تواند برای کنترل حلالیت پروتئین، تشدید ژله ای شدن و پایداری امولسیون و کف بکار رود3)). اضافه کردن پلی ساکاریدها به محلول پروتئین از تجمع زیاد مولکولهای پروتئین توسط محدود کردن واکنش پروتئین - پروتئین، یا توسط حفظ گروههای بار دار و یا افزایش ویسکوزیته، جلوگیری می کند( 4).
واکنش دو بیوپلیمر میتواند به صورت تفکیکی (بیوپلیمرها یکدیگر را دفع می کنند که به عنوان عدم سازگاری مطرح می شود) و یا تجمعی باشد که در این صورت پلیمرها یکدیگر را جذب میکنند (5).
واکنش پروتئین و پلی ساکارید به صورتهای حلالیت همزمان، ناسازگاری، رسوب، تشکیل کمپلکس یا جداسازی فاز وجود دارد( 6).
از نقطه نظر ترمودینامیکی، پروتئین وپلی ساکارید در محلول به صورت سازگار و یا ناسازگار وجود دارند. تحت شرایط ناسازگاری ترمودینامیکی، سیستمی شامل دو فاز حاصل می شود که عمدتاً هر فاز دارای مولکولهای متفاوت است(4).
فاکتورهای مؤثر در ایجاد سازگاری پروتئین - پلی ساکارید، شامل نسبت پروتئین به پلی ساکارید، pH، قدرت یونی، میزان کل مواد جامد، درجه حرارت، میزان اسیدی بودن و طبیعت پلیمرها ( وزن مولکولی، بار و قابلیت انعطاف زنجیر) می باشد( 4).
واکنش دافعه، بین پروتئین و پلی ساکارید غیر یونی یا پلی ساکارید آنیونی در pH بالای نقطه ایزوالکتریک پروتئین اتفاق می افتد. واکنش جاذبه غیر خاص بین پروتئین وپلی ساکارید از تشکیل پیوندهای یونی، واندوالس، هیدروژنی و... حاصل می گردد. جاذبه قوی بین پروتئین ها با بار مثبت ( pH زیر نقطه ایزوالکتریک پروتئین ) و پلی ساکارید آنیونی، مخصوصاً درقدرت یونی پایین، و جاذبه ضعیف بین پروتئینهای خنثی یا با بار منفی (pH بالای نقطه ایزوالکتریک پروتئین) و پلی ساکارید اتفاق می افتد (2).
محلول آبی پروتئین وپلی ساکارید، ممکن است در محدوده خاصی از نظر مقدار، جداسازی فاز نشان دهد. جداسازی فاز در اثر دو رفتار ثانویه توده ای شدن یا ناسازگاری ترمودینامیکی صورت میگیرد.
ترکیب دوگانه پروتئین - پلی ساکارید، بسته به دما، شرایط حلال و میزان آنها می تواند توده ای شدن، ناسازگاری یا هیچ کدام را نشان دهد.
توده ای شدن شامل جداسازی خودبهخودی سیستم به دو فاز غنی از حلال و بدون حلال( شامل پروتئین وپلی ساکارید) میباشد. این امر توسط رسوب همزمان مخلوط پروتئین- پلی ساکارید تحت اثر واکنشهای جاذبه الکترواستاتیکی( غیر خاص ) بین بارهای مخالف پروتئین - پلی ساکارید انجام میشود (2). توده ای شدن زمانی که نیروی جاذبه بین دو بیوپلیمر مختلف آنقدر قوی باشد که آنها را بهم نزدیک نماید وتشکیل کمپلکس دهد، اتفاق می افتد. چون کمپلکس حاصل دارای دانسیته متفاوتی نسبت به محیط اطراف خود میباشد، جداسازی در بالا یا پایین سیستم در اثر نیروی جاذبه زمین صورت میگیرد (7). تودهای شدن در میزان کم پلی ساکارید اتفاق میافتد. چون در میزان کم، پلی ساکارید نمیتواند بطور کامل پروتئین را پوشش دهد و پلی ساکارید ممکن است بیشتر از یک مولکول پروتئین را جذب نماید (8, 5).
ناسازگاری ترمودینامیکی شامل جداسازی خود به خودی سیستم به دو فاز غنی از حلال است که در یک فاز پروتئین و در دیگری پلی ساکارید غالب است. این پدیده در اثر مخلوط نشدن محلول پروتئین و پلی ساکارید غیر رقیق، تحت اثر واکنش دافعه پروتئین - پلی ساکارید (2) و در واقع زمانی که واکنش بین بیوپلیمرهای مشابه (1BP-1BP و 2BP- 2BP ) از نظر انرژی نسبت به واکنش بین بیوپلیمرهای مختلف( 2BP- 1BP ) مطلوبتر باشد، اتفاق می افتد(7).
مواد وروش ها
2-1 – آماده سازی نمونه
برای آماده سازی محلول از زانتان با میزان 0، 04/0، 09/0 و 13/0 درصد ، کاراگینان با میزان 0 ، 03/0، 07/0 و 09/0 درصد و ایزوله پروتئین سویا( SPI) به مقدار 5/6% در محلول استفاده شد. پروتئین، زانتان و کاراگینان توسط یک همزن کاسه دار مخصوص مواد پودری به مدت 5-7 دقیقه با دور متوسط بطور کامل مخلوط گشتند. به این ترتیب پودری همگن و یکنواخت بدست آمد. این پودر در تهیه محلول جهت انجام آزمایشات به کار گرفته شد.
2-2- آزمایشات فیزیکی و شیمیایی
2-2-1- تعیین میزان حلالیت ایزوله پروتئین سویا
برای تعیین حلالیت پروتئین، از اندیس حلالیت نیتروژن (NS) استفاده می شود. جهت اندازهگیری NS از روش برادفورد استفاده شد. با استفاده از این روش می توان میزان نیتروژن در ماده را تعیین کرد.
میزان نیتروژن در کل نمونه / میزان نیتروژن در فازشفاف =NS
برای انجام آزمایش، پودر با آب با نسبت 1 به 9/6 ( پودر به آب) توسط همزن مغناطیسی به مدت نیم ساعت مخلوط شدند و به این ترتیب مایعی یکنواخت حاصل گشت. نمونههای موجود، به مدت 15 دقیقه سانتریفوژ شدند( g × 4350). در اثر سانتریفوژ دو فاز در هر نمونه به دست آمد که شامل مایع شفاف در بالا و رسوب در پایین بود. با تعیین نیتروژن در فاز شفاف و در کل نمونه، میزان حلالیت پروتئین تعیین گردید(9).
برای اندازه گیری میزان نیتروژن کل نمونه و میزان نیتروژن فاز شفاف به روش براد فورد، نیاز به تهیه محلول استاندارد می باشد. محلول استاندارد غلظت های مختلف و مشخصی از پروتئین استاندارد آلبومین گاوی است که جهت تهیه منحنی استاندارد دستگاه اسپکتروفتومتر ( طول موج 540 نانومتر) به کار میرود. با استفاده از میزان جذب محلول های استاندارد معادل رگرسیونی مناسب به دست آمد که از آن برای تعیین میزان نیتروژن فاز شفاف و کل نمونه استفاده شد.
2-2-2-تعیین مقدار رسوب
حجم رسوب در تمام نمونه ها پس از گذشت زمان 90 و 120 دقیقه بر حسب میلی لیتر محاسبه شد. برای محاسبه مقدار رسوب، ابتدا نمونه محلول مطابق آن چه در قسمت 2-1 توضیح داده شد، آماده گردید. سپس نمونهها در داخل مزورهای یکسان ریخته شدند. بر حسب نوع محلول حالت های متفاوتی در مزورها مشاهده شد. حجم رسوب تشکیل شده در قسمت پایین مزور بر حسب میلی لیتر به عنوان حجم رسوب گزارش شد. حجم رسوب مربوط به شانزده نمونه پس از گذشت مدت زمان 90 و 120 دقیقه از شروع آزمایش خوانده شد.
2-2-3- تعیین مقدار سرم
پس از گذشت مدت زمانی از آماده سازی محلول، در بعضی از نمونهها مایع شفافی از قسمت رسوب و کف محلول جدا میشود که تحت عنوان سرم مطرح میشود. به دلیل تشکیل سرم در بعضی از نمونه ها، حجم سرم پس از گذشت مدت زمان 90 و 120 دقیقه از شروع آزمایش، بر حسب میلی لیتردر مزورهای یکسان (مرحله قبل) محاسبه گردید. سرم مایع شفافی است که در بعضی از نمونه ها پس از گذشت مدت زمانی از شروع آزمایش تشکیل میگردد. پس از آماده سازی نمونه، حجم سرم پس از گذشت مدت زمان 90 و 120 دقیقه از شروع آزمایش بر حسب میلی لیتر محاسبه گردید.
برای بررسی نتایج از آزمایش فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار(16*3) استفاده شد.
نتایج و بحث
3-1 – اثر زانتان بر حلالیت پروتئین
با توجه به نمودار 1 با افزایش میزان زانتان، NS افزایش پیدا می کند که علت آن پیوند بین هیدروکلوئید با پروتئین و جلوگیری از رسوب پروتئین است(10).
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 41 صفحه
قسمتی از متن .doc :
تاریخچه:
استفاده از مواد شیمیایی از زمانهای بسیار دور متداول بوده است. مصریان قدیم گچ تکلیس شده ناخالص را بکار میبردند یونانیان و رومیها سنگ آهک تکلنیس شده را مصرف میکردند و بعداَ آموختند که به مخلوط آهک و آب، ماسه،سنگ خردشده یا آجر و سفالهای شکسته نیز اضافه کنند این اولین نوع بتن در تاریخ بود. ملات آهک درزیر آب سخت نمیشود و رومیها برای ساختمانسازی در زیر آب، سنگ و آهک و خاکستر آتشفشانی با پودر بسیار نرم سفالهای سوخته شده را با هم آسیاب مینمودند و بکار میبردند سیلیس و آلومین فعال موجود در خاکستر و سفال با آهک ترکیب شده و آنچه به اسم سیمان پوزولانی (پوزولان از اسم دهکده pozzuli که در نزدیکی آتشفشان وزو قرار دارد و برای اولین بار خاکستر آتشفشانی را در این محل پیدا نمودند گرفته شده است). شناخته شده است را تولید مینماید نام «سیمان پوزولانی» را تا به امروز برای توصیف سیمانهایی که بآسانی از آسیاب نمودن مواد طبیعی در دمای معمولی بدست میآیند بکار بردهاند بعضی از ساختمانهای رومی که در آنها آجرها بوسیله ملات به یکدیگر چسبانده شدهاند مانند
Coliseum در روم و pont du Gard در نزدیکی Nimes و سازههای بتنی مانند ساختمان pantheon در روم تا امروز باقی ماندهاند و مواد سیمانی آنها هنوز سخت و محکم است در خرابههای نزدیک pompeii اغلب ملات بهم چسباننده سنگها کمتر از خود سنگها که نسبتاَ سست میباشد هوازده شده است.
در قرون وسطی انحطاطی در کیفیت و کاربرد سیمان بوجود آمد و فقط در قرن 18 بود که پیشرفتی در دانش سیمانها حاصل شد در سال 1756 که john Smeaton مأمور بازسازی برج چراغ دریایی Eddystone د رفرا ساحل جنوب غربی انگلستان شده بود به این نتیجه رسید که بهترین ملات وقتی بدست میآید که مواد پوزولانی با سنگ آهک حاوی نسبت قابل توجهی از مواد رسی مخلوط شود با تشخیص اینکه نقش خاک رس که قبلاً نامناسب در نظر گرفته میشد. Smeaton اولین شخصی بود که خواص شیمیایی آهک آبی یعنی مادهای که از پخت مخلوطی از سنگ و خاک رس بدست میآید پی برد. متعاقباً سیمانهای آبی دیگر مانند سیمان رومی که james parker از کلسینه نمودن گلولههای سنگ آهک رسی آن را بدست آورده بوجود آمد. بالاخره در 1824 Joseph Aspdin که معماری در شهر لیدز بود سیمان پرتلند را به ثبت رساند این سیمان را از حرارت دادن مخلوطی از پودر نرم خاک رس و سنگ آهک سخت در کوره تاحدودی که CO2 آن بخارج رانده وشد بدست آورند دمای کوره خیلی پائینتر از حد لازم برای تولید کلینکر نخستین نمونه از سیمانی که امروزه آن را به نام سیمان پرتلند میشناسیم در سال 1845 بوسیله Isaac Johnson از حرارت دادن مخلوط خاک رس و سنگ آهک کیفیت تا حد کلینکر شدن و صورت پذیرفتن واکنشهای لازم برای تشکیل ترکیبات چسبانندهی پرقدرت تهیه گردید.
نام سیمان پرتلند که در ابتدا به علت تشابه رنگ و سیمان حاصل کرده با سنگ پرتلند – سنگ آهکی که در Dorset انگلستان استخراج میشود به آن داده شد تا امروز در سراسر دنیا برای توصیف سیمانی که از در هم آمیختن کامل و حرارت دادن مواد آهکی و رسی، یا سایر مواد حاوی سیلیس، آلومین، و اکسید آهن تا دمای کلینکر شدن و آسیاب نمودن کلینکر حاصل شده باقی مانده است و تعریف سیمان پرتلند در استانداردهای مختلف با توجه به اینکه از پخت سنگ گچ به آن افزوده میشود بر این راستا قرار دارد امروزه ممکن است مواد دیگری نیز افزوده یا آمیخته شوند.
بتن تازه:
گواینکه بتن تازه فقط بصورت گذرا مورد توجه واقع میشود باید توجه نمود که مقاومت بتن با نسبتهای مخلوط معین بصورت خیلی جدی تحت تأثیر درجهی تراکم آن واقع میشود و بنابراین بسیار مهم است که روانی مخلوط بتن تازه در حدی باشد که بتوان آنرا با سهولت کافی حمل نمود درجاریخت، متراکم کرد و سطح آن را پرداخت نمود بدون آنکه در خلال این مراحل جداشدگی صورت گیرد.
عوامل مؤثر بر کارآیی:
عامل اصلی مقدار آب مخلوط است که بر حسب کیلوگرم( یا لیتر) آب، بر متر مکعب بتن، بیان میشود از نظر سهولت( گواینکه تقریبی است) فرض میشود که برای یک نوع سنگدانه بخصوص با دانهبندی معین و کارآیی مشخص بتن، مقدار آب مستقل از نسبت سنگدانهها به سیمان و یا از مقدار سیمان مخلوط باشد براساس این فرض میتوان نسبتهای مخلوط بین بتنهای بامقدار سیمان مختلف را تخمین زد. جدول A مقادیر نمونه آب را برای اسلامبهای مختلف بتن و حداکثر اندازههای مختلف سنگدانهها میدهد این مقادیر فقط در مورد بتن بدون حباب هوا صدق میکند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 58
چکیده
هدف از این تحقیق بررسی خصوصیات اصلی و رفتار فرآیندهای شاخه ای گالتون- واتسون دو جنسی با تابع خانوادة زیر جمعی و احتمالات انقراض در چنین فرآیندهایی است.
مدلی از فرآیند شاخه ای دو جنسی مفروض است به طوری که توزیع زاد و ولد به اندازه جمعیت بستگی دارد. همچنین حالت خاص را در نظر می گیریم که در آن نرخ رشد جمعیت (میانگین توزیع زاد و ولد)، وقتی به میل می کند .
برای این نوع از فرآیندهای شاخه ای گالتون- واتسون دوجنسی شرط لازم برای همگرایی فرآیند در و ارائه می گردد.
همچنین شرط کافی برای همگرائی در به دست خواهد آمد.
مقدمه
تا کنون مطالعات زیادی روی نحوه رشد جمعیت و احتمال انقراض در فرآیندهای شاخه ای گالتون- واتسون استاندارد انجام شده است. در حالت دوجنسی (که مدل مناسبی برای جامعة انسانی است) تعمیم این قضایا لازم به نظر می رسد. زمانی که ما چگونگی رشد جمعیت را بدانیم، می توانیم زمان انقراض رفتار مجانبی رشد جامعه را بررسی کنیم و مدل مناسبی برای آن بدست آوریم.
فرآیندهای شاخه ای گالتون-واتسون دو جنسی اولین بار توسط دالی در سال 1968 و پس از آن توسط آسمونس در سال 1980 تعریف و بررسی شد. دالی نشان داد که فرآیند شاخه ای گالتون- واتسون دو جنسی یک زنجیر مارکوف با ماتریس احتمال تغییر وضعیت یک مرحله ای با فضای حالت صحیح و نامنفی است.
در نظریه فرآیندهای شاخه ای گالتون- واتسون استاندارد می دانیم که فرآیند با احتمال 1 منقرض می شود اگر و فقط اگر میانگین تولید مثل برای هر فرد دلخواه کمتر از 1 باشد.
حال ما می خواهیم بدانیم «آیا قوانین متشابهی برای احتمالات انقراض در فرآیندهای شاخه ای گالتون- واتسون دو جنسی وجود دارد؟»
در سال 1968 دالی یک شرط لازم و کافی برای احتمال انقراض 1 برای فرآیندهای با توابع خانوادة خاص به دست آورد.
هدف از این تحقیق معرفی فرآیندهای شاخه ای گالتون- واتسون دوجنسی و فرآیند زوجهای هم خانواده و بیان ویژگی های آنها و مقایسه احتمالات انقراض در چنین فرآیندهایی است ابتدا شروط انقراض