دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

خمش 28 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

خمش خالص تیرها

 

در ناحیه مرکزی این تیر نیروی برشی وجود ندارد و این ناحیه تنها تحت لنگر خمشی ثابتی برابر Pa قرار دارد. تیری را که در دو انتهای خود تحت تاثیر و لنگر خمشی مساوی، مختلف الجهت و هم صفحه قرار دارد، می‌گویند که در خمش خالص است.

توجه: پیچش ایجاد تنش برشی و خمش ایجاد شده تنش محوری می‌کند.

 

با آزمایش ساده‌ای می‌توان خمش یک تیر سده را مشاهده نمود. برای این کار یک تکه اسفنج به ابعاد مثلاً 50×100×150 میلی‌متر را مطابق شکل بر روی دو تکیه‌گاه قرار دهید و با دست بر آن فشار وارد کنید. مشاهده خواهید کرد که سوراخ‌های اسفنج در بالای آن بسته و نشان دهنده فشار در بالای اسفنج در پایین آن و نشان دهنده کشش در پایین اسفنج می‌باشد. سوراخ‌ها در مجاورت دو تکیه‌گاه بدون تغییر باقی می‌مانند، زیرا لنگر خمشی در دو انتهای تیر در مقایسه با وسط تیر خیلی کوچک هستند.

 

با توجه به مثال ذکر شده می‌توان نیروهای وارد بر مقطع عرض یک تیر را که در خمش خالص قرار دارند، به صورت زیر نشان داد.

 

فرضیات اساسی خمش:

صفحات عمود بر محور، بعد از اعمال خمش به صورت صفحه باقی می‌مانند و تنها حول یک محور دوران می‌کنند.

تغییر شکل‌ها دارای تغییرات خطی نسبت به محور دوران هستند.

رفتار مصالح در کشش و فشار یکسان است.

 

 

در یک تیر تحت خمش، تغییرات کرنش موجود در تارهای طولی موازی صفحه خنثی به صورت خطی می‌باشد و یا به عبارت دیگر، مقدار کرنش تارهای فوق متناسب با فاصله آنها از محور خنثی می‌باشد.

در تصویر بزرگ شده این جزء کوچک، دیده می‌شود که طول تارهایی از تیر که در روی سطحی نظیر ab قرار دارند، تغییری نمی‌کند، چون جزء مزبور به صورت دلخواه انتخاب شده است. تارهای عاری از تنش و کرنش به طور پیوسته در تمام طول و پهنای تیر وجود دارند. این تارها در روی صفحه‌ای قرار دارند که سطح خنثی تیز نامیده می‌شود. فصل مشترک این صفحه با یک مقطع عرض قائم بر تیر محور خنثی نامیده می‌شود، از هر دو اصطلاح برای نشان دادند محل تنش یا کرنش صفر در یک عضو تحت خمش استفاده می‌شود.

 

اثبات اینکه محور اصلی ختثی باید از مرکز هنری سطح مقطع تیر عبور کند:

 

چون شعاع انحنا p و ضریب ارتجاعی E مقادیر ثابتی هستند، از این معادله نتیجه می‌شود که برای تیری که در خمش خالص رابطه زیر برقرار است.

 

که در آن y فاصله مرکز هندسی سطح A از محور مبناء می‌باشد. بنابراین yA=0 از آنجایی که A صفر نیست، y باید مساوی صفر شود. بنابراین فاصله مرکز هندسی سطح مقطع محور خنثی باید صفر باشد.

دومین شرط تعادل، تعادل در لنگرهای خنثی حول محور Z می‌باشد. لذا داریم:

 

انحناء محور طولی تیر مستقیماً با لنگر خمشی M و معکوساً با کمیت EI موسوم به طبیعت خنثی تیر مناسب می‌باشد.

 

M:‌ لنگر خمشی

C: دورترین فاصله تا تار خنثی

I: ممان اینرسی حول محور خنثی

 

روابط فوق در صورتی صادق هستند که محورهای x, y محورهای اصلی اصلی مقطع باشند.



خرید و دانلود  خمش 28 ص


خمش تیر 10 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

آزمایش: خمش تیر

1-هدف:بررسی تئوریهای خمش تیر

2-مقدمه:

دستگاه خمش تیر (شکل 1) دارای قابلیتهای زیاد می باشد و آزمایشهایی که در ارتباط با خمش تیرها باشد را می توان با آن انجام داد. با استفاده از این دستگاه می توان مدول الاستیسیته و خیر تیرها یا تکیه گاههای ساده و گیردار تحت بار گذاریهای مختلف را بدست آورد، دستگاه تشکیل شده از دو عدد لودسل برای نمایش نیرو، تکیه گاه گیردار و ساعت اندازه گیر که مقدار خیر تیرها را نمایش می دهد جنس نمونه های آزمایش فولادی، آلومینیومی و برنجی می باشد که دانشجویان باید ابعاد آنها را اندازه گیری نمایند.

3-تئوری:

در تئوری خمش تیر یک تیر می توان نشان داد که لنگر خمش و سختی خمش (EI) یک تیر با مشتق دوم خیز نسبت به x صورت مرتبط هستند.

(1)

معادله(1)، یک معادله دیفرانسیل خطی مرتبه دوم بوده و معادله دیفرانسیلی حاکم بر منحنی الاستیک اگر مقدار سختی خمش ثابت باشد، می توانیم رابطه (1) را به صورت زیر نوشت:

(2)

این معادله، ثابت انتگرال گیری است. با نمایش دادن زاویه بین خط مماس Q بر منحنی الاستیک و خط افقی Q(x)(برحسب رادیان)، و با در نظر گرفتن اینکه این زاویه خیلی کوچک است، خواهیم داشت:

 

بنابراین، معادله (2) را به شکل دیگر نیز نوشت:

(2)

با انتگرال گیری از دو طرف، معادله (2) بر حسب X، خواهیم داشت:

(3)

 

مقادیر ، ثابتهای انتگرال هستند که با استفاده از شرایط مرزی یا از شرایط موجود در تکیه گاههای تیر تعیین می شوند، اگر مقادیر ، معلوم شوند می توانیم از معادله(3) مقدار خیز در هر نقطه از تیر از معادله (2) یا (3) مقدار شیب را بدست آورد.

4-بررسی تغییرات خیر تیرها با تکیه گاههای ساده

4-1-تئوری:

با توجه به تئوریهایی که قبلاً گفته شد می توان خیز تیرهای که روی دو عدد لودسل(تکیه گاه ساده) قرار گرفته اند را بدست آورد. لذا خیز تیری که مطابق شکل (2) بار گذاری شده باربر است با:

 

:خیز وسط تیر

:نیروی اعمال شده

L:فاصله بین دو تا تکیه

:سختی خمش



خرید و دانلود  خمش تیر 10 ص


خمش تیر 10 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

آزمایش: خمش تیر

1-هدف:بررسی تئوریهای خمش تیر

2-مقدمه:

دستگاه خمش تیر (شکل 1) دارای قابلیتهای زیاد می باشد و آزمایشهایی که در ارتباط با خمش تیرها باشد را می توان با آن انجام داد. با استفاده از این دستگاه می توان مدول الاستیسیته و خیر تیرها یا تکیه گاههای ساده و گیردار تحت بار گذاریهای مختلف را بدست آورد، دستگاه تشکیل شده از دو عدد لودسل برای نمایش نیرو، تکیه گاه گیردار و ساعت اندازه گیر که مقدار خیر تیرها را نمایش می دهد جنس نمونه های آزمایش فولادی، آلومینیومی و برنجی می باشد که دانشجویان باید ابعاد آنها را اندازه گیری نمایند.

3-تئوری:

در تئوری خمش تیر یک تیر می توان نشان داد که لنگر خمش و سختی خمش (EI) یک تیر با مشتق دوم خیز نسبت به x صورت مرتبط هستند.

(1)

معادله(1)، یک معادله دیفرانسیل خطی مرتبه دوم بوده و معادله دیفرانسیلی حاکم بر منحنی الاستیک اگر مقدار سختی خمش ثابت باشد، می توانیم رابطه (1) را به صورت زیر نوشت:

(2)

این معادله، ثابت انتگرال گیری است. با نمایش دادن زاویه بین خط مماس Q بر منحنی الاستیک و خط افقی Q(x)(برحسب رادیان)، و با در نظر گرفتن اینکه این زاویه خیلی کوچک است، خواهیم داشت:

 

بنابراین، معادله (2) را به شکل دیگر نیز نوشت:

(2)

با انتگرال گیری از دو طرف، معادله (2) بر حسب X، خواهیم داشت:

(3)

 

مقادیر ، ثابتهای انتگرال هستند که با استفاده از شرایط مرزی یا از شرایط موجود در تکیه گاههای تیر تعیین می شوند، اگر مقادیر ، معلوم شوند می توانیم از معادله(3) مقدار خیز در هر نقطه از تیر از معادله (2) یا (3) مقدار شیب را بدست آورد.

4-بررسی تغییرات خیر تیرها با تکیه گاههای ساده

4-1-تئوری:

با توجه به تئوریهایی که قبلاً گفته شد می توان خیز تیرهای که روی دو عدد لودسل(تکیه گاه ساده) قرار گرفته اند را بدست آورد. لذا خیز تیری که مطابق شکل (2) بار گذاری شده باربر است با:

 

:خیز وسط تیر

:نیروی اعمال شده

L:فاصله بین دو تا تکیه

:سختی خمش



خرید و دانلود  خمش تیر 10 ص


خمش تیر

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

آزمایش: خمش تیر

1-هدف:بررسی تئوریهای خمش تیر

2-مقدمه:

دستگاه خمش تیر (شکل 1) دارای قابلیتهای زیاد می باشد و آزمایشهایی که در ارتباط با خمش تیرها باشد را می توان با آن انجام داد. با استفاده از این دستگاه می توان مدول الاستیسیته و خیر تیرها یا تکیه گاههای ساده و گیردار تحت بار گذاریهای مختلف را بدست آورد، دستگاه تشکیل شده از دو عدد لودسل برای نمایش نیرو، تکیه گاه گیردار و ساعت اندازه گیر که مقدار خیر تیرها را نمایش می دهد جنس نمونه های آزمایش فولادی، آلومینیومی و برنجی می باشد که دانشجویان باید ابعاد آنها را اندازه گیری نمایند.

3-تئوری:

در تئوری خمش تیر یک تیر می توان نشان داد که لنگر خمش و سختی خمش (EI) یک تیر با مشتق دوم خیز نسبت به x صورت مرتبط هستند.

(1)

معادله(1)، یک معادله دیفرانسیل خطی مرتبه دوم بوده و معادله دیفرانسیلی حاکم بر منحنی الاستیک اگر مقدار سختی خمش ثابت باشد، می توانیم رابطه (1) را به صورت زیر نوشت:

(2)

این معادله، ثابت انتگرال گیری است. با نمایش دادن زاویه بین خط مماس Q بر منحنی الاستیک و خط افقی Q(x)(برحسب رادیان)، و با در نظر گرفتن اینکه این زاویه خیلی کوچک است، خواهیم داشت:

 

بنابراین، معادله (2) را به شکل دیگر نیز نوشت:

(2)

با انتگرال گیری از دو طرف، معادله (2) بر حسب X، خواهیم داشت:

(3)

 

مقادیر ، ثابتهای انتگرال هستند که با استفاده از شرایط مرزی یا از شرایط موجود در تکیه گاههای تیر تعیین می شوند، اگر مقادیر ، معلوم شوند می توانیم از معادله(3) مقدار خیز در هر نقطه از تیر از معادله (2) یا (3) مقدار شیب را بدست آورد.

4-بررسی تغییرات خیر تیرها با تکیه گاههای ساده

4-1-تئوری:

با توجه به تئوریهایی که قبلاً گفته شد می توان خیز تیرهای که روی دو عدد لودسل(تکیه گاه ساده) قرار گرفته اند را بدست آورد. لذا خیز تیری که مطابق شکل (2) بار گذاری شده باربر است با:

 

:خیز وسط تیر

:نیروی اعمال شده

L:فاصله بین دو تا تکیه

:سختی خمش



خرید و دانلود  خمش تیر


تحقیق درباره آزمایش خمش تیر

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

1) هدف آزمایش:

1) تحقیق در صحت معادله خمش تیر به صورت: M/I=E/R

2) رسم نمودار نیرو بر حسب انحراف ( در تیر با دو تکیه گاه ثابت) در حد الاستیک و تعیین ضریب یانگ برای مواد مختلف

3)تحقیق در شکل تیر یک سر درگیر تحت اثر وزن تیر و یک نیروی متمرکز در انتهای آزاد آن

4) بررسی قانون ماکسول

2) تئوری آزمایش:

الف) اگر تیر تنها تحت اثر خمش باشد شکلی که تیر در اثر این بار تغییر شکل پیدا میکند. شکل جدَد تیر در این حالت کمانی از یک دایره ب݇ شعاع R می باشد که R از فرمول M/I=E/RРبه دست می آید که در آن M خمش خالص در تیر ،I ممان دوم مساحت مقطع تیر،E مدول یانگ است.

R را می توان از خیز وسط تیر بدست آورد بدین صورت که R=L2/8ΔY این فرمول با صرفنظر کردن از مرتبه دوم ΔY بدست می آید.

ب) در تیرهای تحت بار معادله تغییر شکل یافته تیر از معادله دیفرانسیل زیر بدست می آید: -EId2y/dx2=Mکه در آن M ممان خمشی در آن مقطع از تیر می باشد.

با حل این معادله و اعمال شرایط مرزی جواب های گوناگون بدست می آید. اگر در دو طرف تیری به طول L تکیه گاه باشد و یک نیروی متمرکز در فاصله a از مبدأ اعمال شود خیز تیر در فاصله x از مبدأ برابر است با:

Y=Wb(L(x-a)3/b-x3+(l2-b2)x)

که در آن b=L-a

نیز اگر یک تیر یک سر درگیر به طول L و با وزن بر واحد طول S تحت اثر وزن خود و بار متمرکز Wدر انتهای آن باشد خیز آن از رابطه زیر بدست می آید(مبدأ انتهای تیر است):

Y=L(-Sx4/24-Wx3/6+(WL2/2+SL3/6)x-WL3/3-SL4/8)/EI

ج) قانون ماکسول:

قانون ماکسول می گوید در یک تیر اگر در یک نقطه بارگذاری کنیم و تغییر مکان را در نقطه ی دیگر بخواهیم می توانیم در آن نقطه همان بار را اعمال کنیم و در نقطه بار گذاری قبلی تغییر مکان را بخوانیم.

3) شرح دستگاه:

دستگاه این آزمایش شامل یک ریل است که می توان بر روی آن تکیه گاه ها را سوار کرد. تکیه گاه ها به دو صورت در گیر clamped و غیر درگیر unclamped می باشند. تر تکیه گاه در گیر تیر بین دو فک تکیه گاه قرار میگیرد و فک ها با پیچ به هم نزدیک می شوند و تیر را محکم می گیرند. ولی در تکیه گاه غیر درگیر تیر فقط روی لبه تیز آن قرار میگیرد. در روی ریل این امکان وجود دارد که یک انحراف سنج قرار گیرد تا بتوان خیز تیر را در نقاط مختلف اندازه گرفت. برای اعمال بار نقطه ای روی تیر از یک آویز 100 گرمی استفاده می شود که می توان روی آن وزنه هایی قرار داد و اندازه بار را تغییر داد. نیز با تکان دادن آویز در طول تیر می توان نقطه اثر بار را تغییر داد.

4) مشخصات ، شکل و جنس نمونه:

تیر مورد آزمایش از فولاد ساده کربنی (ST37) به ابعاد 6mm*25mm*1200 میباشد. برای این نوع فولاد E=206900 N/mm2 و ρ=8.71 Mg/m3 می باشد.

5)جداول مربوط به نتایج:

آزمایش الف:

آزمایش ب:

آزمایش ج:

6) نمونه محاسبات:

ممان دوم مساحت مقطع تیر I=bh3/12=25*63/12=450

خیز در آزمایش الف

Y=Wb(L(x-a)3/b-x3+(l2-b2)x)=2*6*(-2*2003+(1002-802)*20)/(6*206900*450*1000)= 0.0205993

شعاع دایره ای که شکل جدید تیر را می سازد R=L2/8ΔYتئوری

خیز تئوری در آزمایش ب (از روش تیر یک سر درگیر)

Δ1=wL3/3EI=0.8w*2003/1350E

Δ=(Δ2-Δ1)*a/L+Δ1=((75851.852-4740.741)*0.2+4740.741)w/E=18963w/E

18963/E=5.3269 => E=3560 N/mm2

7) مقادیر کمیات خواسته شده:

آزمایش الف:



خرید و دانلود تحقیق درباره آزمایش خمش تیر