دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد ترمودینامیک

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 15 صفحه

 قسمتی از متن .doc : 

 

مقدمه :

اساسی ترین کاربرد ترمودینامیک در متالوژی فیزیکی پیش بینی حالت تعادل برای یک آلیاژ است .

در بررسی های مربوط به دگرگونی های فازی ما همیشه با تغییر سیستم به سمت تعادل روبه رو هستیم . بنابراین ترمودینامیک به صورت یک ابزار بسیار سودمند می تواند عمل کند . باید توجه داشت که ترمودینامیک به صورت یک ابزار بسیار سودمند می تواند عمل کند . باید توجه داشت که ترمودینامیک به تنهایی نمی تواند سرعت رسیدن به حالت تعادل را تعیین کند .

تعادل :

یک فاز به عنوان بخشی از یک سیستم تعریف می شود که دارای خصوصیات و ترکیب شیمیایی یکنواخت و همگنی بوده و از نظر فیزیکی از دیگر بخشهای سیستم جداشدنی است . اجزای تشکیل دهنده یک سیستم خاص عناصر مختلف یا ترکیب های شیمیایی است که سیستم را بوجود می آورد و ترکیب شیمیایی یک فاز یا یک سیستم را می توان با مشخص کردن مقدار نسبی هر جزء تشکیل دهنده تعیین کرد .

به طور کلی دلیل رجداد یک دگرگونی این است که حالت اولیه یک آلیاژ نسبت به حالت نهایی ناپایدارتر است اما پایداری یک فاز چگونه تعیین می شود ؟ این پرسش به وسیله ترمودینامیک پاسخ داده می شود . برای دگرگونی هایی که در دما و فشار ثابت رخ می دهد پایداری نسبی یک سیستم از انرژی آزاد گیبس G آن سیستم مشخص می شود .

انرژی آزاد گیبس یک سیستم به صورت زیر تعریف می شود :

( 1-1 ) G=H-TS

که H آنتالپی T دمای مطلق و S آنتروپی سیستم است . آنتالپی میزان گنجایش حرارتی سیستم مورد نظر است و به وسیله رابطه زیر بیان می شود .

( 2-1 ) H=E+PV

که E انرژی درونی سیستم P فشار و V حجم سیستم است . انرژی درونی مجموع انرژی های پتانسیل و جنبشی اتم های درون یک سیستم است . در جامدات انرژی جنبشی تنها ناشی از حرکت ارتعاشی اتم ها است در حالی که در مایعات و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول ها و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول های داخل یک مایع یا گاز را نیز در برمیگیرد . انرژی پتانسیل نیز بر اثر اندرکنش ها یا پیوند بین اتم های درون یک سیستم به وجود می آید . هنگامی که یک دگرگونی یا واکنش رخ می دهد حرارت جذب شده یا حرارت آزاد شده به تغییرات در انرژی درونی سیستم ارتباط پیدا می کند اما تغییرات حرارت تابعی از تغییر حجم سیستم نیز بوده و عبارت PV نمایانگر این موضوع است بنابراین در فشار ثابت تغییرات H نشانگر حرارت جذب شده یا آزاد شده است .

هنگامی که یک فاز متراکم ( جامد یا مایع ) را بررسی می کنیم و عبارت PV در مقایسه با E مقدار بسیار کوچکی است که آن را نادیده می گیرند و

عبارت دیگری که در رابطه مربوط به G پدیدار می شود آنتروپی ( S ) بوده که بیانگر میزان بی نظمی سیستم است .

هنگامی یک سیستم را در ( حالت ) تعادل می دانند که در پایدارترین حالت خود قرار گرفته باشد یعنی با گذشت زمان هیچ تغییری در سیستم ایجاد نشود . یک نتیجه مهم از قوانین ترمودینامیک کلاسیک این است که در دما و فشار ثابت یک سیستم بسته ( یعنی سیستمی که جرم و ترکیب شیمیایی آن ثابت است ) هنگامی در تعادل پایدار قرار دارد که انرژی آزاد گیپس آن کمترین مقدار ممکن را داشته باشد یا به شکل ریاضی :

( 3-1 ) dG=O

با توجه به تعریف G ( معادله 1-1 ) ملاحظه می شود که پایدارترین حالت هنگامی رخ می دهد که سیستم کمترین آنتالپی و بیشترین آنتروپی را دارا باشد . بنابراین در دماهای پایین فازهای جامد پایدارتر است چون قویترین اتصال بین اتمی را داشته بنابراین کمترین انرژی درونی ( آنتالپی ) را دارد . در دماهای بالا چون عبارت TS - عبارت غالب است بنابراین فازهایی با بی نظمی بیشتر همچون مایعات و گازها که اتم های آنها به آسانی حرکت کرده و جابه جا می شود پایدارتر است .

تعادل که به وسیله معادله 3-1 تعریف می شود را می توان به صورت ترسیمی نیز نشان داد . اگر انرژی آزاد تمام حالت های فرضی ممکن یک سیستم را محاسبه کنیم آرایش پایدار حالتی خوهد بود که انرژی آزاد آن کمترین مقدار است . این موضوع در شکل یک نشان داده شده است و با این فرض که انرژی مربوط به هر یک از آرایش های اتمی مختلف به صورت نقطه ای روی منحنی موجود قرار می گیرد آرایش یا نظم A نشانگر وجود تعادل



خرید و دانلود تحقیق در مورد ترمودینامیک


مقاله درباره بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود مقاله درباره بعضی از کاربردهای قانون دوم ترمودینامیک


مقاله درمورد بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود مقاله درمورد بعضی از کاربردهای قانون دوم ترمودینامیک


تحقیق/ بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود تحقیق/ بعضی از کاربردهای قانون دوم ترمودینامیک


تحقیق بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود تحقیق بعضی از کاربردهای قانون دوم ترمودینامیک