دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

مقاله درباره بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود مقاله درباره بعضی از کاربردهای قانون دوم ترمودینامیک


مقاله درمورد بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود مقاله درمورد بعضی از کاربردهای قانون دوم ترمودینامیک


تحقیق/ بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود تحقیق/ بعضی از کاربردهای قانون دوم ترمودینامیک


تحقیق بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود تحقیق بعضی از کاربردهای قانون دوم ترمودینامیک


تحقیق؛ بعضی از کاربردهای قانون دوم ترمودینامیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

بعضی از کاربردهای قانون دوم ترمودینامیک

در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

انتخاب متغیرهای مستقل :

ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .

(1)

معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .

سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .

برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟

آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :

(2)

(3)

(4)

از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود



خرید و دانلود تحقیق؛ بعضی از کاربردهای قانون دوم ترمودینامیک