دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درباره ریاضی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

Solution Algorithms for velocity – pressure coupling in stady Flows :

Both the problem associated with the non – linear ities in the equation set and pressure – velocity linkaye can be resolved by oobpting an iterative solution strategy such as the SIMPLE algorithm of patankar and spalding (1972) . In this algorithm the convectwe fluxes per unit mass Fthrough cell foces are evaluated from so-called guessed velocity components . Furthermore a guessed pressure field is used solved the momentum equations and a pressure correction equation deduced from the continuity equation is solved to obtain a pressure correction field which is in tern used to update the velocity and pressure fields . to start the teration process we use initial guesses for the velocity and pressure fields . As the algorithm proceeds our aim must be progressively to improve these guessed fields . The process is iterated until convergen co of the velocity and pressure fields .

پایداری معادله ی زیر را به روش Discretized Perturbation بررسی کنید و شکل آن را برای C=0.75 ، C=0.5 تا زمان n+3 رسم نمایید .

 

در تقریب معادلع دیفرانسیل جزئی بالا یک معادلۀ موج است . مشتق زمانی را با عبارت تفاضل محدود forward و مشتق مکانی را با عبارت تفاضل محدود backward جایگزین می کنیم . برای حل به این روش از زمان n ، u یکی از گره ها را غیر صفر در نظر گرفته و بقیه را صفر می گیریم .

, در نقطۀ (n+1 و i )

برای برفراری پایداری

در نقطۀ (n+1 و i+1 ) :

 

 

در نقطۀ (n+1 وi-1 ) :

در نقطۀ (n+1 و i+2) :

 

در نقطۀ (n+1 و i+3) :

 

برای زمان (n+2 ) نیز همین مراحل را تکرار می کنیم .

در نقطۀ (n+2 و I ) :

 

در نقطۀ (n+2 وi+1 ) :

 

در نقطۀ (n+2 وi+2 ) :

 

در نقطۀ (n+3 وi+3) :

 

در نقطۀ (n+4 وi-1 ) :

 

در زمان (n+3 )

در نقطۀ (n+3 و I ) :

 

در نقطۀ (n+3 و i+1 ) :

 

در نقطۀ (n+3 و i+4 ) :

 

در نقطۀ ( n+3 و i+3 ) :

 

در نقطۀ ( n+3 و i+4 ) :

 

در نقطۀ ( n+3 و i-1 ):

 



خرید و دانلود تحقیق درباره ریاضی


تحقیق درباره ریاضی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

فهرست

عنوان صفحه

1-1) مقدمه 2

2-1) عملیات ریاضی 7

1-2-1) معکوس ضرب 10

3-1) سیستم اعدادمبنای در هم وابسطه 12

4-1) تبدیل اعداد به سیستم اعداد مانده‌ای و برعکس 22

1-4-1-) تبدیل اعداد از سیستم باینری به سیستم مانده‌ای 24

5-1) انتخاب پیمانه 26

سیستم اعداد مانده‌ای (باقیمانده)

سیستم اعداد مانده‌ای یک سیستم اعداد صحیح است، که مهمترین ویژگی‌اش بطور ذاتی انتقال رقم نقلی مجازی در جمع و ضرب و تفریق‌هاست، همچنین نتجه جمع و تفریق و ضرب اعداد ما در مرحله اول بدون در نظر گرفتن طول اعداد مشخص می‌شود، متأسفانه در سیستم اعداد مانده‌ای عملیات ریاضی دیگری مانند تقسیم و مقایسه و شناسایی علامت خیلی پیچیده و کند هستند از مشکلات دیگر سیستم اعداد مانده‌ای این است که چون با سیستم اعداد صحیح کار می‌کند در نتیجه نمایش اعداد اعشاری در سیستم اعداد مانده‌ای خیلی ناجور است با توجه به خواص سیستم اعداد مانده‌ای نتیجه می‌گیریم که در اهداف عمومی کامپیوترها (ماشین حساب‌ها) به صورت کاملاً جدی نمی‌تواند مطرح بشود. بهرحال ، برای بعضی از کاربرها که اهداف خاصی دارند مثل بسیاری از انواع فیلترهای دیجیتال، تعداد جمع و ضرب‌هایی که اساساً بزرگتر تعداد و درخواست بزرگی دامنه و شناسایی سرریز، تقسیم و شبیه این‌ها، سیستم اعداد باقیمانده خیلی جذاب و جالب می‌تواند باشد.

1-1) مقدمه

سیستم اعدادمانده‌ای اساساً بوسیله یک مبنای چندتائی (N - تائی) و نه یک مبنای واحد مثل از اعداد صحیح مشخص می‌شود. هر کدام از ها باقیمانده پس از تقسیم یک عدد بر آن‌ها است.عدد صیح X در سیستم اعداد مانده‌ای بوسیلة یک N -تائی مثل نمایش داده می‌شود که هر یک عدد غیرمنفی صحیح است که در رابطة زیر صادق است:

 

 

X

0

1

0

1

0

1

0

1

0

1

0

1

0

2

0

1

2

0

1

2

0

1

2

0

1

2

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

جدول 1-1 نمایش اعداد در سیستم اعداد مانده‌ای به پیمانة‌

بزرگترین عدد صحیحی است بطوریکه معروف است به باقیمانده X به پیمانة Mi ، و در روش نوشتن اعداد هر دو و با یک مفهوم استفاده می‌شوند.

مثال 1-1 سیستم اعدادمانده‌ای 2- باقیمانده‌ای با پیمانه‌های را ملاحظه کنید در این سیستم نمایش عدد صحیح x=5 به صورت نمایش داده می‌شود که و از رابطه‌های زیر بدست می‌آیند.

چونکه

چونکه



خرید و دانلود تحقیق درباره ریاضی