لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
یک ژنراتور الکتریکی دستگاهی است که از یک منبع انرژی مکانیکی تولید انرژی الکتریکی میکند. این فرآیند را تولید الکتریسته مینامند.
مقدمه
قبل از اینکه ارتباط بین مغناطیس و الکتریسته کشف شود، ژنراتورها از اصول الکتروستاتیک بهره میبردند. ماشین ویمشارت از القای الکتروستاتیک یا تأثیر کردن استفاده میکرد. ژنراتور واندوگراف از اثر تریبوالکتریک برق مالشی برای جدا سازی بارهای الکتریکی با استفاده از اصطکاک بین عایقها استفاده میکرد. ژنراتورهای الکتروستاتیک کارآمد نیستند و تنها برای آزمایشات علمی که نیازمند ولتاژهای بالا است، مناسب هستند.
فارادی
در سال 1831–1832م مایکل فارادی کشف کرد که بین دو سر یک هادی الکتریکی که بصورت عمود بر یک میدان مغناطیسی حرکت میکند، اختلاف پتانسیلی ایجاد میشود. او اولین ژنراتور الکترومغناطیسی را بر اساس این اثر ساخت که از یک صفحه مسی دوار بین قطبهای یک آهنربای نعل اسبی تشکیل شده بود. این وسیله یک جریان مستقیم کوچک را تولید می کرد.
دینامو
دینامو اولین ژنراتور الکتریکی قادر به تولید برق برای صنعت بود و کماکان مهمترین ژنراتور مورد استفاده در قرن بیست و یکم است. دینامو از اصول الکترومغناطیس برای تبدیل چرخش مکانیکی به یک جریان الکتریکی متناوب ، استفاده میکند. اولین دینامو بر اساس اصول فارادی در سال 1832 توسط هیپولیت پیکسی که یک سازنده تجهیزات بود، ساخته شد. این وسیله دارای یک آهنربای دائم بود که توسط یک هندل گردانده میشد. آهنربای چرخنده بگونهای قرار داده میشد که یک تکه آهن که با سیم پوشانده شده بود، از قطبهای شمال و جنوب آن عبور میکرد. پیکسی کشف کرد که آهنربای چرخنده ، هر بار که یک قطبش از سیم پیچ عبور میکند، تولید یک پالس جریان در سیم میکند. به علاوه قطبهای شمال و جنوب آهنربا جریانها را در جهتهای مختلف القا میکنند. پیکسی توانست با اضافه کردن یک کموتاتور جریان متناوب تولیدی به این روش را به جریان مستقیم تبدیل کند.
دیناموی گرام
به هر حال هر دوی این طرحها دارای مشکل یکسانی بودند: آنها پرشهای جریانی القا میکردند که از هیچ چیز پیروی نمیکرد. یک دانشمند ایتالیایی به نام آنتونیو پاسینوتی این مسأله را با جایگزینی سیم پیچ چرخنده توسط یک سیم پیچ حلقهای که او با سیم پیچی یک حلقه آهنی درست کرده بود، حل کرد. این بدان معنی بود که آهنربا همواره از بخشی سیم پیچ عبور میکرد که این مسأله موجب یکنواختی جریان خروجی میشد. زنوب گرام چند سال بعد در حین طراحی اولین نیروگاه تجاری در پاریس در دهه 1870م ، این طرح را دوباره ابداع کرد. طراحی وی با نام دینامی گرام معروف است. نسخههای مختلف و تغییرات زیادی از آن هنگام تا کنون در این طراحی بوجود آمده است، اما ایده اصلی چرخش یک حلقه بی پایان از سیم ، کماکان قلب تمامی دیناموهای پیشرفته باقی ماند.
مفاهیم
دانستن این مطلب مهم است که ژنراتور تولید جریان الکتریکی میکنند و نه بار الکتریکی که در سیمهای سیم پیچیاش وجود دارد. این تا حدودی شبیه یک پمپ آب است که ایجاد یک جریان آب میکند اما خود آب را ایجاد نمیکند. ژنراتورهای الکتریکی دیگری هم وجود دارند، اما بر اساس دیگر پدیدههای الکتریکی نظیر: پیزو الکتریسته و هیدرو دینامیک مغناطیسی ، ساختار یک دینامو شبیه یک موتور الکتریکی است و تمام انواع عمومی دیناموها میتوانند مانند موتورها کار کنند. همچنین تمامی انواع عمومی موتورهای الکتریکی میتوانند مانند یک ژنراتور کار کنند.
ژنراتورهای توربینی در بیش از 100 سال پیش که برای اولین بار وارد عرصه کاریشدند با هوا خنک میشدند. با این حال همچنان که خروجی واحد ژنراتور افزایش پیدا کردنیاز به خنککنندگی موثر افزایش یافت. این نیاز منجر به تکمیل ژنراتورهایی شد که باهیدروژن و آب، خنک میشدند. هدایت حرارتی هیدروژن، هفت برابر هوا بوده و با همانفشار مطلق، چگالی آن یک دهم هواست.پیش از انتخاب نوع سیستمخنککنندگی مورد استفاده برای ژنراتور، دوموضوع عمده وجود دارد که عبارتند از:اندازه مگاولت آمپر ژنراتور و یک سایت هوابا کیفیت خوب. با وجود این کهخنککنندگی با هوا نوعا برای واحدهایکوچکتر استفاده میشود هم اکنون اصلاحفنآوریهای جدید به هوا این امکان رامیدهد تا برای ژنراتورهایی که حداکثر30مگاولت آمپر ظرفیت دارند مورد استفادهقرار گیرد.
ژنراتورهای الکتریکی، حجم زیادی ازهوا را مصرف میکنند. در جایی که کیفیتهوا مساله ساز نیست ژنراتورها با سیستمخنککنندگی هوای باز که بازده بالایی از نظرفیلتراسیون و آب بندی محوری تحت فشاردارند بهترین انتخاب و همچنین دارایحداقل هزینه است.سایتهای نیروگاه قدرت که دارای ذراتریز و سولفور قابل ملاحظه هستند بایدژنراتورهایی را که خنککنندگی آنها با آب وهوای محبوس انجام میشود مورد بررسیقرار دهند. این ژنراتورها چنانچه دارای سیستم خنک کنندگی با آب و آب بندیمحوری تحت فشار با فیلترهای هوایجبرانی باشند از نظر فیزیکی بزرگتر هستند.ژنراتورهایی که خنککنندگی آنها با آب وهوای محبوس صورت میگیرد ازژنراتورهایی که خنککنندگی آنها با هوای بازانجام میشود گرانتر بوده و بازده کمتری نیزدارند.با این همه در حالی که ذرات ریز، یکموضوع قابل بررسی است و وقتی کهمسالهای از نظر ذخیرهسازی هیدروژن درنیروگاه وجود ندارد عموما ژنراتورهایی که باهیدروژن خنک میشوند انتخاب مناسبی بهنظر میرسد. با وجود آن که این نوع ازژنراتور گرانترین نوع است ولی بالاترینبازده را دارد.
سیستمهای خنک کنندگی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 17
مقدمه
موتورها مصرفکنندههای عمده برق در اغلب کارخانهها هستند. وظیفه یک موتورالکتریکی تبدیل انرژی الکتریسیته به انرژی مکانیکی است. در یک موتور سهفاز AC جریان از سیمپیچهای موتور عبور کرده و باعث ایجاد میدان مغناطیسی دواری میشود که این میدان مغناطیسی محور موتور را میچرخاند. موتورها بهگونهای طراحی شدهاند که این وظیفه را بهخوبی انجام دهند. مهمترین و ابتداییترین گزینه صرفهجویی در موتورها مربوطبه انتخاب آنها و استفاده از آنها میباشد.
1- هرزگردی موتورها
بیشترین صرفهجویی مستقیم برق را میتوان با خاموش کردن موتورهای بیبار و درنتیجه حذف تلفات بیباری بهدست آورد. روش ساده آن درعمل نظارت دایم یا کنترل اتوماتیک است. اغلب به مصرف برق در بیباری اهمیت چندانی داده نمیشود درحالیکه غالباً جریان در بیباری حدود جریان در بار کامل است.
مثالی از این نوع تلفات را میتوان در واحدهای بافندگی یافت، جاییکه ماشینهای دوزندگی معمولاً برای دورههای کوتاهی کار میکنند. اگرچه موتورهای این ماشینها نسبتاً کوچک هستند (1.3 اسب بخار) ولی چون تعداد آنها زیاد است (معمولاً تعداد آنها در یک کارخانه به صدها عدد میرسد) اندازه این تلفات قابلملاحظه است. اگر فرض کنیم 200 موتور 1.3 اسببخار در 90درصد زمان هرزگرد بوده و باری معادل 80درصد بار کامل بکشند، هزینه کار بیهوده موتورها با درنظر گرفتن 120ریال بهای واحد انرژی الکتریکی ، بهشکل زیر محاسبه میشود:
هزینه بیباری = 200موتور×3/1 اسببخار × 80% بار × 6000ساعت در سال × 90% بیباری ×120ریال= 25میلیون ریال
با اتصال یک سوئیچ به پدال چرخها میتوان آنها را بهطور اتوماتیک خاموش کرد.
2- کاهش بازده در کمباری
وقتی از موتوری استفاده شود که مشخصات نامی بالاتر از مقدار مورد نیاز را داشته باشد، موتور در بارکامل کار نمیکند و در اینحالت بازده موتور کاهش مییابد.
استفاده از موتورهای بزرگتر از اندازه موردنیاز معمولاً به دلایل زیر است :
- ممکن است پرسنل مقدار بار واقعی را ندانند و بنابه احتیاط موتوری بزرگتر از اندازه موردنیاز انتخاب شود
- طراح یا سازنده برای اطمینان از اینکه موتور توان کافی را داشته باشد، موتوری بسیار بزرگتر از اندازه واقعی موردنیاز پیشنهاد کند و بار حداکثر درعمل بهندرت اتفاق افتد. بهعلاوه اغلب موتورها میتوانند برای دورههای کوتاه در باری بیشتر از بار کامل نامی کار کنند. (درصورت تعدد این وسایل اهمیت مسئله بیشتر میشود)
- وقتی موتور با مشخصات نامی موردنظر در دسترس نیست یک موتور بزرگتر نصب میشود و حتی وقتی موتوری با اندازه نامی موردنظر پیدا میشود جایگزین نشده و موتور بزرگ همچنان به کار خود ادامه میدهد.
- بهخاطر افزایش غیرمنتظره در بار که ممکن است هیچگاه هم رخ ندهد یک موتور بزرگتر انتخاب میشود.
- نیازهای فرآیند تولیدی کاهش یافته است
در برخی بارها گشتاور راهانداز بسیار بیشتر از گشتاور دورنامی است و باعث میشود موتور بزرگتر بهکار گرفته شوند.
باید مطمئن شد هیچ کدام از این موارد موجب استفاده از موتورهایی بزرگتر از اندازه و درنتیجه کاهش بازده نشده باشند.
جایگزینی موتورهای کمبار با موتورهای کوچکتر باعث میشود که موتور کوچکتر با بار کامل دارای بازده بیشتری باشد. این جایگزینی معمولاً برای موتورهای بزرگتر وقتی در 3/1 تا نصف ظرفیتشان (بسته به اندازهشان) کار میکنند اقتصادی است.
برای تشخیص موتورهای بزرگتر از ظرفیت مورد نیاز به اندازهگیری الکتریکی احتیاج است. واتمتر مناسبترین وسیلهاست.
روش دیگر، اندازهگیری سرعت واقعی و مقایسه آن با سرعت نامی است. بار جزئی بهعنوان درصدی از بار کامل نامی را میتوان از تقسیم شیب(سرعت) عملیات بر شیب بار کامل بهدست آورد. رابطه بین بار و شیب تقریباً خطی است. معمولاً در این موارد میتوان برای جلوگیری از سرمایهگذاری جدید اینگونه موتورها را با دیگر موتورهای موجود در کارخانه جایگزین نمود که تنها هزینه آن اتصالات و صفحههای تنظیمکننده هستند. اگر این تغییرات را بتوان همزمان با تعمیرات برنامهریزیشده در کارخانه انجام داد بازهم هزینهها کاهش مییابد.
3- موتورهای پربازده
بازگشت سرمایه قیمت اضافی پرداختی جهت خرید موتورهای پربازده، معمولاً کمتراز دو سال کارکرد موتور بهازای 4000 ساعت کارکرد سالانه و در 75درصد بار میباشد. (بازگشت سرمایه نسبت به موتورهای قدیمی و غیر استاندارد به کمتر از شش ماه نیز میرسد) درمواردی که بار موتور سبک یا ساعت کارکرد آن کم است یا بارهای تناوبی استثنائاتی وجود دارد. بیشترین صرفهجویی در رنج موتورهای 1 تا 20 اسببخار بهدست میآید. در توان بیشتر از 20 اسببخار افزایش بازده کاهش مییابد و موتورهای موجود بیش از 200 اسببخار تقریباً دارای بازده کافی هستند.
سازندگان معمولاً موتورهای با طراحی استاندارد و قیمت تمامشده کمتر را عرضه میکنند. بهخاطر رقابت شدید این نوع موتورها بازده کمی دارند. آنها ضریب قدرت پایینتری دارند، قابل تعمیر
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 3
دودکش خورشیدی- راهکاری جدید برای تولید برق از انرژی خورشیدی
اساساً اگر بخواهید انرژیهای تجدیدپذیر از کاربرد وسیعی برخوردار شوند باید که تکنولوژیهای ارایه شده ساده و قابل اعتماد بوده و برای کشورهای کمتر توسعه یافته نیز مشکلات فنی به همراه نداشته باشد و بتوان از منابع محدود مواد خام آنها نیز استفاده کرد. در مرحله بعدی نیز باید به آب زیاد نیاز نداشته باشد. در همینجا باید گفت که تکنولوژی دودکش دارای این شرایط است. بررسیهای اقتصادی نشان داده است که اگر این نیروگاهها در مقیاس بزرگ (بزرگتر یا مساوی 100 مگاوات) ساخته شوند، قیمت برق تولیدی آنها قابل مقایسه با برق نیروگاههای متداول است. این موضوع کافی است که بتوان انرژی خورشیدی را در مقیاسهای بزرگ نیز به خدمت گرفت. بر این اساس میتوان انتظار داشت که دودکشهای خورشیدی بتوانند در زمینه تولید برق برای مناطق پرآفتاب نقش مهمی را ایفا کنند.
باید توجه داشت که تکنولوژی دودکش خورشیدی در واقع از سه عنصر اصلی تشکیل شده است که اولی جمعکننده هوا و عنصر بعدی برج یا همان دودکش و قسمت آخر نیز توربینهای باد آن است و همه عناصر آن برای قرنها است که بصورت شناخته شده درآمدهاند و ترکیب آنها نیز برای تولید برق در سال 1931 توسط گونتر مورد بحث قرار گرفته است. در سال 84-1983 نیز نتایج آزمایشات و بحثهای نمونهای از دودکش خورشیدی که در منطقه مانزانارس در کشور اسپانیا ساخته شده بود، ارایه شد. در سال 1990 شلایش و همکاران در مورد قابل تعمیم بودن نتایج بدست آمده از این نمونه دودکش بحثی را ارایه کردند. در سال 1995 شلایش مجدداً این بحث را مورد بازبینی قرار داد. در ادامه در سال 1997 کریتز طرحی را برای قرار دادن کیسههای پر از آب در زیر سقف جمعآوری کننده حرارت ارایه کرد تا از این طریق انرژی حرارتی ذخیرهسازی شود. گانون و همکاران در سال 2000 یک تجزیه و تحلیل برای سیکل ترمودینامیکی ارایه کردند و بعلاوه در سال 2003 نیز مشخصات توربین را مورد تجزیه و تحلیل قرار دادند. در همین سال روپریت و همکاران نتایج حاصل از محاسبات دینامیک سیالاتی و نیز طراحی توربین برای یک دوربین خورشیدی 200 مگاواتی را منتشر ساختند. در سال 2003 دوز سانتوز و همکاران تحلیلهای حرارتی و فنی حاصل از محاسبات حل شده به کمک کامپیوتر را ارایه کردند.در حال حاضر در استرالیا طرح نیروگاه دودکش خورشیدی با ظرفیت 200 مگاوات در مرحله طراحی و اجرا است http://www.enviromission. Com.au. باید گفت که استرالیا مکان مناسبی برای این فناوری است چون شدت تابش خورشید در این کشور زیاد است. در ثانی زمینهای صاف و بدون پستی و بلندی در آن زیاد است و دیگر اینکه تقاضا برای برق از رشد بالایی برخوردار است ونهایتاً اینکه دولت این کشور خود را به افزایش استفاده از انرژیهای تجدیدپذیر ملزم کرده است و از این رو به 9500 گیگاوات ساعت برق در سال از منابع تجدید پذیر جدید نیاز دارد.اصول کار: هوا در زیر یک سقف شفاف که تشعشع خورشیدی را عبور میدهد، گرم میشود. باید توجه داشت که وجود این سقف و زمین زیر آن بعنوان یک کلکتور یا جمعکننده خورشیدی عمل میکند. در وسط این سقف شفاف یک دودکش یا برج عمودی وجود دارد که هوای زیادی از پایین آن وارد میشود. باید محل اتصال سقف شفاف و این برج بصورتی باشد که منفذی نداشته باشد و اصطلاحاً «هوا بند» شده باشد. بر همگان روشن است که هوای گرم چون سبکتر از هوای سرد است به سمت بالای برج حرکت میکند. این حرکت باعث ایجاد مکش در پایین برج میشود تا هوای گرم بیشتری را به درون بکشد و هوای سرد پیرامونی به زیر سقف شفاف وارد شود. برای اینکه بتوان این فناوری را بصورت 24 ساعته مورد استفاده قرارداد میتوان از لولهها یا کیسههای پرشده از آب در زیر سقف استفاده کرد. این موضوع بسیار ساده انجام میشود یعنی در طول روز آب حرارت را جذب کرده وگرم میشود و در طول شب این حرارت را آزاد میکند. قابل ذکر است که باید این لولهها را فقط برای یکبار با آب پر کرده و به آب اضافی نیازی نیست. بنابراین اساس کار بدین صورت است که تشعشع خورشیدی در این برج باعث ایجاد یک مکش به سمت بالا میشود که انرژی حاصل از این مکش توسط چند مرحله توربین تعبیه شده در برج به انرژی مکانیکی تبدیل شده و سپس به برق تبدیل میشود.توان خروجی:به زبان ساده میتوان توان خروجی برجهای خورشیدی را بصورت حاصلضرب انرژی خورشیدی ورودی (Qsolar) در راندمان مربوط به جمعکننده، برج و توربین بیان کرد:در ادامه سعی میشود پارامترهای قابل محاسبه مشخص شوند ودر این راستا باید گفت که Qsolar را میتوان بصورت حاصلضرب تشعشع افقی (Gh) درمساحت کلکتور (Acoll) نوشت.در داخل برج جریان گرمایی ناشی از کلکتور به انرژی سینتیک (بصورت کنوکسیون) و انرژی پتانسیل (افت فشار در توربین) تبدیل میشود. بنابراین متوجه میشویم که اختلاف دانسیته هوا که ناشی از افزایش دما در کلکتور است، بعنوان یک نیروی محرکه عمل میکند. هوای سبکتر موجود در برج در قسمت تحتانی و در قسمت فوقانی برج به هوای اطراف متصل است و از این رو باعث ایجاد یک حرکت روبه بالا میشود. در یک چنین حالتی یک اختلاف فشار بین قسمت پایین برج (خروجی کلکتور) و محیط اطراف ایجاد میشود که فرمول آن بصورت زیر است:بر این اساس با افزایش ارتفاع برج، ΔPtot افزایش خواهد یافت. البته این اختلاف فشار را میتوان (با فرض قابل صرفنظر کردن اتلافهای اصطکاکی) به اختلاف استاتیک و دینامیک تقسیم کرد:قابل ذکر است که اختلاف فشار استاتیک در توربین افت میکند و اختلاف فشار دینامیک بیانگر انرژی سینتیک جریان هوا است.میتوان بین توان موجود دراین جریان و اختلاف فشار کل و جریان حجمی هوا وقتی که ΔPs=0، رابطهای نوشت: راندمان برج را بصورت زیر بیان میکنند:در عمل افت فشار استاتیک ودینامیک ناشی از توربین است. در حالتی که توربین وجود نداشته باشد میتوان به حداکثر سرعت جریان دست یافت و تمام اختلاف فشار موجود به انرژی سینتیک تبدیل میشود:بر اساس تخمین Boussinesq حداکثر سرعت قابل دسترسی برای جریان جابجایی آزاد بصورت زیر است:که دراین فرمول ΔT همان افزایش دما بین محیط و خروجی کلکتور (ورودی دودکش) است. معادل زیر بیانگر راندمان برج و پارامترهای موثر در آن است:بر اساس این نمایش ساده شده در بین پارامترهای دخیل در دودکش خورشیدی، مهمترین عامل در راندمان برج، ارتفاع آن است. مثلاً برای برجی به ارتفاع 1000 متر اختلاف بین محاسبات دقیق و محاسبه تقریبی ارایه شده، قابل صرفنظر کردن است.با دقت در معادلات (1)، (2) و (3) میتوان دریافت که توان خروجی یک دودکش خورشیدی متناسب باسطح کلکتور و ارتفاع برج است.مشخص شد که توان تولید برق یک دودکش خورشیدی متناسب با حجم حاصل از ارتفاع برج و سطح کلکتور است یعنی میتوان با یک برج بلند و سطح کم و یا یک برج کوتاه با سطح وسیع به یک میزان برق تولید کرد. البته اگر اتلاف اصطکاکی وارد معادلات شود دیگر موضوع فوق صادق نیست. با این وجود تا زمانی که قطر کلکتور بیش از حد زیاد نشود میتوان از قاعده سرانگشتی فوق استفاده کرد.کلکتور:هوای گرم مورد نیاز برای دودکش خورشیدی توسط پدیده گلخانهای در یک محوطهای که با پلاستیک یا شیشه پوشانده شده و حدوداً چند متری از زمین فاصله دارد، ایجاد میشود. البته با نزدیک شدن به پایه برج، ارتفاع ناحیه پوشانده شده نیز افزایش مییابد تا تغییر مسیر حرکت جریان هوا بصورت عمودی با کمترین اصطکاک انجام پذیرد. این پوشش باعث میشود که امواج تشعشع خورشید وارد شده و تشعشعهای با طول موج بالا مجدداً از زمین گرم بازتاب کند. زمین زیر این سقف شیشهای یا پلاستیکی، گرم شده و حرارت خود را به هوایی که از بیرون وارد این ناحیه شده است و به سمت برج حرکت میکند، پس میدهد.ذخیرهسازی:اگر به یک ظرفیت اضافی برای ذخیرهسازی حرارت نیاز باشد، میتوان از لولههای سیاه رنگ که با آب پر شدهاند و بر روی زمین در داخل کلکتور قرار داده شدهاند، بهره جست. این لولهها را باید فقط یکبار با آب پر کرده و دو طرف آنها را بست و بنابراین تبخیر نیز رخ نخواهد داد. حجم آب درون لولهها بنحوی انتخاب میشود که بسته به توان خروجی نیروگاه لایهای با ضخامت 20-5 سانتیمتری تشکیل شود.در شب زمانیکه هوای داخل کلکتور شروع به سرد شدن میکند، آب داخل لولهها نیز حرارت ذخیره شده در طول روز را آزاد میکند. ذخیره حرارت به کمک آب بسیار موثرتر از ذخیره در خاک به تنهایی است چون همانطور که میدانید انتقال حرارت بین لوله و آب بسیار بیشتر از انتقال حرارت بین سطح خاک و لایههای زیرین است و این از آن بابت است که ظرفیت حرارتی آب پنج برابر ظرفیت حرارتی خاک است.برج: برج به خودی خودنقش موتور حرارتی نیروگاه را بازی میکند و همانند یک لوله تحت فشار است که به دلیل دارا بودن نسبت مناسب سطح به حجم از اتلاف اصطکاکی کمی برخوردار است. در این برج سرعت مکش به سمت بالای هوا تقریباً متناسب با افزایش دمای هوا (ΔT) در کلکتور و ارتفاع برج است. در یک دودکش خورشیدی چند مگاواتی، کلکتور باعث میشود که دمای هوا بین 35-30 درجه سانتیگراد افزایش یابد و این به معنی سرعتی معادل m/sec15 است که باعث حرکت شتابدار هوا نخواهد شد و بنابراین برای انجام عملیات تعمیر و نگهداری میتوان براحتی وارد آن شد و ریسک سرعت بالای هوا وجود ندارد.توربینها:با بکارگیری توربینها، انرژی موجود در جریان هوا به انرژی مکانیکی دورانی تبدیل میشود. توربینهای موجود در دودکش خورشیدی شبیه توربینهای بادی نیستند و بیشتر شبیه توربینهای نیروگاههای برقابی هستند که با استفاده از توربینهای محفظهدار، فشار استاتیک را به انرژی دورانی تبدیل میکنند. سرعت هوا در قبل و بعد از توربین تقریباً یکسان است.. توان قابل حصول در این سیستم متناسب با حاصلضرب جریان حجم هوا در واحد زمان و اختلاف فشار در توربین است. از نقطه نظر بهرهوری بیشتر از انرژی، هدف سیستم کنترل توربین بحداکثر رساندن این حاصلضرب در تمام شرایط عملیاتی است.مدل آزمایشی: برای ساخت یک مدل ازمایشی، تحقیقات تئوریک مفصلی انجام شده که آزمایشات تونل باد وسیعی را بهمراه داشت و نهایتاً در سال 1981 منجر به ساخت واحدی با توان تولید 50 کیلووات برق در منطقه مانزانارس (Manzanares) در 150 کیلومتری جنوب مادرید در کشور اسپانیا شد و این واحد از کمک مالی وزارت تحقیق و فناوری آلمان برخوردار بود.هدف از این طرح تحقیقاتی، تطبیق، اندازهگیری محلی، مقایسه پارامترهای تئوریک و عملی و بررسی تاثیر اجزاء مختلف دودکش خورشیدی بر راندمان و نیز توان تولیدی این فناوری تحت شرایط واقعی و نیز شرایط خاص آب و هوایی بود.پوشش سقف قسمت کلکتور نه تنها باید شفاف یا حداقل نیمه شفاف باشد بلکه باید محکم بوده و از قیمت قابل قبولی برخوردار باشد. برای این پوشش نوعی از ورقههای پلاستیکی و نیز شیشه مورد توجه قرار گرفتند تا مشخص شود در درازمدت کدامیک از آنها بهتر بوده و صرفه اقتصادی دارد. باید توجه داشت که شیشه میتواند سالیان سال در مقابل طوفان و باد مقاومت کرده وآسیب نبیند و در مقابل بارانهای فصلی نیز نوعی خاصیت خود تمیز کنندگی بروز میدهد.در عوض لایههای پلاستیکی را باید درون یک قاب قرار داد و وسط آنها نیز اصطلاحاً به سمت زمین شکم میدهد. هرچند هزینه اولیه سرمایهگذاری ورقههای پلاستیکی کمتر است ولی در مانزانارس با گذشت زمان این لایهها شکننده شدند و آسیب دیدند. البته با پیشرفت در ساخت لایههای مقاوم در برابر دما و اشعه ماوراء بنفش میتوان به استفاده از پلاستیکها نیز امیداور بود.مدل ساخته شده در اسپانیا در سال 1982 تکمیل گشت و هدف اصلی از ساخت آن نیز گردآوری اطلاعات بود. بین اواسط 1986 تا اوایل 1989 این واحد بطور مرتب هر روز مورد استفاده قرار گرفت و برق تولیدی آن نیز به شبکه برق سراسری متصل شد. طی این دوره 32 ماهه این واحد بصورت کاملاً اتوماتیک راهبری شد. در سال 1987 در این منطقه حدود 3067 ساعت با شدت تابش w/m2 150 وجود داشته است.یکی از مطالب قابل توجه در راهبری این مدل آزمایشی آن بود که اسپانیاییها در زیر قسمت کلکتور اقدام به کشاورزی کردند تا این امکان را نیز در طرح خود مورد بررسی قرار دهند و اصطلاحاً از زمین بصورت بهینه استفاده کنند. نتیجه این قسمت از تحقیق آن بود که توانستند گیاه مورد نظر خود را پرورش دهند و تاثیر آن را بر رطوبت هوای زیر سقف و دیگر پارامترهای مربوطه مورد ارزیابی قرار دهند.تمامی نتایج بدست آمده بیانگر آن بوده است که این فناوری از قابلیت کافی جهت استفاده در مقیاسهای بزرگتر را دارا است. بر پایه این نتایج یک سری تحقیقات توسط موسسات و دانشگاههای مختلف انجام شد تا وضعیت آن را شبیه سازی و مدلسازی کند تا بتوان نتایج این سیستم در مقیاس بزرگتر را پیشگویی کرده و قابل بررسی کرد.تحولات آینده:همانطور که در ابتدای مقاله اشاره شد در آینده نزدیک قرار است یک نیروگاه دودکش خورشیدی با ظرفیت 200 مگاوات در استرالیا ساخته شود که ارتفاع برج آن 1000 متر خواهد بود. بر اساس اطلاعات بدست آمده کشور آفریقای جنوبی نیز در نظر دارد با کمک سازمانهای بینالمللی و نیز نهادهای سازمان ملل متحد یک نیروگاه با برجی به ارتفاع 1500 متر احداث کند تا از آن برای رفع کمبود برق خود استفاده کند. در این ارتباط باید متذکر شد که دولت هند نیز برای اجرای این طرح در ایالت گجرات اعلام آمادگی کرده است.هر چند در ابتدا ساخت برجهای مرتفع کاری سخت بنظر میرسد ولی نباید از نظر دور ساخت که برج مرتفع شهر تورنتو کانادا در حال حاضر دارای 600 متر ارتفاع است و ژاپنیها در نظر دارند آسمانخراشهایی با ارتفاع 2000 متر در مناطقی بسازند که امکان زمین لرزه آنها نیز زیاد است و نهایتاً آنکه ساخت برج میلاد در کشورمان ایران نیز تاییدی بر این مدعاست که امروزه ساخت یک چنین سازههایی دور از دسترسی نیست و ضمناً ما در ساخت سازه سدهای آبی نشان دادهایم که براحتی میتوانیم سازههای عظیم بتنی را برپا سازیم.جهت اطلاع بیشتر در جدول 2 اندازههای مختلف فناوری دودکش خورشیدی برای ظرفیتهای مختلف تولید برق ذکر شده است.نباید از نظر دور داشت که با افزایش قیمت سوختهای فسیلی معادلات به نفع فناوریهای مرتبط با انرژیهای تجدیدپذیر تغییر خواهد کرد. در ثانی در کشورهایی که دستمزد نیروی کار پایین است، هزینه تولید برق با این روش کاهش خواهد یافت چون تقریباً نیمی از هزینه ساخت یک چنین نیروگاهی مربوط به هزینه ساخت کلکتور میشود که با کارگران ارزان و نسبتاً غیرماهر میتوان براحتی آن را ساخت.نتیجهگیری: با توجه به اجرایی شدن معاهده زیستمحیطی کیوتو پس از پیوستن روسیه و عضویت ایران در این معاهده، بنظر میرسد که باید به دنبال راههایی جهت کاستن از میزان انتشار گازهای گلخانهای بود.یکی از بهترین روشها جهت حصول به این هدف، استفاده از انرژیهای تجدیدپذیر است و در این راستا برای کشورهای در حال توسعه میتوان فناوری «دودکش خورشیدی» را معرفی کرد. این معرفی از آن جهت است که قسمت عمده کار با نیروی نسبتاً غیرماهر قابل انجام است و این سیستم قادر است بدون نیاز به تعمیر و نگهداری خاص برای مدت مدیدی برق تولید کند و مناسب برای کشورهایی است که میزان تابش خورشید در آنها زیاد است. بعلاوه نباید رشد بالای تقاضا برای برق در کشوری مانند ایران را نیز از یاد برد.در ضمن میتوان اینگونه طرحها را با استفاده از اعتبارات تعیین شده در معاهده کیوتو که اصطلاحاً CDM (Clean Development Mechanism) خوانده میشوند و حتی اعتبارات دیگر سازمانهای بینالمللی پیگیری کرد چون بسیاری از سازمانها و کشورها حاضرند جهت استفاده از نتایج و نیز توسعه اینگونه فناوریها،کمکهایی را به کشورهای داوطلب اعطا کنند.
با اجازه از : مهندس عبدا... مصطفایی
منبع : سایت توانیر
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
در تکاپوی تأمین انرژی
انرژی، عنصر اول است تا دنیای صنعتی، صنعتی تر شود. بی دلیل نیست که برنامه ریزی های کنونی اقتصاد دنیا به سمت و سوی تأمین کافی و مطمئن انواع مختلف انرژی سوق پیدا کرده و در شرایط کنونی برای حیات انسان ها بر روی کره خاکی راهی بجز این متصور نیست.آژانس بین المللی انرژی در گزارش سال 2002 خود به بررسی دورنمای میزان تولید و مصرف انرژی، همزمان با رشد اقتصادی کشورها پرداخته است. در مطلب زیر که از پایگاه اینترنتی سازمان بهینه سازی مصرف سوخت کشور اخذ شده است پیش بینی کلیات رشد اقتصادی کشورها به عنوان عامل محرک رشد تقاضا برای انرژی، افزایش جمعیت، قیمت نفت خام و سیاست های کلان انرژی کشورها در بلندمدت و در عین حال روند تأمین انرژی و چشم انداز بازار آن ارائه شده است.رشد 3 درصدی تولید ناخالص دنیارشد اقتصادی، مهمترین عامل محرک رشد تقاضا برای انرژی است. در این گزارش فرض بر این است که تولید ناخالص جهان بین سال های 2000 تا 2030، به طور میانگین سالانه 3 درصد رشد خواهد کرد. این نرخ رشد اندکی کمتر از آن چیزی است که در سه دهه گذشته شاهد بوده ایم. پیش بینی می شود نرخ رشد اقتصادی جهان از سال 2003 با افزایش محسوسی همراه شود و تا سال 2010 بر همین منوال ادامه پیدا کند، ولی پس از آن با کاسته شدن از شتاب رشد اقتصادی کشورهای در حال توسعه، که اقتصاد آنها به درجه ای از بلوغ می رسد و رشد جمعیت آنها کندتر می شود، نرخ رشد اقتصاد جهانی هم فروکش کرده و تا سال 2030 پیوسته از رشد آن کاسته می شود.پیش بینی (فرض) می شود بر جمعیت جهان طی 30 سال آینده، یک سوم افزوده شده و جمعیت از حدود 6 میلیارد نفر در سال 2000 به 8/2 میلیارد نفر در سال 2030برسد. نرخ رشد جمعیت جهان که در دهه 1990، معادل 1/4 درصد در سال بود در دوره 2000-2030، به یک درصد در سال خواهد رسید. بخش اعظم رشد جمعیت جهان طی این دوره در مناطق شهری کشورهای در حال توسعه روی خواهد داد.پیش بینی (فرض) می شود که قیمت های نفت خام تا سال 2010، کمابیش ثابت و در سطح 21 دلار برای هر بشکه (به قیمت ثابت سال 2000) باقی خواهد ماند که این برابر با میانگین قیمت واقعی نفت طی 15 سال گذشته است. پس از سال 2010 قیمت های نفت خام به تدریج و در یک روند افزایشی یکنواخت تا سال 2030 به 29 دلار خواهد رسید. طی همین سال ها، قیمت گاز طبیعی نیز کمابیش همراه با قیمت های نفت خام نوسان خواهد کرد و قیمت های منطقه ای در اروپا، آمریکای شمالی و حوزه آسیا-اقیانوسیه به تدریج به یکدیگر نزدیک خواهند شد. قیمت زغال سنگ تا سال 2010 کمابیش بدون تغییر خواهد ماند و پس از آن به آرامی افزایش خواهد یافت.تغییر در سیاست های دولت ها و تحولات تکنولوژیک، همراه با شرایط کلان اقتصادی و تغییرات قیمت های نفت، مهمترین عوامل نااطمینانی در چشم انداز آتی انرژی جهان هستند. این عوامل، هم بر تقاضا وهم بر عرضه انرژی و نرخ سرمایه گذاری در زیرساخت های عرضه انرژی تأثیر خواهند گذاشت. طبعاً پیش بینی های ما درخصوص دهه سوم از دوره 30 ساله آتی، با نااطمینانی بیشتری همراه است.روندهای آتی انرژی جهان طبق سناریوی مرجع، مصرف انرژی در جهان تا سال 2030 روند افزایشی یکنواختی را دنبال خواهد کرد. سوخت های فسیلی کماکان اصلی ترین منبع تأمین انرژی خواهند بود و بیش از 90 درصد افزایش مصرف انرژی ظرف 30 سال آینده از طریق این سوخت ها تأمین خواهد شد. در میان سوخت های فسیلی، گاز طبیعی سریعتر از سایر سوخت ها رشد خواهد کرد، ولی نفت همچنان مهمترین سوخت فسیلی باقی خواهد ماند. بر اهمیت انرژی های تجدیدپذیر نیز در این دوره افزوده خواهد شد، ولی نقش انرژی هسته ای در تأمین انرژی جهان پیوسته کمرنگ تر خواهد شد.
تقاضا برای انرژی در کشورهای در حال توسعه، به ویژه در آسیا، سریعتر از سایر مناطق رشد خواهد کرد. بدین ترتیب سهم این کشورها از تقاضای جهانی انرژی از حدود 30درصد کنونی، تا سال 2030 به بیش از 23 درصد خواهد رسید. با وجود این، مصرف سرانه انرژی در کشورهای درحال توسعه همچنان به مراتب پایین تر از کشورهای توسعه یافته خواهد بود.منابع نوین انرژی در 30 سال آینده به همراه پیشرفت های تکنولوژیک در دسترس بشر قرار خواهند گرفت. از جمله می توان به شن های نفتی، GTL و پیل های سوختی مقرون به صرفه اشاره کرد که به ویژه پس از سال 2010 گسترش خواهند یافت.ظرف سه دهه آینده سرچشمه های جغرافیایی عرضه انرژی، در واکنش به ترکیبی از عوامل هزینه ای، ژئوپولیتیکی و فنی، دستخوش تغییر خواهد شد. در مجموع، تقریباً تمامی افزایش تولید انرژی طی دهه آینده در خارج از قلمرو
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
تولید انرژی الکتریکی
نوشتار اصلی: تولید انرژی الکتریکی
بیشتر نیروگاههای برق-آبی انرژی مورد نیاز خود را از انرژی پتانسیل آب پشت یک سد تامین میکنند. در این حالت انرژی تولیدی از آب به حجم آب پشت سد و اختلاف ارتفاع بین منبع و محل خروج آب سد وابستهاست. به این اختلاف ارتفاع، ارتفاع فشاری میگویند و آن را با H (مخفف Head) نمایش میدهند. در واقع میزان انرژی پتانسیل آب با ارتفاع فشاری آن متناسب است. برای افزایش فاصله یا ارتفاع فشاری، آب معمولاً برای رسیدن به توربین آبی فاصله زیادی را در یک لوله بزرگ (penstock) طی میکند.
برشی از یک سد و یک نیروگاه آبی.نیروگاه آب تلمبهای، نوعی دیگر از نیروگاه آبی است. وظیفه یک نیروگاه آب تلمبهای پشتیبانی شبکه الکتریکی در ساعات اوج مصرف (ساعات پیک) است. این نیروگاه تنها آب را در ساعات مختلف بین دو سطح جابجا میکند. در ساعاتی که تقاضای برای انرژی الکتریکی پایین است با پمپ کردن آب به یک منبع مرتفع انرژی الکتریکی را به انرژی پتانسیل گرانشی تبدیل میکند. در زمان اوج مصرف آب دوباره از مخزن به سمت پایین جاری میشود و با چرخاندن توربین آبی موجب تولید برق و رفع نیاز شبکه میگردد. این نیروگاهها با ایجاد تعادل در ساعات مختلف موجب بهبود ضریب بار شبکه و کاهش هزینههای تولید انرژی الکتریکی میشوند.
از دیگر انواع نیروگاههای آبی میتوان به نیروگاههای جزر و مدی اشاره کرد. همانطور که از نام این نیروگاههای مشخص است این نیروگاهها نیروی مورد نیاز خود را از اختلاف ارتفاع آب در بین شبانه روز تامین میکنند. منابع در این دسته از نیروگاهها نسبت به بقیه کاملاً قابل پیشبینی هستند. این نیروگاهها همچنین میتوانند در مواقع اوج مصرف به عنوان پشتیبان شبکه عمل کنند.
برخی نیروگاههای آبی که تعداد آنها زیاد هم نیست از انرژی جنبشی آب جاری استفاده میکنند. در این دسته از نیروگاهها نیازی به احداث سد نیست توربین این نیروگاهها شبیه یک چرخ آبی عمل میکند. این نوع استفاده از انرژی شاخه نسبتاً جدیدی از علم جنبش مایعات است.
معادله
یک معادله ساده برای محاسبه تقریبی انرژی الکتریکی در یک نیروگاه برق آبی وجود دارد که به صورت زیر است:
در معادله بالا P توان خروجی در واحد وات، h ارتفاع فشاری در واحد متر، r میزان آب خارج شده در واحد مترمربع در ثانیه و K ضریب تبدیل در ۷۵۰۰ وات است (با پیش شرط راندمان ۷۶٪ ،شتاب ثقل ۹٫۸۱ متر بر مجذور ثانیه و آب تازه با چگالی ۱۰۰۰ کیلوگرم به ازای هر متر مربع. البته در توربینهای بزرگ و پیشرفته راندمان معمولاً بالاتر این مقدار است و در توربینها فرسوده این راندمان کمتر است).
میزان تولید انرژی الکتریکی در یک نیروگاه آبی به شدت به میزان آب موجود وابستهاست و در فصول مختلف میزان تولید میتواند به نسبت ۱۰ به ۱ متفاوت باشد.
سد
نوشتار اصلی: سد
سد دیواری محکم از سنگ وسیمان و یا ساروج است که به منظور مهار کردن آب در عرض دره یا میان دو کوه ایجاد میشود. برعکس خاکریزها که برای جلوگیری از ورود آب رودخانه یا دریا به مناطق اطراف ساخته میشوند در سدها هدف از مهار کردن آب استفاده از آن است.
منبع آب پشت یک سد در لوگزامبورگ.سدها از نظر مشخصههای مختلف طبقهبندی میشوند این مشخصهها معمولاً شامل:
طول سد: از نظر طول سدهای با طول بیش از ۱۵ متر را سدهای بزرگ و سدهای با طول بیش از ۱۵۰ متر را سدهای بسیار بزرگ مینامند.
هدف از احداث سد: اهداف ساخت یک سد میتوانند متفاوت باشند به طوری که بسیاری از سدها بیشتر از یک هدف را دنبال میکنند این اهداف میتوانند شامل آبیاری یا تامین آب مناطق شهری یا زمینهای کشاوزی، تولید انرژی الکتریکی، ایجاد فضای تفریحی، کنترل سیل و... باشند.
ساختار سد: از نظر ساختار، با توجه به مصالح مصرف شده یا تکنولوژی ساخت سدها باهم متفاوت هستند. سدها از نظر مصالح مصرف شده میتوانند چوبی، خاکی یا بتنی باشند.
مزایا
ملاحظات اقتصادی
بیشترین مزیت استفاده از نیروگاهها آبی عدم نیاز به استفاده از سوختها و در نتیجه حذف هزینههای مربوط به تامین سوخت است. درواقع هزینه انرژی الکتریکی تولیدی در یک نیروگاه آبی تقریباً از تغییرات قیمت سوختهای فسیلی نظیر نفت، گاز طبیعی و زغال سنگ مصون است. همچنین عمر متوسط نیروگاههای آبی در مقایسه با نیروگاههای گرمایی بیشتر است، به طوری که عمر برخی از نیروگاههای آبی که هماکنون در حال استفاده هستند به ۵۰ تا ۱۰۰ سال پیش بازمیگردد. هزینه کار این نیروگاهها در حالی که به صورت خودکار کار کنند کم است و بجز در موارد اضطراری به پرسنل زیادی در نیروگاه نیاز نخواهد بود.
در موقعیتهایی که استفاده از سد چندین هدف را پوشش میدهد، ساخت یک نیروگاه آبی هزینه نسبتاً کمی را به هزینههای ساخت سد اضافه میکند. ایجاد یک نیروگاه هیمچنین میتواند هزینههای مربوط به ساخت سد را جبران کند. برای مثال درآمد ناشی از فروش انرژی الکتریکی در سد «Three Gorges» که بزرگترین سد جهان است با فروش انرژی الکتریکی تولیدی در سد در طول ۵ تا ۷ سال جبران شدهاست.
انتشار گازهای گلخانهای
در صورتی که سوختی در نیروگاه سوخته نشود، دی اکسید کربن (که یک گاز کلخانهای است) نیز در نیروگاه تولید نخواهد شد. البته در مراحل احداث نیروگاه مقدار ناچیزی گاز دیاکسید کربن تولید میشود که در مقابل میزان دیاکسید کربن تولیدی در نیروگاههای گرمایی که از سوختهای فسیلی برای تولید انرژی گرمایی استفاده میکنند بسیار ناچیزاست. البته در این نیروگاهها بر اثر اجتماع آب پشت سد گازهایی متساعد میشود که در پایین به آنها اشاره شدهاست.
یک توربین آبی وصل شده به یک مولد الکتریکی.
فعالیتهای وابسته