دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درمورد تکنولوژی چدن

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

گروه 1 شامل دو دسته است: 1- آلیاژ تصفیه شده Rehend 2- 1200، A 1050

آلیاژ تصفیه شده (H99, 1198) که درجه خلوص آنها 90/99 و 99.999% می‌باشد.

بسته به خلوصشان در ساخت خازن (چگالنده) الکتریکی (باصطلاح فلز اچ شده)، وسایل روستایی‌ها، و برای کاربرهای دکوری در ساختن بسته‌های لوکس (عطریات و آرایشی) فلز معمولاً آبکاری می‌شود.

آلیاژ 1050A دارای خلوص بالاتر از 5/99% می‌باشد و یکی از گروهای پرمصرف می‌باشد.

دارای تلفیق سازش خوبی یعنی مقاومت مکانیکی Rm، ظرفیت بر روی تغییر شکل پلاستیک و خاص دکوری می‌باشد دارای رنج کاربری وسیعی از قبیل: بسته‌بندی، ساختن، ورق‌کاری، لوله برای مبادلهای حرارتی هدایت کننده‌های الکتریکی و غیره می‌باشد.

آلیاژ 1200 دارای خلوص بین وو و 5/99% می‌باشد و در جائیکه شکل‌پذیری پلاستیکی کافی مدنظر باشد جایگزینی 1050A می‌شود بسته‌بندی، ظروف آشپزخانه.

گروه 3

آلیاژ صنعتی گروه 3 (شکل 1-4) شامل 10105 منگنز می‌باشد این آلیاژی بطور بارز خواص مکانیکی AL را افزایش می‌دهد و حداقل استحاکم کششی به میزان 40-50Mpa بطور تضمینی می‌افزاید در حالیکه شکل‌پذیری به حالت خوب خود باقی می‌ماند آلیاژ 3003 بارزترین آلیاژ این گروه باشد افزودن تا cu20/0% افزایش بیشتری در مقاومت مکانیکی را فراهم می‌نماید. و افزایش تا cu 7/0% امکان دست‌یابی به ساختار ریز دانه را فراهم می‌نماید.

همانند تمامی آلیاژ‌ها این گروه دارای بیشترین ظرفیت تغییر شکل پلاستیکی در وضعیت می‌باشد کاربرد اصلی 3003 در ساختمان (آبکاری تابلو- ورق روکش سقف)، ساخت، ورق‌کاری (طبی‌سازی) لوله‌های مبدل حرارتی وسایل آشپزخانه و غیره می‌باشد.

3103 متفاوت از 3003 می‌باشد که در آن مس بدون اضافه نمی‌شود.

304 تقریباً 1% منیزیم بدان اضافه شده، در حالیکه تمام خواص 3003 را دارد اندکی خواص مکانیکی بهتری ارائه می‌نماید. بطور عمده برای ساخت ظروف غذایی، ظروف آشپزخانه و....

آلیاژ 3005 و 3105 دو آلیاژی می‌باشد که خواص مکانیکی آنها تأمین گردید که 4 و 3003 افت پیدا می‌کند که در زمینه ساختمان ساخت (تولید)، ورقکاری- روکش حرارتی و...

گروه 5

خواص مکانیکی این آلیاژها با افزایش منیزیم افزایش می‌یابد (شکل 2-4)

آلیاژهای کار شده به ندرت شامل 5% منیزیم می‌باشند زیرا با بهترین از این سطح پایداری آلیاژ کاهش پیدا می‌کنند خصوصاً اگر تحت تاثیر حرارت باشد.

نگهداشتن دراز مدت در دمای بالا منجر به رسوب ترکیبات بین فلزی در مرز دانه‌ها می‌شود که تأثیرات احتمالی آن در بخش 4/6 B بیان شده است.

اگر بسته به کاربرد نیاز به عملیات حرارتی باشد. عملیات حرارتی پایدارسازی می‌تواند بر روی آلیاژی که حاوی mg3% یا بیشتر باشد انجام پذیرد (H321, H116).

اغلب آلیاژهای گروهای 5 شامل افزودنی‌های دیگر از قبیل Ti, cr, mg که افزایش بیشتری در استحکام کششی و یا خواص قطعی از قبیل مقاومت به خوردگی، ؟؟؟/ و دیگر را فراهم می‌نماید.

این آلیاژها:

بسیار مناسب به جهت جو همکاری می‌باشند به استثناء آن آلیاژهای که شامل %22-8/1 منیزیم باشد.

استحکام کششی اتصال بوش تقریباً برابر با فلز پایه در شرایط آئین شده می‌باشد.

دارای خواص خوب در دماهای پایین می‌باشد.

دارای مقاومت به خوردگی خوب چه در حالت جوش و چه در حالتی معکوس می‌باشد.

آلیاژ 5005 شامل حدود mg %6/0 می‌باشد و زمانیکه اندکی بهبود در خواص مکانیکی مورد نیاز باشد جایگزین گروه 1200 و A 1050 می‌شود.

آلیاژ 5657 متفاوت از 5005 زمانیکه از فلز پایه 1085 استفاده می‌کنیم می‌باشد. بدین معنا که معروف به کیفیت bright- trime بر روی بسته‌بندی زینتی و به منظور دکوراسیونی که مدنظر می‌باشد است.

آلیاژ 5154، 5454، 5754 ترکیبی از منیزیم از %4 تا 5/2 با اضافه کردن اندکی mn یا cr می‌باشد که بطور وسیعی در بخش ساختمان سیم 5154A غالباً بعنوان منع پروچ مورد استفاده قرار می‌گیرد.

آلیاژ 5086، 5083 حاوی %5 تا 5/3 منیزیم با Mn و cr اضافه شده بالاترین خواص مکانیکی برای



خرید و دانلود تحقیق درمورد تکنولوژی چدن


تحقیق در مورد بینی حالت تعادل برای یک آلیاژ 40 ص با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 40

 

مقدمه :

اساسی ترین کاربرد ترمودینامیک در متالوژی فیزیکی پیش بینی حالت تعادل برای یک آلیاژ است .

در بررسی های مربوط به دگرگونی های فازی ما همیشه با تغییر سیستم به سمت تعادل روبه رو هستیم. بنابراین ترمودینامیک به صورت یک ابزار بسیار سودمند می تواند عمل کند. باید توجه داشت که ترمودینامیک به تنهایی نمی تواند سرعت رسیدن به حالت تعادل را تعیین کند .

1-تعادل :

یک فاز به عنوان بخشی از یک سیستم تعریف می شود که دارای خصوصیات و ترکیب شیمیایی یکنواخت و همگنی بوده و از نظر فیزیکی از دیگر بخشهای سیستم جداشدنی است . اجزای تشکیل دهنده یک سیستم خاص عناصر مختلف یا ترکیب های شیمیایی است که سیستم را بوجود می آورد و ترکیب شیمیایی یک فاز یا یک سیستم را می توان با مشخص کردن مقدار نسبی هر جزء تشکیل دهنده تعیین کرد .

به طور کلی دلیل رخداد یک دگرگونی این است که حالت اولیه یک آلیاژ نسبت به حالت نهایی ناپایدارتر است اما پایداری یک فاز چگونه تعیین می شود ؟ این پرسش به وسیله ترمودینامیک پاسخ داده می شود . برای دگرگونی هایی که در دما و فشار ثابت رخ می دهد پایداری نسبی یک سیستم از انرژی آزاد گیبس G آن سیستم مشخص می شود .

انرژی آزاد گیبس یک سیستم به صورت زیر تعریف می شود :

( 1-1 ) G=H-TS

که H آنتالپی T دمای مطلق و S آنتروپی سیستم است . آنتالپی میزان گنجایش حرارتی سیستم مورد نظر است و به وسیله رابطه زیر بیان می شود.

( 2-1 ) H=E+PV

که E انرژی درونی سیستم P فشار و V حجم سیستم است . انرژی درونی مجموع انرژی های پتانسیل و جنبشی اتم های درون یک سیستم است. در جامدات انرژی جنبشی تنها ناشی از حرکت ارتعاشی اتم ها است در حالی که در مایعات و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول ها و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول های داخل یک مایع یا گاز را نیز در برمیگیرد . انرژی پتانسیل نیز بر اثر اندرکنش ها یا پیوند بین اتم های درون یک سیستم به وجود می آید . هنگامی که یک دگرگونی یا واکنش رخ می دهد حرارت جذب شده یا حرارت آزاد شده به تغییرات در انرژی درونی سیستم ارتباط پیدا می کند اما تغییرات حرارت تابعی از تغییر حجم سیستم نیز بوده و عبارت PV نمایانگر این موضوع است بنابراین در فشار ثابت تغییرات H نشانگر حرارت جذب شده یا آزاد شده است.

هنگامی که یک فاز متراکم (جامد یا مایع) را بررسی می کنیم و عبارت PV در مقایسه با E مقدار بسیار کوچکی است که آن را نادیده می گیرند و .

عبارت دیگری که در رابطه مربوط به G پدیدار می شود آنتروپی ( S ) بوده که بیانگر میزان بی نظمی سیستم است .

هنگامی یک سیستم را در ( حالت ) تعادل می دانند که در پایدارترین حالت خود قرار گرفته باشد یعنی با گذشت زمان هیچ تغییری در سیستم ایجاد نشود . یک نتیجه مهم از قوانین ترمودینامیک کلاسیک این است که در دما و فشار ثابت یک سیستم بسته ( یعنی سیستمی که جرم و ترکیب شیمیایی آن ثابت است ) هنگامی در تعادل پایدار قرار دارد که انرژی آزاد گیپس آن کمترین مقدار ممکن را داشته باشد یا به شکل ریاضی :

( 3-1 ) dG=O

با توجه به تعریف G ( معادله 1-1 ) ملاحظه می شود که پایدارترین حالت هنگامی رخ می دهد که سیستم کمترین آنتالپی و بیشترین آنتروپی را دارا باشد . بنابراین در دماهای پایین فازهای جامد پایدارتر است چون قویترین اتصال بین اتمی را داشته بنابراین کمترین انرژی درونی ( آنتالپی ) را دارد . در دماهای بالا چون عبارت TS - عبارت غالب است بنابراین فازهایی با بی نظمی بیشتر همچون مایعات و گازها که اتم های آنها به آسانی حرکت کرده و جابه جا می شود پایدارتر است .

تعادل که به وسیله معادله 3-1 تعریف می شود را می توان به صورت ترسیمی نیز نشان داد . اگر انرژی آزاد تمام حالت های فرضی ممکن یک سیستم را محاسبه کنیم آرایش پایدار حالتی خواهد بود که انرژی آزاد آن کمترین مقدار است . این موضوع در شکل یک نشان داده شده است و با این فرض که انرژی مربوط به هر یک از آرایش های اتمی مختلف به صورت نقطه ای روی منحنی موجود قرار می گیرد آرایش یا نظم A نشانگر وجود تعادل پایدار است . در این نقطه تغییرات کوچک در ترتیب اتم ها با یک تقریب مرتبه اول تغییری در G ایجاد نمی کند یعنی معادله 3-1 برقرار است . اگر چه همیشه آرایش ها و نظم های دیگری مانند B وجود دارد که در آن نقاط انرژی آزاد به طور موضعی کمینه است و معادله 3-1 را نیز تصدیق می کند ولی کمترین مقدار ممکن G را ندارد . چنین حالت ها یا آرایش هایی را به منظور جدا کردن از حالت پایدار حالت تعادل نیمه پایدار می نامند . حالت های میانی که را حالت ناپایدار می نامند و فقط در کارهای عملی و به طور لحظه ای هنگام انتقال از یک حالت پایدار به حالت دیگر به وجود می آید . اگر بر اثر نوسان های دمایی اتم ها یک نظم یا آرایش حالت میانی بیاید این نظم بسرعت تغییر می کند و اتم ها دوباره نظم یکی از حالت های دارای انرژی آزاد کمینه را به خود می گیرند . اگر بواسطه تغییری در دما یا فشار برای مثال یک سیستم از حالت پایدار به حالت نیمه پایدار حرکت کند با گذشت زمان سیستم به حالت تعادل پایدار جدیدی تغییر حالت می دهد .

شکل یک : تغییرات شماتیک انرژی آزاد گیبس نسبت به نظم و وضعیت اتمها . آرایش یا نظم A کمترین انرژی آزاد را دارد . بنابراین هنگامی که سیستم در تعادل پایدار است دارای چنین نظمی خواهد بود . آرایش B یک تعادل نیمه پایدار است .



خرید و دانلود تحقیق در مورد بینی حالت تعادل برای یک آلیاژ 40 ص با فرمت ورد


تحقیق در مورد بررسی مشخصات وخواص لحیم نا همجنس آلیاژ حافظه دار TINI و فولاد ضد زنگ 14 ص با فرمت ورد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

عنوان تحقیق:

بررسی مشخصات وخواص لحیم نا همجنس آلیاژ حافظه دار TINI و فولاد ضد زنگ

تاریخچه

آلیاژ حافظه دار TINI ماده ای است کاربردی با استفاده وسیع در بسیاری از منابع از جمله صنایع هوا فضا . انرژی هسته ای صنایع دریایی علوم پزشکی می باشد.این آلیاژ دارای خاصیت ویژه حافظه دار SME الاستیک بسیار بالا . مقاومت به سایش و فرسایش بسیار خوب و پایداری بالا در محیط بیو شیمیایی می باشد.( 1)

.امروزه در صنایع پزشکی از آلیاژ TINI و همچنین فولاد ضد زنگ برای ساخت سیستمهای ارتودنسی دندان استفاده می شود . خاصیت هوشمندی و همچنین الاستیکی بالای آلیاژ TINI به دندان ها این امکان را می دهد که در یک دوره درمانی بلند مدت و تحت نیروی کم ولی مداوم سیمها مکان خود را تصحیح کنند با این روش می توان تغییر فرم زیادی در دندان ها بدون اعمال نیروی زیاد اعمال نمود.(3)

با این وجود استحکام نسبتا پائین این آلیاژ باعث شل شدن تدریجی سیم در حین حرکت دندان ها در جهت مخالف می گردد. در مقابل استفاده از فولاد ضد زنگ بعلت استحکام بالا عیب مذکور را بر طرف می کند. ولی فلاد نیز بعلت داشتن الاستیکیه کم باعث اعمال نیروی زیاد به دندانها شده و از حرکت تدریجی آنها در حین دوره درمانی جلوگیری می کند.

با این تفاسیر تولید یک اتصال ناهمجنس از آلیاژ TINIو فولاد ضد زنگ مزایای استفاده از هر دو ماده را بدنبال دشانه و باعث کاهش طول دره درمان و افزایش کییفیت کار می گردد.

مقدمه

مقاله حاضر حاصل مطالعه سه مقاله تحقیقی می باشد که در آنها اهداف زیر مورد نظر بوده است:

1)بررسی ارتباط بین ریز ساختار و خواص اتصال ناهمجنس و دستیابی به راهکارهای مناسب بمنظور به بهبود خواص اتصال(1)

2)بررسی تاثیر پارامترهای لحیم لیزر بر خواص اتصال (2)

3)مطالعه خواص خوردگی اتصال(3)

محققین فوق ابتدا با استفاده از جوشکاری میکروپلاسما اتصال فوق را تولید کردند که مشکلات این اتصال عبارت بودند از استحکام که جوش (159-127 پاسگال) بعلت تشکیل ساختار سرد و همچنین وسیع بودن منطقه متاثر از حرارت (HAZ) (2)

لذا در کار پژوهشی اخیر به تولید اتصال آلیاژ TINI و فولاد ضد زنگ با اسفتاده از پروسه لحیم سخت لیزر و سیم لحیمی از جنس آلیاژ نقره پرداختند که به بررسی اجمالی نحه کار و نتایج این تحقیق خواهیم پرداخت.

آلیاژ TINI با استحکام کششی 1319-1108 مگا پاسکال و کرنش 18-16 در صد استفاده شد. فیلد متان مورد استفاده دارای ترکیب شیمیائی 68-50 درصد جرمی نقره 30-10 درصد مس .

20-12 درصد روی و 10-0 درصد قلع می باشد. در بخش های دوم وسوم تحقیق از فیلد سما با ترکیب 52 درصد نقره .22%مس.18%روی .8% وزنی قلع استفاده شده که دمای سالید و مس آن 590 و دمای لیکوئید و مس آن 3/635 بوده است.

بررسی ارتباط بین ریز ساختار و خواص اتصال:(1)

فرآیند لحیم با استفاده از یک دستگاه لیزر(JY-100 ) انجام شد. خواص مکانیکی اتصال در دمای اتاق و با استفاده از دستگاه یونیور سال (CSS-44100) و ریز ساختار اتصال با استفاده از میکروسکوپ نوری ،آنالیزور تصویر (VIDAS) میکروسکوپ SEM و دستگاه X-RAY بررسی گردید.

استحکام کششی و سختی اتصال:(1)

شکل (1) نحوه انجام تست مکانیکی بر روی اتصال را نشان می دهد. در شکل (2) پارامترهای لحیم نشان داده شده اند و در شکل (3) نمودار تنش کرنش مربوط به اتصال تحت پارامترهای نادیده در شکل (2) رسم شده است.

نتایج نشان داد که بهترین استحکام کششی سوپر الاستیکی در شرایط ناحیه 10 بدست می آید.

استحکام کششی اتصال 360-320 مگا پاسکال بدست آمد وکرنش الاستیک تا حد 10-8 در صد قابل افزایش بود. در حرارت ورودی کمتر (ناحیه9) استحکام 210-190 مگا پاسکال بدست آمد.منظقه شکست ،فصل مشترک بین آلیاژ TINI و فیلد متال بود که بدلیل پایین بودن حرارت ورودی زمان کوتاه لحیم و در نتیجه پیوند ضعیف بین این دو قسمت است. در منطقه(C) که حرارت رودی لحیم بالا است. شکست اتصال از منطقه HAZ آلیاژ TINI است که نشان دهنده تغییر شدید خواص آلیاژ در این ناحیه می باشد. (شکل4) . همچنین استحکام کششی تا 320 – 300 مگا پاسکال کاهش یافته و سختی نیز کمتر شد.(شکل5).

سوپرالاستیسیته آلیاژ TINI(1)

شکل 6 نمودار تنش – کرنش را برای بار گذاری در سه حالت و سپس برداشتن بار ،نشان می دهد.همانطور که مشاهده می شود،کرنش ایجاد شده در اثر بارگذاری با بر داشتن بار تا حد زیادی قابل بازگشت است و لذا اتلاف سوپر الاستیسته آلیاژ تقریبا پایین می باشد.

تحت خشن بصورتی که در شکل (7) نشان داده شده انجام گردید. خش درست آلیاژ TINI تا زاویه 90 درجه و بعد تا زمان 30 ثانیه انجام شد. با افزایش زایه (B) و افزایش حرارت ورودی لحیم میزان اتلاف خاصیت سوپر الاستیسته آلیاژ TINIافزایش یافت.در شرایطی که پارامترهای لحیم در ناحیه a شکل (2) قرار دارد.اتلاف سوپر الاستیسته آلیاژ در منطقه HAZ کم است. در ناحیه b این اتلاف کمی بیشتر شده و در ناحیه C افزایش اتلاف قابل ملاحظه است. لذا با کنترل مناسب میزان حرارت ورودی می توان خاصیت سوپر الاستیسته و حافظه داری آلیاژ TINI را در حد مطلوب نگه داشت.



خرید و دانلود تحقیق در مورد بررسی مشخصات وخواص لحیم نا همجنس آلیاژ حافظه دار TINI و فولاد ضد زنگ  14 ص با فرمت ورد


تحقیق درمورد آلیاژ سیلندر موتور

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

آلیاژ سیلندر موتور کلمه سیلندر (Cylinder) یک کلمه انگلیسی است که به شکل دست نخورده در زبان فارسی استعمال می‌شود. معنای اصلی سیلندر «استوانه» می‌باشد. دید کلی سیلندر موتور به قسمت استوانه‌ای شکل موتور گفته می‌شود که قطعات دیگر نظیر پیستون درون آن قرار گرفته و بالا و پایین می‌روند. شکل کلی سلندرها یک استوانه‌ای است که از هر دو طرف باز است. به عنوان مثال اگر قسمت تحتانی یک لیوان را از جایی ببریم که قطر آن با قطر دهانه لیوان یکسان باشد یک سیلندر ساخته‌ایم. سیلندر موتور در تمامی موتورهای احتراق داخلی (خواه چهارزمانه باشد خواه دوزمانه) وجود دارد.لیکن شکل آن متناسب با نوع موتور متفاوت است. همچنین ابعاد سیلندر نیز متناسب با توان اسمی موتور و تعداد سیلندرهای آن متفاوت است. در معنای کاربردی کلمه سیلندر نه تنها به یک استوانه توخالی بلکه به بدنه اصلی موتور گفته می‌شود که شامل سیلندرها و نیز پوسته پوشاننده اطراف آنها مجاور عبور آب برای خنک کاری سیلندر و نیز مجاری روغن گفته می‌شود. سیلندر قسمت اصلی یک موتور است و سایر قسمت‌های موتور به آن وصل می‌شوند. تاریخچه اصولا هر موتور احتراقی برای تبدیل انرژی سوخت به انرژی مکانیکی حداقل به یک سیلندر نیاز دارد (اعم از موتورهای احتراق داخلی یا موتورهای احتراق خارجی) حتی قبل از سال 1700 میلادی موتورهایی ساخته شده بودند که دارای سیلندر بودند. لیکن اولین کاربرد واقعی و عملی سیلندر با اختراع اولین موتور بخار توسط جیمز وات در سال 1769 اتفاق افتاد. وی یک موتور بخار ساخته بود که از یک سیلندر و یک پیستون و یک چرخ طیار تشکیل شده بود. از آن تاریخ تا به امروز هر موتور احتراقی که ساخته شده است. در ساختمان خود قسمت سیلندر را داشته است. لیکن شکل ، اندازه ، نحوه قرارگیری و آرایش سیلندرها و تعداد آنها در بلوک سیلندر با توجه به قدرت مورد نیاز و اندازه موتور متفاوت بوده است. تقسیمات و انواع سیلندر همانطور که ذکر شد سیلندر‌ها دارای طیف وسیعی از اندازه و تعداد می‌باشند. لیکن تقسیم‌بندی سیلندرها را می‌توان بر اساس نحوه ساخت و ریخت داخلی آنها انجام داد. چرا که هر گروه از سیلندرها در ابعاد و تعداد مختلف ساخته می‌شوند. بدنه موتورها یا همان بلوک سیلندر معمولا به شکل ریخته‌گری و از جنس چدن یا آلیاژ آلومینیم می‌سازند. در حین ساخت این قطعه ریخته‌گری مجاری عبور آب را نیز در درون آن تعبیه می‌کنند. پس از تولید بدنه مجاری عبور روغن از طریق سوراخکاری در بدنه بلوک سیلندر ایجاد می‌شوند. البته ممکن است این مجاری نیز در مرحله ریخته‌گری تعبیه شوند. برای سیلندرهایی که پیستون درون آنها حرکت می‌کند می‌توان یکی از ساختارهای زیر را بکار برد.بلوک یکجا :در موتور اکثر وسایل نقلیه از آرایش بلوک یکجا استفاده می‌شود. که در آن سیلندرها مستقیما در بدنه بلوک سیلندر ریخته‌گری می‌شوند.بلوک سیلندر :به مجموعه سیلندرهای کنار یکدیگر و مجاری آب و روغن اطراف آنها اتلاق می‌گردد.بوش خشک :در این بلوک سیلندر دیواره داخلی سیلندر را از یک استوانه قابل تعویض می‌سازند که اصطلاحا به این استوانه قابل تعویض بوش می‌گویند. کلمه خشک را نیز به این دلیل به کار می‌برند که آب خننک کننده موتور مستقیما با دیواره این بوش در تماس نیست.بوش تر :در این بلوک سیلندر دیواره داخلی سیلندر را یک بوش تشکیل می‌دهد لیکن این بوش بصورت مستقیم با آب سیستم خنک کاری موتور در تماس است و با آن از طریق مستقیم تبادل حرارتی انجام می‌دهد. ساختار سیلندرها استوانه‌های توخالی هستند که محل بالا و پایین رفتن پیستون می‌باشند. لیکن چگونگی و کیفیت سطح داخلی سیلندرها که در تماس با پیستون است بسیار مهم است. دیواره‌های چدنی یا آلو مینیمی سیلندرها به منظور فراهم آوردن یک سطح صاف برای حرکت پیستون‌ها باید صیقل زده شود. صیقلی بودن سطح داخلی سیلندرها به خاطر کم کردن اصطکاک میان پیستون و جداره سیلندر است. البته بدیهی است که اصطکاک باعث تولید حرارت اضافی و هدر رفتن انرژی می‌شود که می‌بایست تا حدامکان از آن جلوگیری کرد. برای این منظور از روغن نیز استفاده می‌شود. سیلندرها و بوش‌ها دارای سطح پرداخت شده‌ای (صیقل خورده) می‌باشند که دارای هاشورهای (شیارهای) بسیار کوچکی است که به شکل متقاطع و در حین حرکت بالا و پایین سنگ سمباده در درون سیلندر ایجاد شده است. این هاشورهای متقاطع از گیر کردن رینگ‌های پیستون جلوگیری کرده و در ضمن سطحی را برای نگهداری روغن روان‌ساز فراهم می‌آورند. کاربردها همانگونه که گفته شد، سیلندر موتور جزیره لاینفک موتورهای احتراقی می‌باشد. چنانچه ساختار سیلندر به شکل امروزی مورد استفاده ، وجود نداشت. استفاده از موتورهای احتراقی تولید کننده توان ، عملا غیر ممکن بود.



خرید و دانلود تحقیق درمورد آلیاژ سیلندر موتور


تحقیق در مورد آلیاژ سیلندر موتور

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

آلیاژ سیلندر موتور کلمه سیلندر (Cylinder) یک کلمه انگلیسی است که به شکل دست نخورده در زبان فارسی استعمال می‌شود. معنای اصلی سیلندر «استوانه» می‌باشد. دید کلی سیلندر موتور به قسمت استوانه‌ای شکل موتور گفته می‌شود که قطعات دیگر نظیر پیستون درون آن قرار گرفته و بالا و پایین می‌روند. شکل کلی سلندرها یک استوانه‌ای است که از هر دو طرف باز است. به عنوان مثال اگر قسمت تحتانی یک لیوان را از جایی ببریم که قطر آن با قطر دهانه لیوان یکسان باشد یک سیلندر ساخته‌ایم. سیلندر موتور در تمامی موتورهای احتراق داخلی (خواه چهارزمانه باشد خواه دوزمانه) وجود دارد.لیکن شکل آن متناسب با نوع موتور متفاوت است. همچنین ابعاد سیلندر نیز متناسب با توان اسمی موتور و تعداد سیلندرهای آن متفاوت است. در معنای کاربردی کلمه سیلندر نه تنها به یک استوانه توخالی بلکه به بدنه اصلی موتور گفته می‌شود که شامل سیلندرها و نیز پوسته پوشاننده اطراف آنها مجاور عبور آب برای خنک کاری سیلندر و نیز مجاری روغن گفته می‌شود. سیلندر قسمت اصلی یک موتور است و سایر قسمت‌های موتور به آن وصل می‌شوند. تاریخچه اصولا هر موتور احتراقی برای تبدیل انرژی سوخت به انرژی مکانیکی حداقل به یک سیلندر نیاز دارد (اعم از موتورهای احتراق داخلی یا موتورهای احتراق خارجی) حتی قبل از سال 1700 میلادی موتورهایی ساخته شده بودند که دارای سیلندر بودند. لیکن اولین کاربرد واقعی و عملی سیلندر با اختراع اولین موتور بخار توسط جیمز وات در سال 1769 اتفاق افتاد. وی یک موتور بخار ساخته بود که از یک سیلندر و یک پیستون و یک چرخ طیار تشکیل شده بود. از آن تاریخ تا به امروز هر موتور احتراقی که ساخته شده است. در ساختمان خود قسمت سیلندر را داشته است. لیکن شکل ، اندازه ، نحوه قرارگیری و آرایش سیلندرها و تعداد آنها در بلوک سیلندر با توجه به قدرت مورد نیاز و اندازه موتور متفاوت بوده است. تقسیمات و انواع سیلندر همانطور که ذکر شد سیلندر‌ها دارای طیف وسیعی از اندازه و تعداد می‌باشند. لیکن تقسیم‌بندی سیلندرها را می‌توان بر اساس نحوه ساخت و ریخت داخلی آنها انجام داد. چرا که هر گروه از سیلندرها در ابعاد و تعداد مختلف ساخته می‌شوند. بدنه موتورها یا همان بلوک سیلندر معمولا به شکل ریخته‌گری و از جنس چدن یا آلیاژ آلومینیم می‌سازند. در حین ساخت این قطعه ریخته‌گری مجاری عبور آب را نیز در درون آن تعبیه می‌کنند. پس از تولید بدنه مجاری عبور روغن از طریق سوراخکاری در بدنه بلوک سیلندر ایجاد می‌شوند. البته ممکن است این مجاری نیز در مرحله ریخته‌گری تعبیه شوند. برای سیلندرهایی که پیستون درون آنها حرکت می‌کند می‌توان یکی از ساختارهای زیر را بکار برد.بلوک یکجا :در موتور اکثر وسایل نقلیه از آرایش بلوک یکجا استفاده می‌شود. که در آن سیلندرها مستقیما در بدنه بلوک سیلندر ریخته‌گری می‌شوند.بلوک سیلندر :به مجموعه سیلندرهای کنار یکدیگر و مجاری آب و روغن اطراف آنها اتلاق می‌گردد.بوش خشک :در این بلوک سیلندر دیواره داخلی سیلندر را از یک استوانه قابل تعویض می‌سازند که اصطلاحا به این استوانه قابل تعویض بوش می‌گویند. کلمه خشک را نیز به این دلیل به کار می‌برند که آب خننک کننده موتور مستقیما با دیواره این بوش در تماس نیست.بوش تر :در این بلوک سیلندر دیواره داخلی سیلندر را یک بوش تشکیل می‌دهد لیکن این بوش بصورت مستقیم با آب سیستم خنک کاری موتور در تماس است و با آن از طریق مستقیم تبادل حرارتی انجام می‌دهد. ساختار سیلندرها استوانه‌های توخالی هستند که محل بالا و پایین رفتن پیستون می‌باشند. لیکن چگونگی و کیفیت سطح داخلی سیلندرها که در تماس با پیستون است بسیار مهم است. دیواره‌های چدنی یا آلو مینیمی سیلندرها به منظور فراهم آوردن یک سطح صاف برای حرکت پیستون‌ها باید صیقل زده شود. صیقلی بودن سطح داخلی سیلندرها به خاطر کم کردن اصطکاک میان پیستون و جداره سیلندر است. البته بدیهی است که اصطکاک باعث تولید حرارت اضافی و هدر رفتن انرژی می‌شود که می‌بایست تا حدامکان از آن جلوگیری کرد. برای این منظور از روغن نیز استفاده می‌شود. سیلندرها و بوش‌ها دارای سطح پرداخت شده‌ای (صیقل خورده) می‌باشند که دارای هاشورهای (شیارهای) بسیار کوچکی است که به شکل متقاطع و در حین حرکت بالا و پایین سنگ سمباده در درون سیلندر ایجاد شده است. این هاشورهای متقاطع از گیر کردن رینگ‌های پیستون جلوگیری کرده و در ضمن سطحی را برای نگهداری روغن روان‌ساز فراهم می‌آورند. کاربردها همانگونه که گفته شد، سیلندر موتور جزیره لاینفک موتورهای احتراقی می‌باشد. چنانچه ساختار سیلندر به شکل امروزی مورد استفاده ، وجود نداشت. استفاده از موتورهای احتراقی تولید کننده توان ، عملا غیر ممکن بود.



خرید و دانلود تحقیق در مورد آلیاژ سیلندر موتور