لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
مجموعه های مرکزی و شعاع ها درگراف های
مقسوم علیه صفر از حلقه های
جابجایی
Shane P.redmond
Department of mathematics and statistics, Esastern
Kentucky University, Richmond, Kentucky USA
پژوهشگر : نسیم نوروزی
آبان 1385
فهرست
عنوان
پیش گفتار
خلاصهی مطالب
1فصل اول
1-1مقدمه
1-2پیش نیازها
تعاریف
قضیه ها
2فصل دوم
2-2مرکز
2-3 میانه
2-4 مجموعه های غالب
منابع
پیش گفتار
تاریخ، خود نقطهی عطف شمارگانی است که پیوسته و ناپیوسته چهار مضراب عشق را حول محور تمرکز اعداد نواخته و به اثبات حقانیت واحد، دراصول هستی پرداخته است.
امتداد جریان ثبوت حقانیت شمارگان، خواه در آن برهه از زمان که خوارزمی اش میسرود و چه در دیگر زمان ها که اقلیدس و فیثاغورثش تجلی بخشیدند، شاه بیت های مطلعش را با تخلص آخرش پیوند زدند تا غزل گونه ای باشد، غزل شکار، نه تجنیسش افراط بخشیدند و نه جذرش تفریط، چرا که عدد یک واحد، دو واحد عدد یک ماند وخواهد ماند.
نسیم نوروزی
آبان ماه 1385
خلاصهی مطالب
برآن شدم تا با تلاش مستمر مطالبی را از نظر گرامیتان بگذرانم که بدیع باشد و قابل ارائه، امیدوارم رضایت خاطر شما خوانندگان گرامی را جلب نمایم. دراینجا خلاصهای از مطالبی که مطالعه خواهید کرد آورده شده است.
دریک حلقهی جابجایی و یکدار R، گراف مقسوم علیه صفر، ، گرافی است که رأس های آن مقسوم علیه های صفر غیرصفر R می باشند که درآن دو رأس مجزای xو y مجاورند هرگاه xy=0. این مقاله اثباتی براین مطلب است که اگر R نوتری باشد آن گاه شعاع ،0،1 و یا 2 می باشد و نشان داده می شود که وقتی R آریتن میباشد اجتماع مرکز با مجموعه {0} اجتماعی از ایده آل های پوچ ساز است. زمانی که مرکز گراف مشخص شده باشد می توان قطر را تعیین کرد و نشان داده میشود که اگر R حلقهی متناهی باشد آن گاه میانه زیر مجموعه ای از مرکز آن است. زمانی که R آریتن باشد با به کاربردن عناصری از مرکز میتوان یک مجموعهی غالب از ساخت و نشان داده می شود که برای حلقهی متناهی ، که F میدان متناهی است، عدد غالب مساوی با تعداد ایده آل های ماکسیمال مجزای R است. و همچنین نتایج دیگری روی ساختارهای بیان میشود.
واژه های کلیدی
مجموعه های مرکزی؛ حلقهی جابجایی؛ مقسوم علیه صفر؛ گراف مقسوم علیه صفر