بررسی روش های سنتز نانو لوله های کربنی و مدلسازی و شبیه سازی و آنالیز خواص مکانیکی نانولوله های کربنی بوسیله روش های پیوسته
در این تحقیق از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
مدل انرژی- معادلمدل اجزاء محدود بوسیله نرم افزار ANSYSمدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLABمدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ در جهت های محوری و محیطی بدست آمده است.
در مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی، نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
چکیده1
فصل اول
مقدمه نانو3
1-1 مقدمه4
1-1-1 فناوری نانو4
1-2 معرفی نانولولههای کربنی5
1-2-1 ساختار نانو لولههای کربنی5
1-2-2 کشف نانولوله7
1-3 تاریخچه10
فصل دوم
خواص و کاربردهای نانو لوله های کربنی14
2-1 مقدمه15
2-2 انواع نانولولههای کربنی16
2-2-1 نانولولهی کربنی تک دیواره (SWCNT)16
2-2-2 نانولولهی کربنی چند دیواره (MWNT)19
2-3 مشخصات ساختاری نانو لوله های کربنی21
2-3-1 ساختار یک نانو لوله تک دیواره21
2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره24
2-4 خواص نانو لوله های کربنی25
2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن29
2-4-1-1 مدول الاستیسیته29
2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک33
2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها36
2-5 کاربردهای نانو فناوری39
2-5-1 کاربردهای نانولولههای کربنی40
2-5-1-1 کاربرد در ساختار مواد41
2-5-1-2 کاربردهای الکتریکی و مغناطیسی43
2-5-1-3 کاربردهای شیمیایی46
2-5-1-4 کاربردهای مکانیکی47
فصل سوم
روش های سنتز نانو لوله های کربنی 55
3-1 فرایندهای تولید نانولوله های کربنی56
3-1-1 تخلیه از قوس الکتریکی56
3-1-2 تبخیر/ سایش لیزری58
3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)59
3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )61
3-1-5 رشد فاز بخار62
3-1-6 الکترولیز62
3-1-7 سنتز شعله63
3-1-8 خالص سازی نانولوله های کربنی63
3-2 تجهیزات64
3-2-1 میکروسکوپ های الکترونی66
3-2-2 میکروسکوپ الکترونی عبوری (TEM)67
3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)68
3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)70
3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)70
3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)71
فصل چهارم
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته73
4-1 مقدمه74
4-2 مواد در مقیاس نانو75
4-2-1 مواد محاسباتی75
4-2-2 مواد نانوساختار76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو77
4-3-1 چارچوب های تئوری در تحلیل مواد77
4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد77
4-4 روش های شبیه سازی79
4-4-1 روش دینامیک مولکولی79
4-4-2 روش مونت کارلو80
4-4-3 روش محیط پیوسته80
4-4-4 مکانیک میکرو81
4-4-5 روش المان محدود (FEM)81
4-4-6 محیط پیوسته مؤثر81
4-5 روش های مدلسازی نانو لوله های کربنی83
4-5-1 مدلهای مولکولی83
4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)83
4-5-1-2 روش اب انیشو86
4-5-1-3 روش تایت باندینگ86
4-5-1-4 محدودیت های مدل های مولکولی87
4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها87
4-5-2-1 مدل یاکوبسون88
4-5-2-2 مدل کوشی بورن89
4-5-2-3 مدل خرپایی89
4-5-2-4 مدل قاب فضایی92
4-6 محدوده کاربرد مدل محیط پیوسته95
4-6-1 کاربرد مدل پوسته پیوسته97
4-6-2 اثرات سازه نانولوله بر روی تغییر شکل97
4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله98
4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله99
4-6-5 محدودیتهای مدل پوسته پیوسته99
4-6-5-1 محدودیت تعاریف در پوسته پیوسته99
4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته99
4-6-6 کاربرد مدل تیر پیوسته 100
فصل پنجم
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102
5-1 مقدمه103
5-2 نیرو در دینامیک مولکولی104
5-2-1 نیروهای بین اتمی104
5-2-1-1 پتانسیلهای جفتی105
5-2-1-2 پتانسیلهای چندتایی109
5-2-2 میدانهای خارجی نیرو111
5-3 بررسی مدل های محیط پیوسته گذشته111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی113
5-4-1 مدل انرژی- معادل114
5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره115
5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره124
5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS131
5-4-2-1 تکنیک عددی بر اساس المان محدود131
5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS141
5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB155
5-4-3-1 مقدمه155
5-4-3-2 ماتریس الاستیسیته157
5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی158
5-4-3-4 تعیین و نگاشت المان158
5-4-3-5 ماتریس کرنش-جابجائی161
5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای162
5-4-3-7 ماتریس سختی برای یک حلقه کربن163
5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه167
5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه168
فصل ششم
نتایج171
6-1 نتایج حاصل از مدل انرژی-معادل172
6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره173
6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS181
6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [182
6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB196
فصل هفتم
نتیجه گیری و پیشنهادات 203
7-1 نتیجه گیری204
7-2 پیشنهادات206
فهرست مراجع 207
فهرست جداول
عنوان صفحه
جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته .76
جدول 5-1: خصوصیات هندسی و الاستیک المان تیر....135
جدول5-2 : پارامترهای اندرکنش واندر والس 150
جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS .184
جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل .185
جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS ....186
جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS ....187
جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده ....194
جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی ...196
جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ ....197
جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع 202
فهرست اشکال
عنوان صفحه
شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ...4
شکل 1-2 : اشکال متفاوت مواد با پایه کربن 6
شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد .....7
شکل 1-4 : تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm 36/0 می باشد ....8
شکل 1-5 : تصویر TEM گرفته شده از نانوپیپاد .....8
شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991..15
شکل 2-2 : انواع نانولوله: (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12) (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) ...17
شکل 2-3 : شبکه شش گوشه ای اتم های کربن ......18
شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره .19
شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs ..20
شکل 2-6 : نانو پیپاد ......21
شکل 2-7 : شکل شماتیک یک نانو لوله که از حلقه ها شش ضلعی کربنی تشکیل شده است 22
شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه.....22
شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی .....23
شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی از بردارهای پایه b , a 23
شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ...24
شکل 2-12: تصویر سطح مقطع یک نانو لوله ....25
شکل 2-13: مراحل آزاد سازی نانو لوله کربن .33
شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ..36
شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی 38
شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله 39
شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. ......47
شکل2-18 : نانودنده ها .50
شکل 3- 1: آزمایش تخلیه قوس ..56
شکل 3-2 : دستگاه تبخیر/سایش لیزری .....58
شکل 3-3 : شماتیک ابزار CVD ......60
شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs را که به روش PECVD رشد یافته نشان می دهد ....62
شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف) 40–50 nmو (ب). 200–300 nm 62
شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM ...71
شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی ..75
شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته ...77
شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول ..82
شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی .....82
شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش ...83
شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ..85
شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ...85
شکل 4- 8 : المان حجم معرف در نانو لوله کربنی ....90
شکل 4- 9 : مدلسازی محیط پیوسته معادل .90
شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته .92
شکل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف ...92
شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی ....93
شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی ......93
شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.96
شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی ...97
شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت .....98
شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r .....107
شکل 5-2 : نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r ....108
شکل 5-3 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ......109
شکل5-4 : فعل و انفعالات بین اتمی در مکانیک مولکولی ...115
شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ .....116
شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b .117
شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ...120
شکل5– 8 : تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره ......122
شکل 5-9 : تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ ...124
شکل5- 10: تصویر شماتیک (الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی (ج) روابط هندسی ..125
شکل 5-11: تصویر شماتیک (الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهت محیطی...129
شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن (الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری ......132
شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی ....133
شکل5-14 : رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس .137
شکل 5-15 :استفاده از المان میله خرپایی برای شبیه سازی نیروهای واندروالس ......138
شکل5-16 : منحنی نیرو-جابجائی غیر خطی میله خرپایی .....139
شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی ..140
شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله (الف) :صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10) 140
شکل5-19 : المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته .....142
شکل 5-20 : شبیه سازی نانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی ...144
شکل5-21 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7) .....145