دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درمورد مقاومت علف های هرز به علف کش ها

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

مقاومت علف های هرز به علف کش ها

در حال حاضر رایج ترین بحث در علف های هرز ،پیدایش علف های هرز مقاوم به علف کش و تغییر گونه های علف هرز است . علف های هرز مقاوم با یک سرعت هشدار دهنده در حال گسترش هستند .مقاومت به علف کش پدیده ای خاص نیست و در واقع مقاومت به آفت کش ها یک مشکل جهانی است که به هیچ دسته خاصی از آفات محدود نمی شود . اولین گزارش های مربوط به مقاومت حشرات به حشره کش ها در سال 1908 ،مقاومت عوامل بیماری زا به قارچ کش ها در سال 1940 و مقاومت علف های هرز به علف کش ها (تریازین ها) در سال 1968 ارائه شدند . مقاومت علف های هرز نسبت به علف کشها به صورت تصاعدی رو به افزایش است و حتی علف کشی مانند گلیفوسیت که از مطمئن ترین علف کش ها از نظر بروز مقاومت محسوب می شد نیز تا سال 2000 سه گونه علف هرز نسبت به آن مقاوم شده اند. تا کنون 294 بیوتیپ از 153 گونه از علف های هرز نسبت به علف کش های مختلف مقاوم شده اند (91 گونه دو لپه ای و 62 گونه تک لپه ای)

که از این تعداد حدود 200 بیوتیپ آن از سال 1980 به بعد مقاوم شده اند . شکل 3 روند افزایش تعداد بیوتیپ های مقاوم در طی 50 سال اخیر را نشان می دهد . برطبق گزارش های ارائه شده در سال 2000تا این تاریخ بیشترین بیوتیپ های مقاوم مربوط به بیوتیپ های مقاوم به بازدارنده های استولاکتات سینتاز (als،با گونه) و بعد از آن تریازین ها (با 59 گونه) می باشد . از نظر سهم گونه های مقاوم ، در سال 1994 بیشترین سهم مربوط به تریازین ها بوده است ؛ و در سال 1999 بیشترین سهم را باید مربوط به علف کش های بازدارنده als و بروز مقاومت سریع تر نسبت به این علف کش ها دانست. افزایش نسبت بیوتیپ های مقاوم به بازدارنده های استولاکتات سینتاز( als) در طی سال های اخیر به دو عامل بر می گردد ,یکی اینکه طی دهه گذشته نسبت فروش بازدارنده های als رو به افزایش بوده است . و دیگر اینکه بروز مقاومت در این گروه از علف کش ها سریع تر از بقیه علف کش ها اتفاق می ا فتد . همان طور که در جدول 2 ملاحظه می شود چناچه 5 سال متوالی و یا 5 بار مزرعه ای توسط علف کش ها ی بازدارنده als سمپاشی شود , مقاومت نسبت به این علف کش ها بروز پیدا می کند . این مدت برای علف کش ها ی بازدارنده accase,بازدارنده های فتوسنتز و بازدارنده های تقسیم سلولی به ترتیب 7,10و12 سال مصرف متوالی و یا 7,10و 12 سمپاشی مزرعه است . در عوض مقاومت نسبت به علف کش هایی مانند اکسین های مصنوعی پس از 25 سال مصرف متوالی یا 25 بار این سموم اتفاق می افتد .

چرا در خصوص بروز مقاومت به علف کش نگرانی وجود دارد؟

با توجه به اینکه برای کنترل علف های هرز تعداد زیادی علف کش و جود دارد ,چرا باید نگران مقاوم شدن علف کش خاص بود؟در این خصوص چند دلیل وجود دارد:یکی اینکه اگر بیوتیپی به یک یا بیش از یک علف کش مقاومت نشان دهد,آن غلف کش به سرعت از رده خارج می شوند وحذف یک علف کش نیز پیامد های اقتصادی ومحیطی مهمی را برای کشاورزی به دنبال دارد . نکته ی دیگر این است که با توجه به اینکه هزینه های زیادی صرف ثبت وتوسعه ی علف کش از رده خارج شده , می شود وهمچنین هزینه های زیادی صرف ثبت وتوسعه ی علف کش جدید شود، بنابراین جایگزین کردن یک علف کش هزینه های زیادی را در بر خواهد داشت . علاوه برموارد فوق تشخیص بیوتیپ های مقاوم نیز راحت وارزان نسبت ومستلزم صرف وقت وهزینه های زیادی است.البته وجود مقاومت ارزی نیز باعث می شود که بسیاری از مشکلات راتنها بتوان از طریق آزمون خطا حل کرد، که این امر نیز برای تولیدکنند بسیار گران تمام خواهد شد . برآورد هزینه مقاوم شدن برخی از علف های هرز بسیار هشداردهنده بوده وبیانگر صحت مطالب فوق می باشد . به عنوان مثال فقط در محصول پنبه یک ایالت کوچک از ایالات متحده ی آمریکا (کارولینای جنوبی ) هزینه ی مقاوم شدن نوعی علف هرز تاج خروسa) ( maranthus palmeri سالانه تقریبا 12 میلیون دلار آمریکا برآورد شده است . پیدایش مقاومت چند گانه نیز بر پیچیدگی ها ومشکلات مقاومت به علف کش می افزاید . مقاومت چند گانه ی یک مشکل عمده در استرالیا ست ودر آمریکای شمالی نیز در حال گسترش است . چنانچه علف های هرز با همین سرعت نسبت به علف کش ها مقاوم شوند ، در دهه ی آینده اکثر کشاورزان به دلیل مشکلات ناشی از آن ، متحمل لطمات اقتصادی عمده ای خواهند شد .

چگونه بیوتیپ های علف هرز مقاوم به علف کش انتخاب می شون د ؟

چناچه تعداد اندکی از گیاهان (یک بیوتیپ)درون یک گونه از علف هرز ین توانایی ژنتیکی را پیدا کرده باشند که پس از مصرف علف کش خاصی بتوانند بقاء خود را حفظ کنند ,در آن صورت انتخاب برای تغییر جمعیت علف های هرز (به نسبت یک جمعیت مقاوم به علف کش)شروع می شود . به طور کلی تعداد بیوتیپ های مقاوم موجود در جمعیت های طبیعی کم است ، ولی هنگامی که علف کش مصرف می شود ،اکثر علف های هرز حساس از بین رفته و همین تعداد اندک بیوتیپ مقاوم ،بقاء خود را حفظ می کنند ، به بلوغ می رسند و بذر تولید می کنند . حال اگر همان علف کش مجددا مصرف شود و علف های هرز مقاوم تولید مثل خود را ادامه دهند ،به مرور زمان جمعیت آنها افزایش خواهد یافت(شکل 4). از سوی دیگر از بین رفتن بیوتیپ های حساس سبب کاهش میزان رقابت بین گونه ای در علف های هرز شده و همین امر سبب بهرمندی بیشتر بیوتیپ های مقاوم می شود و زمینه را برای ازیاد آنها فراهم تر می سازد . پیشگویی دذر خصوص اینکه در چه گونه ای از علف هرز ؛بیوتیپ های مقاوم به علف کش خاصی بروز پیدا خواهند کرد ،امر مشکلی است. البته مشکلات گذشته ناشی از مقاومت به آفت کش ها ،حاکی از آن است که پیدایش علف های هرز مقاوم به علف کش ارتباط مستقیمی با برنامه های موجود در خصوص علف کش ها،گونه های علف هرز موجود و عملیات مدیریتی گیاهان زراعی دارد.

ارتباط شدت انتخاب با بروز مقاومت

همان طورکه ذکر شد، شدت انتخاب در عمل مانند یک صافی (فیلتر)عمل می کند که میتواند ضمن حفظ بیو تیپ های مقاوم، بیوتیپ های حساس را غربا ل کند. از این رو این امکان وجود دارد که علف کش هایی که اثر بازدارندگی موثر ومشخصی برروی علف های هرز دارند، بتوانند فشار انتخاب سنگینی را بر علف های هرز وارد کنند. به طور کلی اگر یک علف کش یا علف کش های با محل عمل مشابه به طور مکرر در یک مزرعه خاص مصرف شود، سرعت انتخاب برای مقاومت به شدت زیاد می شود . بیوتیپ های مقاوم تنها زمانی قابل رویت هستند که حدود 30درصد جمعیت را به خود اختصاص داده باشند ، در سالها ی نخستین مصرف یک علف کش به صورت متوالی ، نسبت بیوتیپ های مقاوم بسیار پایین بوده (کمتر از 1% جمعیت) ، ولی پس از مدتی این نسبت افزایش یافته وبیوتیپ های مقاوم بروز پیدا می کنند . در این صورت ممکن است یک روش مبارزه بسیار موثر به یک روش بسیا ر ضعیف تبدیل شود شکل 5روند افزایش میزان مقاومت به علف کش های سولفونبل اوره در یک جمعیت جارو را در طی سالیان متمادی نشان می دهد. همان طور که قبلا نیز اشاره شد ، در شرایط مزرعه ، چنانچه 3تا5 سال متوالی از علف کش های سولفونیل اوره (بازدارنده های استیل کوآنزیم آکروبوکسیلاز) مصرف شود،مقاومت به این علف کش ها بروز پیدا خواهد کرد.

خصوصیاتی از علف کش که فشار انتخاب را افزایش می دهند

این ویژگی ها عبارتند از :

علف کش هایی که روی یک محل عمل تاثیرمی گذارند؛

علف کش هایی که در طی یک فصل رشد چندین گاه مورد استفاده قرار می گیرند ؛

علف کش هایی که برای چند فصل پی در پی مصرف میشوند ویا کاربرد مکرر علف کش هایی با محل عمل مشابه برروی گیاهان زراعی مشابه یا مختلف؛

علف کش هایی که به همراه سایر عملیات کنترل علف هرز (مانند عملیات زراعی ) مورد استفاده قرار نمی گیرند .

علف کش هایی که یک محل عمل دارند :

برخی از علف کش ها فقط از طریق یک محل عمل تاثیر می گذارند در این گونه از علف کش ها احتمال بروز مقاومت بسیار زیاد است، زیرا تغییر یک ژن متواند روی پیوند یک علف کش ومحل عمل تاثیر گذاشته وباعث بروز مقاومت گردد.(شکل6).

علف کش هایی که چندین محل عمل دارند:

اگر یک علف کش چندین محل عمل داشته باشد، درآن صورت احتمال وجود بیوتیپ هایی که در همه محل ها اختلاف ژنتیکی داشته باشند ومنجر به افزایش مقاومت شوند کم است(شکل10). بنابراین احتمال بروز مقاومت به علف کش هایی که دارای چندین محل عمل هستند بسیار ضعیف خواهد بود.

خصوصیاتی از علف هرز که به مقاوم شدن کمک می کند

علف های هرز به دلیل تنوع ژنتیکی زیاد دارای قدرت تطابق وسازگاری زیاد با



خرید و دانلود تحقیق درمورد مقاومت علف های هرز به علف کش ها


مقاومت به خوردگی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 15 صفحه

 قسمتی از متن .doc : 

 

افزایش مقاومت به خوردگی فولاد زنگ نزن بوسیله ا عمال پوشش نانوذرات اکسید تیتانیوم با روش سل – ژل

چکیده : پوشش نانوذرات Tio2 به دلیل دارا بودن خواص اپتیکی ، مقاومت به اکسیداسیون ، خوردگی و سایش امروزه به میزان زیادی مورد توجه قرار گرفته است.در این پروژه پوشش نانوذرات Tio2 بوسیله روش سل - ژل تحت فرایند غوطه وری بر روی فولادزنگ نزن 316Lاعمال شده است. ساختارمورفولوژِی و ترکیب پوشش بوسیله XRD,SEM ,AFM مورد بررسی قرار گرفته است. همچنین خواص خوردگی پوشش در محلول 3,5%NACL بوسیله روشهای الکتروشیمیایی مانند پلاریزاسیون تافلی و امپدانس ارزیاببی شده است نکته قابل توجه همگن ، یکنواخت و عاری از ترک بودن پوشش است. همچنین پوشش نانوذرات Tio2 اعمال شده روی فولادزنگ نزن ک 316L مقاومت به خوردگی را از 132,135 به 16412,096 (Kcm2) به میزان تقریبا 120 برابر بهبود بخشیده است.

کلمات کلیدی : پوشش نانوذرات Tio2 ، سل - ژل ، فولادزنگ نزن 316 ، خواص خوردگی ، پلاریزاسیون تافلی ، امپدانس.

مقدمه :

پوشش نانو ساختار اکسید تیتانیوم داریا کاربرد بسیار وسیعی می باشد که عبارتند از: فیلترهای ماوراء بنفش برای صنایع اپتیک و مواد بسته بندی [1,2] ، پوشش ضد انعکاس در سلول های خورشیدی ، فتوکاتالیست برای تصفیه آب و هوا، آند در باتری ها ، پوشش های شفاف و خود تمیز کننده برای کاشی ها و شیشه ها ، سنسورهای رطوبت ، سنسورهای گازی ، پوشش های مقاوم در برابر خوردگی و غیره. البته با ایجاد پوشش نانو ساختار تیتانیوم تمام خواص مذکور به میزات قابل توجهی بهبود پیدا می کند . روشهای مختلفی برای تولید نانوساختار اکسید تیتانیوم وجود دارد. همانند اسپاترینگ ، CVD ، لیزر پالسی و روش سل - ژل . در یان میان روش سل - ژل به دلیل کنترل ترکیب شیمیایی در سطح مولکولی و دمای اعمالی پایین ننسبت به روش های دیگر دارای مزایای ویژه ای است ، علاوه بر آن میکروساختار فیلم مذکور همانند سایز حفره ها و حجم آنها بوسیله تغییر پارامترهای سل - ژل قابل کنترل می باشد. مهمترین نکته در حفاظت از خوردگی فلزات وابسته به دو نوع فصل مشترک می باشد: 1- فصل مشترک بین فلز و پوشش 2- فصل مشترک بین پوشش و محیط. بنابراین کنترل واکنش بین این فصل مشترک ها هنگامی که در حد ملکولی انجام پذیرد ، تاثیر بالایی در حفاظت از خوردگی ایجاد شده توسظ پوشش اعمالی دارد. . در این مقاله پیش ماده آلکوکسیدی ، بدلیل در برداشتن خواص فیزیکی و شیمیایی مانند گروههای هیدروکربنی با طول زنحیره بالا و قابیلت مخلوط شدن در حد ملکولی با حلال های آلی و ایجاد فیلم آری از ترک انتخاب گردیده است.

بدلیل کاربرد بسسیار وسیع 316L در صنعت ، پوشش لایه نازک نانوساختار اکسید تیتانیوم به منظور بهبود خواص خوردگی برروی آن اعمال شده است و خواص ساختاری لایه نازک توسط XRD,SEM ,AFM ارزیابی شده است . همچنین منحنی پلاریزاسیون تافلی و امپدانس برای بررسی اثر پوشش های فوق الذکر برروی خواص خوردگی فولادزنگ نزن 316L مورد استفاده قرار گرفته است.

روش تحقیق :

2-1 سنتز محلول پوشش دهی :

پیش ماده ا ولیه آلکوکسیدی تترا- پوتیل ارتو تیتانات(TBT) همانطور که در مقالات گفته شده است. مطابق زیر در تهیه محلول سل - ژل استفاده می شود.

ابتدا 55 میلی لیتر اتانول و 5 میلیل لیتر اتیل استو استات(EAcAc) را در دمای اتاق به مدت 5 دقیقه با هم مخلوط کرده و سپس 13 میلی لیتر TBT را به محلول اضافه کرده و محلول به مدت 30 دقیقه به شدت همزده می شود. ، بعد از انجام این مراحل به منظور شروع واکنش هیدرولیز درصد کمی آب مقطر بصورت قطره قطره در مدت 30 دقیقه به محلول در حال همزدن اضافه شده است . ، پس از اضافه کردن آب مقطرهمزدن محلول به مدت 6 ساعت ادامه یافت ، برای انحام واکنشهای پلیمری محلول تیه شده در نهایت به مدت 6 ساعت پیرسازی می شود. . محلول نهایی دارای رنگ زرد ، شفاف ، و عاری از هرگونه رسوب می باشد. شماتیم مراحل تهیه سل و ا یجاد پوشش در شکل یک نشان داده شده است.

2-2 اعمال پوشش نانوذرات اکسید تیتانیوم :

زمینه مورد استفاده ورق 316L با ابعاد 50*30*2 میلی متر است که بصورت زیر تحت آماده سازی سطحی قرار گرفته است :

سنباده زنی با شماره های 320 تا 350

پولیش با پودرهای 0.1 تا 0.3 میکرون اکسید آلومینوم

تمیزکردن آلتراسونیکی نمونه در استون و الکل به مدت 5 دقیقه ، البته بعد از انجام هر مرحله نمونه ها با آب مقطر کاملا شستشو داده شده اند.

بعد از آماده سازی سطحی نمونه ها ، پوشش نانوذرات اکسید تیتانیوم بوسیله روش غوطه وری و با سرعت 140 میلی متر بر دقیقه داخل محلول فرو برده شده وبه مدت 1



خرید و دانلود  مقاومت به  خوردگی


مقاومت سازه در مقابل آتش

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 19 صفحه

 قسمتی از متن .doc : 

 

مقاومت سازه در مقابل آتش:1

تعداد طبقات

حداکثر ارتفاع

حداکثر سطح طبقات یا آپارتمان (متر مربع)

حداکثر حجم ساختمان یا آپارتمان (متر مکعب)

حداقل مقاومت اجزای اصلی سازه در برابر آتش (بر حسب ساعت)

1

نامحدود

800

4000

نیم ساعت

1

نامحدود

نامحدود

نامحدود

نیم ساعت

4-2

m 15

800

8500

نیم ساعت

4-2

نامحدود

نامحدود

نامحدود

1 ساعت

7-5

m 28

نامحدود

14000

1 ساعت

بیش از 5 طبقه

نامحدود

نامحدود

نامحدود

5/1 ساعت

* سیل:

برای حفظ و حراست ساختمان های آموزشی و امنیت دانش آمزان در مقابل سیل به کارگیری تمهیداتی در انتخاب مکان می تواند موثر واقع گردد. این تمهیدات شامل احتراز از ساخت فضاهای آموزشی در مناطق پست و سیل گیر و حفظ حریم سیل ها و رود خانه های فصلی و دائمی خواهد بود.

* نکات کلی برای ایمنی در مدارس:

نرده های حیاط طوری انتخاب شوند که امکان بالا رفتن یا خرید اجناس از میان آنها برای کودکان میسر نباشد.

از بکارگیری مصالح صاف و صیقلی در کف پرهیز شود.

از بکارگیری درهای شیشه ای پرهیز گردد، مگر شیشه های ایمنی.

پنجره ها باید به داخل باز شوند تا به سادگی قابل تمیز کردن باشند.

نصب حفاظ برای پنجره ها در طبقات لازم است. در طبقه همکف این حفاظ باید طوری طراحی شود که در واقع اضطراری امکان فرار از پنجره میسر باشد.

اتاق کمکهای اولیه در نزدیکی دفتر مدرسه و یا اتاق مربی بهداشت پیش بینی شود به طوری که از نور طبیعی ، تهویه و فضای کافی برای تجهیزات کمکهای اولیه برخوردار باشد.

کلیدهای برق باید روی دیوار خارجی توالت ها نصب شود. توالتها، بهتر است به طرف بیرون باز شوند.

مبلمان مدارس باید عاری از هر گونه خوردگی و یا لبه های تیز فلزی باشد.1

خصوصیات فیزیکی مدرسه:

* تراکم دانش آموزان:

تحقیقات نشان می دهند ، تراکم زیاد جمعیت به عنوان عامل فیزیکی، رفتارهای تهاجمی را افزایش می دهد و در صورت استمرار، موجب بروز واکنش های بیمار گونه و نابهنجاری می شود. تراکم فیزیکی نیز در انسان حساس ازدحام بر می انگیزد. نظر به اینکه دانش آموز به اندازه سطح کلاس مشخص می کنند. احساس ازدحام از میزان تراکم تأثیر پذیرد ولی پدیده ای است ذهنی و از عوامل روانشناختی از یکسو و محیطی – فرهنگی از سوی دیگر متأثر می شود.

آستانه تحریک پذیری افراد از نظر احساس ازدحام تحت تأثیر تجارب پیشین آنان قرار می گیرد. به عنوان مثال معلمینی که به تدریس در کلاسهای پر جمعیت عادت کرده اند، در یک کلاس سی نفره احساس ازدحام می کنند.

نوع فعالیتی که قرار است در فضای واحد انجام شود نیز عاملی بس موثر در بروز احساس ازدحام می باشد. به عنوان مثال هرگاه در یک کلاس پر جمعیت (با تراکم بالا) دانش آموزان با رفتار انفعالی، فقط به سخنان معلم گوش کنند، ازدحام محسوب نمی شود. مگر اینکه موضوع درس (کاردستی) باشد و یا یک روش تدریس ویژه دانش آموزان را به فعالیت و تحرک بیشتر وادار نماید. به طور خلاصه احساس ازدحام هنگامی به انسان دست می دهد که علاوه بر عوامل دیگر، تراکم جمعیت مخل آسایش شده، موانعی در مقابل جریان طبیعی فعالیتها ایجاد کند.

* تاثیر اندازه مدرسه:

به نظر می رسد که مدرسه بزرگ نفوذ دارد. ابعاد خارجی بزرگ آن، راههای طولانی و اتاقهای زیاد آن و گروههای بزرگ دانش آموزان آن ، همگی اشاره بر قدرت و خوبی آن دارند. مدرسه کوچک فاقد این اطمینان است. ساختمان متوسط آن ، راهروی کوتاه و اتاقهای کم و دانش آموزان معدود آن به صورت گروههای کوچک می باشند و این یک حسی از محیط سطحی و نه چندان تحصیلی را به ما منتقل می کند. اما اینها تنها یک نظریه گول زننده است.

کاملترین اطلاعات در مورد تاثیر اندازه مدرسه بر نوجوان و تحقیقات انجام شده توسط یک روانشناس به نام راجر بایگل و همکارانش بدست آمده است.

مدارس بزرگ بیش از مدارس کوچک مسائل متنوع را ارائه می کنند. اما تنوع موضوعات ارائه شده در آنها هنگامی که اندازه مدرسه افزایش بیشتری دارد به مقدار کمی افزایش پیدا می کند. در حالیکه یک مدرسه با 2000 دانش آموز ممکن است دارای 50 موضوع کلاسی متفاوت باشد. یک مدرسه با 4000 دانش آموز ممکن است فقط شامل 60 موضوع باشد. به هر حال شاید جالب توجه ترین یافته ها، توجه به مشارکت در فعالیتهای غیر کلاسی است. ممکن است توقع داشته باشیم که مدارس بزرگ علاوه بر فراهم کردن فعالیتهای متنوع تر ، فعالیتهای فوق برنامه گوناگونی را نیز به دانش آموزانشان ارائه دهند که البته همین طور نیز هست. اما از آنجا که مدارس بزرگ دانش آموزان زیادی دارند، مشارکت در فعالیتهای مختلف در مدارس بزرگ نصف مدارس کوچکتر است. مدرسه کوچک به دانش آموزان اجازه کار نزدیک با دیگران می دهد و حس اهمیت و مورد نیاز بودن را به آنها القا می کند.

گزارشی نشان داده ات که در یک مدرسه کوچک دیر یا زود اغلب دانش آموزان این شانس را می یابند که در یک تیم ورزشی یا تشکیلات دانش آموزی مشارکت کنند. اندازه مدرسه مخصوصاً بر مشارکت دانش آموزانی که موقعیت خوبی ندارند، اثر دارد. در مدارس بزرگ دانش آموزان حاشیه ای به ندرت در فعالیتهای مدرسه سهیم می شوند ولی در مدارس کوچک این دانش آموزان حس درگییری و تعهد یکسانی به دانش آموزان موفق از نظر درسی دارند.

کارشنماسان اکنون در مورد این مساله که اندازه ایدال آل یک مدرسه برای نوجوانان بین 500 تا 1000 دانش آموز است، اتفاق نظر دارند.

* رنگ فضاها:

رنگ به عنوان عنصر تفکیک ناپذیر معماری تاثیر بر روحیه و رفتار کاربران فضاها و ساختمانها دارد و حالات روانی و عاطفی آنها را شدیداً تحت تاثیر قرار می دهد.

انسان پدیده های اطراف خویش را همراه با رنگ مشاهده می کند و نسبت به آنها واکنش نشان می دهد. رنگه هر یک حاوی پیامی خاص به بینندگان



خرید و دانلود  مقاومت سازه در مقابل آتش


دانلود مقاله کامل درباره مقاومت به خوردگی 15 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

افزایش مقاومت به خوردگی فولاد زنگ نزن بوسیله ا عمال پوشش نانوذرات اکسید تیتانیوم با روش سل – ژل

چکیده : پوشش نانوذرات Tio2 به دلیل دارا بودن خواص اپتیکی ، مقاومت به اکسیداسیون ، خوردگی و سایش امروزه به میزان زیادی مورد توجه قرار گرفته است.در این پروژه پوشش نانوذرات Tio2 بوسیله روش سل - ژل تحت فرایند غوطه وری بر روی فولادزنگ نزن 316Lاعمال شده است. ساختارمورفولوژِی و ترکیب پوشش بوسیله XRD,SEM ,AFM مورد بررسی قرار گرفته است. همچنین خواص خوردگی پوشش در محلول 3,5%NACL بوسیله روشهای الکتروشیمیایی مانند پلاریزاسیون تافلی و امپدانس ارزیاببی شده است نکته قابل توجه همگن ، یکنواخت و عاری از ترک بودن پوشش است. همچنین پوشش نانوذرات Tio2 اعمال شده روی فولادزنگ نزن ک 316L مقاومت به خوردگی را از 132,135 به 16412,096 (Kcm2) به میزان تقریبا 120 برابر بهبود بخشیده است.

کلمات کلیدی : پوشش نانوذرات Tio2 ، سل - ژل ، فولادزنگ نزن 316 ، خواص خوردگی ، پلاریزاسیون تافلی ، امپدانس.

مقدمه :

پوشش نانو ساختار اکسید تیتانیوم داریا کاربرد بسیار وسیعی می باشد که عبارتند از: فیلترهای ماوراء بنفش برای صنایع اپتیک و مواد بسته بندی [1,2] ، پوشش ضد انعکاس در سلول های خورشیدی ، فتوکاتالیست برای تصفیه آب و هوا، آند در باتری ها ، پوشش های شفاف و خود تمیز کننده برای کاشی ها و شیشه ها ، سنسورهای رطوبت ، سنسورهای گازی ، پوشش های مقاوم در برابر خوردگی و غیره. البته با ایجاد پوشش نانو ساختار تیتانیوم تمام خواص مذکور به میزات قابل توجهی بهبود پیدا می کند . روشهای مختلفی برای تولید نانوساختار اکسید تیتانیوم وجود دارد. همانند اسپاترینگ ، CVD ، لیزر پالسی و روش سل - ژل . در یان میان روش سل - ژل به دلیل کنترل ترکیب شیمیایی در سطح مولکولی و دمای اعمالی پایین ننسبت به روش های دیگر دارای مزایای ویژه ای است ، علاوه بر آن میکروساختار فیلم مذکور همانند سایز حفره ها و حجم آنها بوسیله تغییر پارامترهای سل - ژل قابل کنترل می باشد. مهمترین نکته در حفاظت از خوردگی فلزات وابسته به دو نوع فصل مشترک می باشد: 1- فصل مشترک بین فلز و پوشش 2- فصل مشترک بین پوشش و محیط. بنابراین کنترل واکنش بین این فصل مشترک ها هنگامی که در حد ملکولی انجام پذیرد ، تاثیر بالایی در حفاظت از خوردگی ایجاد شده توسظ پوشش اعمالی دارد. . در این مقاله پیش ماده آلکوکسیدی ، بدلیل در برداشتن خواص فیزیکی و شیمیایی مانند گروههای هیدروکربنی با طول زنحیره بالا و قابیلت مخلوط شدن در حد ملکولی با حلال های آلی و ایجاد فیلم آری از ترک انتخاب گردیده است.

بدلیل کاربرد بسسیار وسیع 316L در صنعت ، پوشش لایه نازک نانوساختار اکسید تیتانیوم به منظور بهبود خواص خوردگی برروی آن اعمال شده است و خواص ساختاری لایه نازک توسط XRD,SEM ,AFM ارزیابی شده است . همچنین منحنی پلاریزاسیون تافلی و امپدانس برای بررسی اثر پوشش های فوق الذکر برروی خواص خوردگی فولادزنگ نزن 316L مورد استفاده قرار گرفته است.

روش تحقیق :

2-1 سنتز محلول پوشش دهی :

پیش ماده ا ولیه آلکوکسیدی تترا- پوتیل ارتو تیتانات(TBT) همانطور که در مقالات گفته شده است. مطابق زیر در تهیه محلول سل - ژل استفاده می شود.

ابتدا 55 میلی لیتر اتانول و 5 میلیل لیتر اتیل استو استات(EAcAc) را در دمای اتاق به مدت 5 دقیقه با هم مخلوط کرده و سپس 13 میلی لیتر TBT را به محلول اضافه کرده و محلول به مدت 30 دقیقه به شدت همزده می شود. ، بعد از انجام این مراحل به منظور شروع واکنش هیدرولیز درصد کمی آب مقطر بصورت قطره قطره در مدت 30 دقیقه به محلول در حال همزدن اضافه شده است . ، پس از اضافه کردن آب مقطرهمزدن محلول به مدت 6 ساعت ادامه یافت ، برای انحام واکنشهای پلیمری محلول تیه شده در نهایت به مدت 6 ساعت پیرسازی می شود. . محلول نهایی دارای رنگ زرد ، شفاف ، و عاری از هرگونه رسوب می باشد. شماتیم مراحل تهیه سل و ا یجاد پوشش در شکل یک نشان داده شده است.

2-2 اعمال پوشش نانوذرات اکسید تیتانیوم :

زمینه مورد استفاده ورق 316L با ابعاد 50*30*2 میلی متر است که بصورت زیر تحت آماده سازی سطحی قرار گرفته است :

سنباده زنی با شماره های 320 تا 350

پولیش با پودرهای 0.1 تا 0.3 میکرون اکسید آلومینوم

تمیزکردن آلتراسونیکی نمونه در استون و الکل به مدت 5 دقیقه ، البته بعد از انجام هر مرحله نمونه ها با آب مقطر کاملا شستشو داده شده اند.

بعد از آماده سازی سطحی نمونه ها ، پوشش نانوذرات اکسید تیتانیوم بوسیله روش غوطه وری و با سرعت 140 میلی متر بر دقیقه داخل محلول فرو برده شده وبه مدت 1



خرید و دانلود دانلود مقاله کامل درباره مقاومت به  خوردگی 15 ص


مقاله درباره آزمایش مقاومت مصالح

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

 

دستگاه آزمایش پیچش تا حد الاستیک

آزمایش شماره 1: روابط پیچش در حالت ارتجاعی

تئوری آزمایش

فرض های اساسی

برای برقراری رابطه بین لنگر پیچشی و تنشهای ایجاد شده در محورهای استوانه ای تو پر " Circular " و یا توخالی " Tubular " لازم است مفروضاتی در نظر گرفته شود. این فرضها که علاوه بر همگن بودن مصالح هستند به قرار ذیل می باشند:

-1 مقاطع صفحه ای عمود برمحور استوانه ای، پس از اعمال پیچش" Torsion "به صورت صفحه ای باقی می مانند، به عبارت دیگر هیچ گونه اعوجاجی " War page " در صفحات موازی عمود بر محور طولی عضو به وجود نمی آید. در واقع این فرض دلالت بر این دارد که صفحات موازی عمود بر تیر، در فاصله ای ثابت از یکدیگر باقی می مانند. اگر تغییر شکل بزرگ باشد این موضوع صحت نخواهد داشت. لیکن از آنجایی که تغییر شکلهای معمول بسیار کوچک هستند، تنشهایی که در اینجا مورد توجه قرار نمی گیرند، قابل چشم پوشی هستند.

-2 در یک میله استوانهای که تحت تاثیر پیچش قرار دارد، کرنش برشی γ به طور خطی از محور مرکزی تغییر می کند. این فرض که در شکل زیر نشان داده شده است، بدان معنی است که یک صفحۀ فرضی نظیر AO1O3C پس از اعمال پیچش به صفحۀ A΄O1O3C تبدیل شود. به عبارت دیگر اگر امتداد شعاع فرضی O3C ثابت فرض شود، شعاع های مشابهی که امتداد اولیه آنها O2B و O1A می باشد، به وضعیت جدید O1A΄ و O2B΄ در آیند. همچنین این شعاع ها به صورت مستقیم نیز باقی می مانند.

 

باید تاکید شود که این فرضیات فقط برای میله استوانه ای تو پر یا تو خالی صحیح می باشد. برای این اعضا این فرضیات حتی در تنشهای بالای رفتار ارتجاعی عضو نیز اعتبار خود را حفظ می کند. لیکن اگر توجه ما فقط محدود به حالت ارتجاعی خطی باشد، قانون هوک نیز مورد استفاده قرار می گیرد.

-3 با استفاده از قانون هوک، فرض سوم ما این است که تنش برشی متناسب با کرنش برشی می باشد.

توجیه دو فرض اول در داخل یک جسم مشکل می باشد. لیکن پس از تعیین روابط تنش و تغییر شکل بر پایه فرضیات فوق، انطباق بدون ابهامی بین مقادیر اندازه گیری شده و محاسبه شده پیدا می شود. البته صحت مفروضات بالا به طور دقیق به کمک روشهای تئوری ارتجاعی، که بر پایه شرایت سازگاری کرنشها و قانون تعمیم داده شده هوک قرار دارند، اثبات می شود.

رابطه پیچش

در حالت ارتجاعی، چون تنش با کرنش متناسب است و از طرفی در یک مقطع دایره شکل، کرنش به صورت خطی از محور مرکزی عبور می کند، تنش نیز به صورت خطی از محور مرکزی تغییر خواهد کرد. تنش هایی که توسط تغییر شکلهای مفروض تولید می شوند، تنش های برشی هستند و در صفحه ای عمود بر محور میله قرار دارند. در شکل زیر تغییرات تنش برشی نشان داده شده است.

 

بر خلاف تنش قائم موجود در مقطع میله تحت تاثیر بار محوری، شدت تنش فوق یکنواخت نیست. حداکثر تنش برشی در دورترین نقاط نسبت به مرکز O اتفاق می افتد و با τmax نشان داده می شود. این نقاط همانند نقطه C در شکل بالا، در محیط دایرهای به شعاع c از مرکز قرار دارند. اگر تغییرات تنش فوق را خطی فرض کنیم، در هر نقطه دلخواه به فاصله ρ از مرکز دایره، مقدار تنش برشی مساوی (ρ/c)τmax می شود.

با معلوم بودن توزیع تنش در یک مقطع، می توان مقاومت مقطع در مقابل لنگر پیچشی را بر حسب تنش پیدا کرد. لنگر پیچشی مقاوم مقطع باید معادل مجموع لنگرهای پیچشی داخلی مقطع باشد. این تساوی را می توان به صورت رابطه زیر نوشت:

 

انتگرال موجود در طرف چپ معادله فوق تمام لنگرهای پیچشی حاصل ازجزء نیروهایی را که به فاصلۀ ρ از مرکز مقطع قرار دارند، در روی سطح A جمع می زند. مجموع بدست آمده که با حرف T نشان داده شده است، لنگر پیچشی مقاوم مقطع می باشد.

در هر مقطع دلخواه، مقادیر τmax و c ثابت هستند، بنابراین رابطه فوق را می توانیم به صورت زیر بنویسیم:

 

از طرفی که ممان اینرسی قطبی " Polar moment of inertia " مقطع می باشد، برای یک مقطع معلوم مقدار مشخص و ثابتی است و فقط به مشخصات هندسی مقطع بستگی دارد. برای یک مقطع دایره، dA=2πρdρ می باشد که در آن 2πρ محیط تاجی "Annulus" از دایره به شعاع متوسط ρ و عرض dρ می باشد. بنابراین نتیجه می گردد:

 

که در آن d قطرمیله استوانه ای می باشد. اگر d و یا c بر حسب میلی متر باشند، J بر حسب توان چهارمیلی متر می شود.

با استفاده از علامت J برای ممان اینرسی قطبی یک سطح دایره شکل، رابطه لنگر پیچشی را می توان به شکل خلاصه زیر نوشت: τmax=Tc/J

رابطه فوق که به رابطه پیچش "Torsion formula " برای میله های استوانه ای معروف است، تنش برشی حداکثر را بر حسب لنگر داخلی مقاوم مقطع و مشخصات هندسی مقطع تعریف می کند. اگر مقدار لنگر پیچشی داخلی T بر حسب نیوتن در میلی متر و مقدار c بر حسب میلی متر و مقدار J بر حسب توان چهارم میلی متر بیان شود، مقدار تنش برشی τ بر حسب نیوتن بر میلی متر مربع بدست می آید:

 

زاویه پیچش میله های استوانه ای

سه مسئله ما را وادار به محاسبه زاویه پیچش می کند. اول اینکه، در اغلب طرح ها نمی توانیم مقطع را فقط بر اساس معیارمقاومت طراحی نماییم چون ممکن است مقطع با وجود مقاومت کافی، تغییر شکل پیچشی زیادی از خود نشان دهد. دوم، در مسائل ارتعاش پبچشی، محاسبه مقدار زاویه پیچش لازم است و بالاخره در حل مسائل نامعین، احتیاج به زاویه پیچش داریم.

 

طبق فرض اول که در ابتدای بیان شد، در صفحات عمود بر محور طولی یک میله استوانه، بعد از پیچش هیچ گونه اعوجاجی رخ نمی دهد. نوع تغییر شکلی که در اجزای کوچک یک میله استوانه ای به وجود می آید در شکل صفحه قبل نشان داده شده است. از چنین میله ای قطعه ای به طول dx جدا می کنیم و آن را به صورت زیر نمایش می دهیم.

 

در جزء طول نشان داده شد، یک تار دلخواه نظیر AB که در ابتدا موازی محور طولی می باشد، پس از تاثیر لنگر پیچشی وضعیت جدیدی مانند AD به خود می گیرد. در همان لحظه، به وسیله فرض دوم از مفروضاتی که در ابتدا بیان شد، شعاع OB که به صورت مستقیم باقی می ماند، به اندازۀ زاویۀ dφ می چرخد و در وضعیت جدید OD قرار می گیرد.

زاویه کوچک DAB مساوی با γmax می باشد، با استفاده از هندسه بدست می آوریم:

BD کمان = γmax dx یا BD کمان = c (dφ)

که در روابط فوق هر دو زاویه کوچک هستند و بر حسب رادیان اندازه گیری می شوند بنابراین:

γmax dx=c(dφ)

γmax فقط در یک غلافی با جداره بی نهایت نازک که برای آن بتوان تنش برشی τmax را یکنواخت فرض کرد، اتفاق می افتد.

از آنجائی که γmax متناسب است با τmax (γmax=τmax/G ) وهمچنین τmax=Tc/J می باشد نتیجه می گیریم:

یا

رابطه فوق بیان کننده زاویه پیچش نسبی دو مقطع مجاور به فاصله بی نهایت کوچک از یکدیگر می باشد برای پیداکردن زاویه پیچش کل بین دو مقطع دلخواه A و B در روی محور، پیچش کلیه اعضاء کوچک باید با یکدیگر جمع شود. بنابراین بیان عمومی برای زاویه پیچش در هر مقطع دلخواه از یک میلۀ استوانه ای ساخته شده از مصالح ارتجاعی خطی، به صورت زیر می باشد:

 



خرید و دانلود مقاله درباره آزمایش مقاومت مصالح