لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
مقدمه
امروزه صنعتگران کفسازی را حلقهای از زنجیره فرایندهای صنعتی محسوب کرده و این نوع نگاه به کفسازی بیش از آنکه از استدلالهای دستاندرکاران فن کفسازی تأثیر پذیرفته باشد ، برگرفته از تجربیات ناموفق صنعتی بوده است.
کارفرمایان امروه، انتظارات گسترده ، متنوع و مناسب با کاربری کف دارند. عرصه فعالیت در این بحث بسیار گسترده است، به خصوص که در زمینه کفسازی تا کنون حتی ابتداییترین آگاهیها به مشتریان و کارفرمایان فواصل درزها چقدر باید باشد؟چه نوع درزهایی باید تعبیه نمود؟
مزایای کف صنعتی خوب :
کفپوشها در حقیقت بستر فرآیند تولید در یک کارخانه محسوب میشوند هر بار و نیرویی که در کارگاه با آن سر و کار داریم به نوع با عبور از این بستر به لایه قابل اتکا زیرین که احتمالاً زمین و یا یک دال بتنی است منتقل میشود.
بنابراین لازم است که مقاومت مناسب در برابر بارهای ساکن و متحرک و همچنین سایش داشته باشند لذا برای این کفپوش استفاده از بتن پر مقاومت و ضد سایش توصیه میشود.
این انتخاب را زمانی آسانتر و با میل و رغبت خود انجا میدهیم که برآورد نمائیم با آسیب دیدن کفپوش چه حجمی از امور روزمره متوقف میگردد.
گرانولیت بر پایه سیمان :
یک پوشش خشنتر با قابلیت انعطاف اجرائی کمتر ، ضخامت بیشتر و هزینه کمتر است.
اپوکسی بر پایه رزین :
یک پوشش زیباتر، با تنوع بیشتر و ضخامت کمتر است .
گرانولیت
گرانولیت از گرانولها طبیعی و صنعتی سخت با سختی 6 تا 7 در مقیاس مو ( Moh’s scale ) طی مراحل دقیق و کنترل شده ، طبق استانداردهای بینالمللی تهیه میگردد. این کف میتواند به عنوان یک کف دکوراتیو با استفاده از پیگمنتهای رنگی و دانهبندیهای متنوع اجرا گردد.
گرانولیت : از ترکیب دانههای سیمان ، گرانولهای سخت طبیعی ، آب و مواد افزودنی مخلوطی بدست میآید که بصورت یکپارچه و همزمان با بتنریزی به عنوان پوشش نهایی کف در ضخامتهای متفاوت اجرا میشود. قطر سنگدانههای گرانولیت از 1/0 تا حداکثر 10 میلیمتر متغیر است.
گرانولیت با سیمان خاکستری شبیه بتن معمولی است ، اما با استفاده از پیگمنتهای رنگی معرفی به رنگهای دلخواه در میآید. حداکثر مقدار مجاز پیگمنتها در روکش نهایی 5% وزنی سیمان مصرفی میباشد.
مشخصات گرانولیت :
مقاومت فشاری فوق العاده
مقاومت سایش در برابر ترافیکهای سنگین
مقاوم در برابر تردد لیفتراک
عدم تولید گرد و غبار
دارای تنوع رنگ و قابلیت ترمیم در کمتر از 72 ساعت
مقاوم در برابر آتشسوزی
مقاوم در برابر یخزدگی
سهولت در تمیز شدن
صد در صد قابل شستشو
عدم لغزندگی در زمینهای مرطوب
ایمنی فیزیولوژی
پایداری در درجه حرارتهای متغیر
استانداردها
استاندارد سنگدانههای سخت جهت کفپوشهای سخت 1-DIN 1100
روشهای اجرای بتنهای تحت سایش 2- BS 8204
روکش کف با کاربری سنگین 3- DIN 18560
سنگدانه جهت پوشش کف با ترکیب سیمان 4- DIN 4226
الزامات دانهبندی برای سنگدانههای زیر 5- ASTMC 33-78
انواع گرانولیت :
در دو نوع فلزی و غیرفلزی با دانهبندیهای متفاوت تهیه میشود :
1- گرانولیت غیر فلزی ( GO/5 ) :
تهیه شده از کانی غیر فلزی همراه با سربارههای صنعتی ، دانهبندی شده از صفر تا پنج میلیمتر .
2- گرانولیت غیر فلزی (GO / 10 ):
تهیه شده از کانی غیر فلزی همراه با سرههای صنعتی ، دانهبندی شده از صفر تا 10 میلیمتر.
3- گرانولیت فلزی (MG 0/5) :
تهیه شده از کانی فلزی همراه با سنگدانه بخش G ، دانهبندی شده از صفر تا 5 میلیمتر.
4- گرانولیت فلزی ( MGO /10):
تهیه شده از کانی فلزی همراه با سنگدانه بخش G ، دانهبندی شده از صفر تا 10 میلیمتر .
5- گرانولیت (C 700) :
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 19
مقدمه
آثاری از اسباب و ابزارهای سنگی انسان اولیه به دست آمده است که تاریخ آنها به پنجاه تا صد هزار سال پیش از میلاد می رسد. نخستین اسبابهای سنگی انسان را ریگهای رودخانه ها و کرانه های دریا تشکیل می داده اند زیرا، این سنگها آسان به دست آمده و گرفتن آنها در دست نیز سهل بوده است. از همین زمان، صنعت تراشیدن سنگ در تهیة ابزارهای سنگی بتدریج رواج یافته است (این آثار را در آفریقا و اروپا یافته اند) . دورة مزبور، که هنوز در سنگها تغییرات زیادی نداده اند و تنها به تراشیدن آنها می پرداخته اند، به دورة «دیزینستگی» یعنی دورة سنگهای قدیمی، موسوم است. مثلاً، سنگ آتشزنه (چخماق) بیش از همه مورد استعمال داشته است و در صورت فقدان ان از کوارتزیت، ابسیدین، ژاسپ، و گاهی نیز از ماسه سنگ استفاده می شده است. در آغاز کار، اسباب و وسایل کار خشن و خیلی ابتدایی بوده است اما، پس از چندی، در دورة «دیزینسنگی» میانی (دورة «موسته رین» و غیره)، اسبابها و ابزارها تکامل بیشتری یافتند و به صورت قلمهای مختلف، که به کار سوراخ کردن و تراشیدن سنگها می خوردند، در آمدند و ضمناً کوچکتر و ظریفتر نیز شدند.
انواع سنگ ها
کلیه سنگها را به سه دستة بزرگ می توان تقسیم کرد:
الف) سنگ های آذرین : این سنگها از ژرفاهای زمین به صورت توده های مذاب، به نام تفتال (ماگما)، بیرون آمده اند. گاهی این مواد گداخته در زیر لایه های قشر جامد زمین می مانند و به سطح زمین نمی رسند؛ و گاهی نیز به سطح خارجی زمین راه می یابند و همراه با انفجار، از دهانة کوههای آتشفشان خارج می شوند. این سنگها را به این علت که از مواد گداخته تشکیل شده اند، سنگهای آذرین و از این لحاظ که درون زمین به وجود آمده اند، سنگهای درونزاد و از این لحاظ که از درون زمین به خارج راه یافته اند، سنگهای خروجی، و گاهی نیز به آنها سنگهای تفتالی می گویند.
ب) سنگهای تهنشستی- این سنگها، از نهشته هایی که در آب یا هوا گذاشته شده شکل گرفته اند و به این سبب که در سطح زمین به وجود آمده اند، آنها را سنگهای برونزاد نیز می نامند.
ج) سنگهای دگرگونی – این گونه سنگها بر اثر تغییر شکل یا دگرگونی سنگهای تهنشستی یا خروجی به وجود آمده اند. به علت اینکه در این سنگها بلورها به شکل لایه لایه قرار گرفته اند، آنها را سنگهای بلورلایه نیز می گویند. سنگهای دگرگونی صفات مشترک سنگهای آذرین و تهنشستی را دارند.
خواص عمومی سنگها
ساختمان سنگها - سنگ اگر از یک عنصر منحصر به فرد تشکیل شده باشد، آن را سنگ ساده می گویند، مانند کوارتزیت که تنها از کواتز تشکیل شده است. اگر سنگ از چند عنصر مشخص تشکیل شده باشد آن را سنگ مرکب می گویند، مانند سنگ خارا که از فلدسپات، میکا، و کوارتز تشکیل شده است.
شکل عناصر – عناصری که سنگها از آنها تشکیل می شوند، اگر دارای شکل هندسی مشخص و معینی باشند، متبلور یا به اختصار بلور نامیده می شوند و اگر فاقد شکل هندسی باشند آنها را بی شکل می گویند.
سختی – سختی کانیها با یکدیگر فرق دارد و حتی بعضی از کانیها، در رویه های مختلف خود، دارای سختیهای مختلف هستند. از این رو مقایسة آنها برای شناختن و تمیز دادن کانیها از یکدیگر به ما کمک بسیار می کند.
عناصر تشکیل دهندة سنگها
الف – سیلیس یا انیدرید سیلیسیوم : انیدرید سیلیسیوم (SiO2) را گاهی در میان اکسیدها رده بندی می کنند زیرا کوارتز از نظر شیمیایی یک اکسید است.
ب ) فلدسپاتها : فلدسپاتها سیلیکاتهایی هستند که خواص شیمیایی و فیزیکی آنها اندکی با هم اختلاف دارد و به سه گروه تقسیم می شوند: 1- فلدسپاتهای سود یومی – پوتاسیومی ، 2- فلدسپاتهای پلاژیوکلاز ، 3- فلدسپاتهای باریومی – پوتاسیومی یا هیالوفان.
کانی ها
از نقطه نظرهای مختلف
بستر
ترکیب شیمیایی
از نظر مقدار سیلیس
از نظر بافت
از نظر رنگ عناصر
کانی های فرعی
سیلکاتها
اکسیدها
سولفورها
فسفاتها
کربوتانها
سولفاتها
گچ: H2O 2 . CaSO4 . نام این کانی از گلمة یونانی «گیپسوس» آمده است. به این کانی در یونان قدیم گیپسوس می گفتند.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
عنوان آزمایش : تعیین درصد رطوبت مصالح سنگی
هدف دامنه کاربرد : هدف از انجام آزمایش پی بردن به میزان آب در لحاظ نمودن سیمان در تهیه بتن
تعیین درجة پوکی سنگدانه ها – تعیین تخلخل و فضای خالی سنگدانه ها –
وسایل آزمایش : دستگاه اون – ترازو – سرکاس – تاوه مخصوص gr574 = وزن ظرف خالی برای ش
شرح انجام آزمایش : gr 500 = وزن ماسه و kg 3 = وزن ش
برای تهیه تعیین اقتلاط مناسب نیاز به داشتن اطلاعات مناسب داریم لذا باید ابتدا به مواردی متذکر شویم که سنگدانه ها دارای یک سری تخلخل و فضای خالی در جسم خود دارند که باعث نفوذپذیری و جذب آب دانه ها بر روی چسبندگی بین آنها و ضمیر پنهان ، مقاومت در برابر یخ زدن و آب شدن ، پایداری شیمیایی ، مقاومت در برابر سایش .... تاثیر می گذارد. خلل و فرج دانه ها در اندازه های بسیار متغیری وجود داشته ولیکن حتی کوچکترین آنها از اندازه حفرات ژلی داخل سیمان بزرگتر می باشد . میزان سرعت نفوذ آب در دانه های فوق به اندازه حفره ها ، پیوستگی ، و حجم کل آنها بستگی دارد که به آن حالت اشباع با سطح خشک در سنگدانه ها وجود دارد . که برای تعیین میزان آب مصالح سنگی ابتدا ، یک وزن مشخصی از آن مصالح را وزن کرده و در داخل تاوه مخصوص قرار می دهیم و به مدت 2 ساعت در داخل اون تحت دمای 5± 110 درجه سانتی گراد خشک نموده و مجدداً وزن می نمائیم باید توجه داشته باشیم که هنگام وزن کردن وزن تازه مخصوص را از وزن کل کم کرده باشیم
محاسبات و نمودارها :
وزن خشک مصالح - وزن مرطوب مصالح = وزن آب تبخیر شده
gr 574 = وزن ظرف خالی برای ش
204/0 = 796/2 - 3 = وزن آب تبخیر شده 574/3 = وزن کل برای ش طبیع
29/7 = 100 = درصد رطوبت kg 370/3 = وزن خشک با ظرف
796/2 = 574/ -370/3 = وزن خشک شن
gr 475 = وزن ظرف خالی برای محاسبه
gr 50 = 450-500 = میزان آب تبخیر شدهgr 500 = وزن نمونه
gr 975 = وزن کل
gr 925 = وزن خشک با ظرف
11/11 = 100 = درصد رطوبتgr 450 = 475-925 = وزن خشک ماسه
نکته : برای تعیین درصد رطوبت مصالح سنگی از یک آزمایش سریع می توان بدین نحو استفاده نمود که بجای دستگاه اون جهت خشک شدن مصالح سنگی از چراغ الکلی استفاده کنیم و نفت هنگامی کاملاً خشک شده است که گرمادهی بیشتر فقط کمتر از اره درصد وزن نمونه را کاهش دهد .
آزمایش دوم :
آزمایش شماره 2
بعنوان آزمایش : آزمایش استاندارد مصالح ریزدانه طبق 136-Astme
هدف و دامنه کاربرد : هدف از این آزمایش نحو یقین توزیع اندازد . دانه ها در مصالح ریزدانه و درشت دانه به کمک الک می باشد و دانة کاربرد آن بررسی دانه بندی مصالح و تطبیق آنها با نمودارهای استاندارد جهت تهیه بتن و آسفالت می باشد .
وسایل آزمایش : ترازو با دقت 10/1% باربرده آزمایش یا 1/0 گرم (هر کدام که بزرگتر است)
سری دیسک های استاندارد – لرزاننده مکانیکی دیسک ها – کوره یا اون به اندازه مناسب که قادر باشند دمای یکنواخت 5±110 درجه سانتی گراد را حفظ کند .
نمونه برداری مصالح سنگی : وزن نمونه مصالح ریزدانه بعد از خشک کردن باید بصورت زیر باشد .
مصالحی که حداقل 95 درصد آن از الک شماره 8 عبور کند .
مصالحی که حداقل 85 درصد آن از الک شماره 4 (mm75/4) عبور کرده و بیش از 5 درصد آن روی الک شماره 8 باقی بماند .
روش انجام آزمایش :
نمونه آزمایش را تا رسیدن به وزن ثابت در دمای 5±110 سانتی گراد خشک می کنیم و الکها را به ترتیب از بزرگ به کوچک و از بالا به پائین روی هم قرار داده و نمونه را روی الک بالائی بریزید . الکها را به کمک دست یا به کمک ماشین ، مدت کافی تکان دهید .
نکته : مقدار مصالح را روی الک ها تا حدی محدود کنیم تا نمای دانه ها فرصت داشته باشند . چندین مرتبه در داخل سوراخهای الک قرار بگیرند . برای الک هایی که سوراخهای آنها کوچکتر از 75/4 میلی متر باشد . نباید وزن مصالح باقی مانده روی الک بیش از kg/m26 سطح الک باشد . در مورد الکهایی که سوراخهای آنها بزرگتر 75/4 میلی متر یا مساوی با آن باشد .
وزن مصالح روی الک بر حسب کیلوگرم بر متر مربع باید از دو و نیم (5/2) برابر اندازه سوراخهای الک (بر حسب میلی متر) بیشتر نباشد . در هیچ موردی نباید وزن مصالح روی الک به اندازه باشد که قسمت فوری الک تغییر شکل دائمی بدهد .
تعریف حد الک کردن :
الک کردن را تا هنگامی ادامه می دهیم که پس از آن به ازای هر یک دقیقه الک کردن کمتر از یک درصد وزن مصالح باقی مانده روی الک از آن عبور کند وزن مانده روی هر الک را با ترازو وزن می نمائیم .
میزان خطای توزین : وزن کل مصالح بعد از الک کردن باید با وزن اولیه کنترل شود و در صورتیکه اختلاف این دو بیش از 3/0 باشد نتایج قابل قبول نیست .
تعریف ضریب نرمی : ضریب نرمی را از جمع درصدهای مصالح درشت تر از الک های زیر
100،30،50،16،8،4،8/3 No =
و تقسیم حاصل جمع بر 100 بدست می آید . ضریب نرمی باید با دقت 01/0 گزارش شود .
محاسبات و نمودارها :
درصد عمود هرالک
درصد تجمعی ماندن هر الک
درصد مانده روی دارالک
وزن مانده روی هر الک
اندازه الک
شماره الک
6/99
4/0
4/0
2
5/9
8/3
52
48
6/47
238
75/4
4
4/8
6/91
6/43
218
36/2
8
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 24
دستگاه آزمایش پیچش تا حد الاستیک
آزمایش شماره 1: روابط پیچش در حالت ارتجاعی
تئوری آزمایش
فرض های اساسی
برای برقراری رابطه بین لنگر پیچشی و تنشهای ایجاد شده در محورهای استوانه ای تو پر " Circular " و یا توخالی " Tubular " لازم است مفروضاتی در نظر گرفته شود. این فرضها که علاوه بر همگن بودن مصالح هستند به قرار ذیل می باشند:
-1 مقاطع صفحه ای عمود برمحور استوانه ای، پس از اعمال پیچش" Torsion "به صورت صفحه ای باقی می مانند، به عبارت دیگر هیچ گونه اعوجاجی " War page " در صفحات موازی عمود بر محور طولی عضو به وجود نمی آید. در واقع این فرض دلالت بر این دارد که صفحات موازی عمود بر تیر، در فاصله ای ثابت از یکدیگر باقی می مانند. اگر تغییر شکل بزرگ باشد این موضوع صحت نخواهد داشت. لیکن از آنجایی که تغییر شکلهای معمول بسیار کوچک هستند، تنشهایی که در اینجا مورد توجه قرار نمی گیرند، قابل چشم پوشی هستند.
-2 در یک میله استوانهای که تحت تاثیر پیچش قرار دارد، کرنش برشی γ به طور خطی از محور مرکزی تغییر می کند. این فرض که در شکل زیر نشان داده شده است، بدان معنی است که یک صفحۀ فرضی نظیر AO1O3C پس از اعمال پیچش به صفحۀ A΄O1O3C تبدیل شود. به عبارت دیگر اگر امتداد شعاع فرضی O3C ثابت فرض شود، شعاع های مشابهی که امتداد اولیه آنها O2B و O1A می باشد، به وضعیت جدید O1A΄ و O2B΄ در آیند. همچنین این شعاع ها به صورت مستقیم نیز باقی می مانند.
باید تاکید شود که این فرضیات فقط برای میله استوانه ای تو پر یا تو خالی صحیح می باشد. برای این اعضا این فرضیات حتی در تنشهای بالای رفتار ارتجاعی عضو نیز اعتبار خود را حفظ می کند. لیکن اگر توجه ما فقط محدود به حالت ارتجاعی خطی باشد، قانون هوک نیز مورد استفاده قرار می گیرد.
-3 با استفاده از قانون هوک، فرض سوم ما این است که تنش برشی متناسب با کرنش برشی می باشد.
توجیه دو فرض اول در داخل یک جسم مشکل می باشد. لیکن پس از تعیین روابط تنش و تغییر شکل بر پایه فرضیات فوق، انطباق بدون ابهامی بین مقادیر اندازه گیری شده و محاسبه شده پیدا می شود. البته صحت مفروضات بالا به طور دقیق به کمک روشهای تئوری ارتجاعی، که بر پایه شرایت سازگاری کرنشها و قانون تعمیم داده شده هوک قرار دارند، اثبات می شود.
رابطه پیچش
در حالت ارتجاعی، چون تنش با کرنش متناسب است و از طرفی در یک مقطع دایره شکل، کرنش به صورت خطی از محور مرکزی عبور می کند، تنش نیز به صورت خطی از محور مرکزی تغییر خواهد کرد. تنش هایی که توسط تغییر شکلهای مفروض تولید می شوند، تنش های برشی هستند و در صفحه ای عمود بر محور میله قرار دارند. در شکل زیر تغییرات تنش برشی نشان داده شده است.
بر خلاف تنش قائم موجود در مقطع میله تحت تاثیر بار محوری، شدت تنش فوق یکنواخت نیست. حداکثر تنش برشی در دورترین نقاط نسبت به مرکز O اتفاق می افتد و با τmax نشان داده می شود. این نقاط همانند نقطه C در شکل بالا، در محیط دایرهای به شعاع c از مرکز قرار دارند. اگر تغییرات تنش فوق را خطی فرض کنیم، در هر نقطه دلخواه به فاصله ρ از مرکز دایره، مقدار تنش برشی مساوی (ρ/c)τmax می شود.
با معلوم بودن توزیع تنش در یک مقطع، می توان مقاومت مقطع در مقابل لنگر پیچشی را بر حسب تنش پیدا کرد. لنگر پیچشی مقاوم مقطع باید معادل مجموع لنگرهای پیچشی داخلی مقطع باشد. این تساوی را می توان به صورت رابطه زیر نوشت:
انتگرال موجود در طرف چپ معادله فوق تمام لنگرهای پیچشی حاصل ازجزء نیروهایی را که به فاصلۀ ρ از مرکز مقطع قرار دارند، در روی سطح A جمع می زند. مجموع بدست آمده که با حرف T نشان داده شده است، لنگر پیچشی مقاوم مقطع می باشد.
در هر مقطع دلخواه، مقادیر τmax و c ثابت هستند، بنابراین رابطه فوق را می توانیم به صورت زیر بنویسیم:
از طرفی که ممان اینرسی قطبی " Polar moment of inertia " مقطع می باشد، برای یک مقطع معلوم مقدار مشخص و ثابتی است و فقط به مشخصات هندسی مقطع بستگی دارد. برای یک مقطع دایره، dA=2πρdρ می باشد که در آن 2πρ محیط تاجی "Annulus" از دایره به شعاع متوسط ρ و عرض dρ می باشد. بنابراین نتیجه می گردد:
که در آن d قطرمیله استوانه ای می باشد. اگر d و یا c بر حسب میلی متر باشند، J بر حسب توان چهارمیلی متر می شود.
با استفاده از علامت J برای ممان اینرسی قطبی یک سطح دایره شکل، رابطه لنگر پیچشی را می توان به شکل خلاصه زیر نوشت: τmax=Tc/J
رابطه فوق که به رابطه پیچش "Torsion formula " برای میله های استوانه ای معروف است، تنش برشی حداکثر را بر حسب لنگر داخلی مقاوم مقطع و مشخصات هندسی مقطع تعریف می کند. اگر مقدار لنگر پیچشی داخلی T بر حسب نیوتن در میلی متر و مقدار c بر حسب میلی متر و مقدار J بر حسب توان چهارم میلی متر بیان شود، مقدار تنش برشی τ بر حسب نیوتن بر میلی متر مربع بدست می آید:
زاویه پیچش میله های استوانه ای
سه مسئله ما را وادار به محاسبه زاویه پیچش می کند. اول اینکه، در اغلب طرح ها نمی توانیم مقطع را فقط بر اساس معیارمقاومت طراحی نماییم چون ممکن است مقطع با وجود مقاومت کافی، تغییر شکل پیچشی زیادی از خود نشان دهد. دوم، در مسائل ارتعاش پبچشی، محاسبه مقدار زاویه پیچش لازم است و بالاخره در حل مسائل نامعین، احتیاج به زاویه پیچش داریم.
طبق فرض اول که در ابتدای بیان شد، در صفحات عمود بر محور طولی یک میله استوانه، بعد از پیچش هیچ گونه اعوجاجی رخ نمی دهد. نوع تغییر شکلی که در اجزای کوچک یک میله استوانه ای به وجود می آید در شکل صفحه قبل نشان داده شده است. از چنین میله ای قطعه ای به طول dx جدا می کنیم و آن را به صورت زیر نمایش می دهیم.
در جزء طول نشان داده شد، یک تار دلخواه نظیر AB که در ابتدا موازی محور طولی می باشد، پس از تاثیر لنگر پیچشی وضعیت جدیدی مانند AD به خود می گیرد. در همان لحظه، به وسیله فرض دوم از مفروضاتی که در ابتدا بیان شد، شعاع OB که به صورت مستقیم باقی می ماند، به اندازۀ زاویۀ dφ می چرخد و در وضعیت جدید OD قرار می گیرد.
زاویه کوچک DAB مساوی با γmax می باشد، با استفاده از هندسه بدست می آوریم:
BD کمان = γmax dx یا BD کمان = c (dφ)
که در روابط فوق هر دو زاویه کوچک هستند و بر حسب رادیان اندازه گیری می شوند بنابراین:
γmax dx=c(dφ)
γmax فقط در یک غلافی با جداره بی نهایت نازک که برای آن بتوان تنش برشی τmax را یکنواخت فرض کرد، اتفاق می افتد.
از آنجائی که γmax متناسب است با τmax (γmax=τmax/G ) وهمچنین τmax=Tc/J می باشد نتیجه می گیریم:
یا
رابطه فوق بیان کننده زاویه پیچش نسبی دو مقطع مجاور به فاصله بی نهایت کوچک از یکدیگر می باشد برای پیداکردن زاویه پیچش کل بین دو مقطع دلخواه A و B در روی محور، پیچش کلیه اعضاء کوچک باید با یکدیگر جمع شود. بنابراین بیان عمومی برای زاویه پیچش در هر مقطع دلخواه از یک میلۀ استوانه ای ساخته شده از مصالح ارتجاعی خطی، به صورت زیر می باشد:
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 16 صفحه
قسمتی از متن .doc :
سیمان
سیمان یا سمنت واژهای است که از لغت سمنتوم رومی گرفته شده و قدمت آن به پیش از میلاد میرسد. مصرف آن در ساختمان پانتئون شهر روم واقع در ایتالیا که مربوط به سنه 27 قبل از میلاد است دیده شده. در ساختمان گنبد این بنا که 43 متر قطر دارد مخلوطی از خرده سنگ و آهک پخته بکار رفته است. ولی کشف سیمان به شکل امروز مربوط است به یک نفر بنای انگلیسی به نام ژوزف اسپدین که از پختن آهک و خاک رس در حرارت بالا و آسیاب کردن آن موفق شد ابتداییترین نوع سیمان را کشف نموده و آن را در تاریخ 21 اکتبر 1824 بنام خود در انگلستان ثبت نماید و نام محصول بدست آمده را سیمان پرتلند گذاشت علت این نامگذاری طوری که گفته شد سیمان از سمنتوم رومی گرفته شده و پرتلند نام جزیرهای است در انگلستان که رنگ سیمان پس از سخت شدن به رنگ سنگهای ساحلی این جزیره در میآید به همین دلیل نام پرتلند را به دنبال سیمان برای آن انتخاب نمودند البته قبل از ژوزف اسپدین اشخاص دیگری در فرانسه و انگلستان از پختن خاک رس و سنگ آهک مصالح مشابهی بدست آوردند ولی هیچکدام کار خود را دنبال نکرده و محصول خود را به ثبت نرسانیدند. باید توجه نمود که در بعضی از کتابهای ایرانی که در دسترس نگارنده بود اشخاص دیگری را به عنوان اولین نفر که سیمان را به ثبت رسانید معرفی مینمایند ولی در فرهنگ دهخدا و دایرهالمعارف فارسی تألیف غلام حسین مصاحب، ژوزف اسپدین را به عنوان اولین نفر ذکر میکنند ولی آنچه مسلم است که سیمان در اوایل قرن نوزدهم در انگلستان به ثبت رسیده و آن را ابتدا برای ساختن فانوس دریائی مورد مصرف قرار دادند.
تاریخچة رواج سیمان در ایران
بدیهی است منظور از تاریخچة سیمان در ایران یک تحقیق تاریخی نیست که بدانیم مثلاَ اولین پاکت سیمان در چه تاریخی و یا بوسیلة چه شخصی به ایران وارد شده است بلکه منظور این است که نگاه مختصری داشته باشیم به تاریخ سیمان ایران.
اولین کارخانه سیمان با تولید روزانه 100 تن در نزدیکی شهرری در تهران احداث و در سال 1312 آغاز به کار کرد و تا سال 1334 به تدریج با افزودن واحدهای دیگر به این مجموعه ظرفیت این کارخانه به 600 تن در روز رسید ولی به علت شروع عملیات ساختمانی و راهسازی در ایران این مقدار سیمان جوابگوی نیازهای کشور نبود و به تدریج در نقاط دیگر مملکت کارخانههای بزرگ سیمان دایر گردید از جمله سیمان تهران- سیمان شمال- سیمان مشهد- سیمان فارس- سیمان ارومیه- سیمان آبیک که تعداد آنها به حدود بیش از 20 کارخانه میرسد و تولید آن فعلاَ در حدود بیست میلیون تن در سال میباشد که هنوز جوابگوی مصرف داخلی نبوده و مجبور به واردات سیمان میباشیم.
مواد تشکیل دهنده سیمان پرتلند
باید توجه نمود رایجترین و پرمصرفترین سیمان مورد استفاده در صنعت ساختمان سازی اعم از پل- تونل- راهسازی و یا ساختمان و غیره همان سیمان پرتلند است. موادی که برای پختن سیمان به کوره میرود از دو مادة اصلی تشکیل شده که