لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 21 صفحه
قسمتی از متن .doc :
زمینه پیدایش فیزیک کلاسیک
مقدمه
هنگامیکه اروپا در ظلمت جهل و بی خبری بسر می برد، دانشمندان اسلامی و در راس آنان اندیشمندان ایرانی اندوخته های علمی یونانیان را جمع آوری و حراست کردند و با دانش و اندیشه های ایرانیان باستان درآمیختند. تعاریف و اصول هندسه ی اقلیدسی توسط ایرانیان مورد بررسی و نقد قرار گرفت. مثلثات کروی توسط فضلای ایرانی ابداع و دستگاه اعداد با کشفیات هندیان تکمیل و بوسیله ی بازرگانان به اروپا برده شد. از قرن یازدهم میلادی به بعد بعضی از کشیشان به جامه ی طلاب مسلمان در می آمدند و کتبی را که با دقت محافظت می شد با خود به غرب می بردند و ترجمه می کردند
در قرن شانزدهم دستگاه خورشید مرکزی منظومه شمسی تدوین و مسیر حرکت سیارات با دقت رصد شد. در نتیجه تقدس دایره ها در هم شکسته شد و مدار بیضوی حرکت سیارات مورد قبول واقع شد. روش استقرایی توانی نو یافت و به مقابله با قیاس برخاست و مسیر جدیدی برای اندیشه های علمی بوجود آمد
آزمایش کردن قباحت خود را از دست داد و اجسام از بلندی رها شدند تا زمان سقوط آنها بطور تجربی بررسی شود. قوانین سقوط آزاد اجسام به کل جهان تعمیم داده شد شد و قانون جهانی گرانش کشف گردید. علت حرکت سیارات به دور خورشید صورت بندی شد. اختراع و تکمیل تلسکوپ انسان را با دنیایی رو به رو ساخت که قبل از آن هرگز تصورش نمی رفت. آنگاه ناچیزی زمین در مقابل کاینات به اثبات رسید
استفاده از نماد گرایی در ریاضیات آغاز و هندسه تحلیلی به عنوان ابزاری قدرتمند برای تجسم و تکمیل کشفیات حساب دیفرانسیل و انتگرال به کار گرفته شد. ماهیت فیزیکی نور با آزمایش مورد سئوال قرار گرفت. در نتیجه نظریه ی دانه ای و نظریه ی موجی بودن نور برای توجیه آن ابداع شد. عنصر پنجم ارسطوئی اتر بیش از پیش بکار گرفته شد. اما این بار نه به عنوان یک عنصر، بلکه به عنوان زمینه ای برای انتشار نور و توجیه حرکت نور در فضا و انتقال نیروی گرانش و تصور می شد که کالبد فضا از اتر انباشته شده است
1-2
عصر تاریکی و دوره ی انتقال اول
با سقوط امپراطوری روم در اواسط قرن پنجم میلادی تمدن در اروپای غربی به سطح بسیار پائینی رسید. تعلیم و تربیت تقریباً از بین رفت و تنها راهبان دیرهای کاتولیک و معدودی افراد غیر روحانی با فرهنگ و دانش یونانی و لاتینی رشته ی باریکی داشتند
در این دوران دانش باستان توسط دانشمندان اسلامی محفوظ ماند، دانشمندان اسلامی ضمن آنکه دانش یونانی را حفظ کردند، اندوخته های علمی ایران باستان، چین و هند را را نیز جمع آوری نموده، خود نیز به باروری آن کوشیدند. خلفای بغداد به حامیان علم بدل گشتند و فضلای برجسته ای را به دربار خود فراخواندند. آثار هندی و یونانی از جمله آثار برهمگویت، و اصول اقلیدسی و مجسطی به عربی ترجمه شد. کتب یونانی به عنوان یکی از شرایط صلح، از امپراطور بیزانس مصادره شد و در اختیار فضلای عرب زبان قرار گرفت. در این عصر فضلای زیادی به نوشتن آثاری در زمینه ریاضیات و نجوم پرداختند که مشهورترین آنها محمد ابن موسی الخوارزمی بود. خوارزمی رساله ای در جبر و کتابی در باره ارقام هندی نوشت که بعدها در قرن دوازدهم به لاتین ترجمه شد و تاثیر زیادی در اروپا گذاشت. ابوالوفا بوزجانی کتب بطلمیوس را ترجمه و تشزیح کرد و شرحی بر کتاب دیوفانتس نوشت. اصیل ترین و بدیع ترین اثر جبری حل معادله درجه سوم توسط خیام بوجود آمد. وی اصلاحیه دقیقی نیز برای تقویم انجام داد
خواجه نصیرالدین طوسی اولین اثر در باب مثلثات مسطحه و کروی را نوشت و کار پیشتر خیام را با شرح و تصیحیحاتی منتشر کرد که ساکری کارش را در هندسه نااقلیدسی با یاد داشتی از نوشته های نصیرالدین در باب توازی شروع کرد. نوشته های خواجه نصیرالدین توسط جان والیس در آکسفورد تدریس شد
ابن هیثم که در غرب به الهازن شناخته می شود، بزرگترین فیزیکدان مسلمان شناخته شده است. وی رساله ای در نور نوشت و ذره بین را کشف کرد. به نسبت زاویه تابش و زاویه انکسار پی برد و اصول تاریکخانه را شرح داد و در مورد قسمتهای مختلف چشم بحث کرد. رساله ی نور ابن هیثم نفوذ زیادی در اروپا گذاشت. کارهای وی توسط کمال الدین فارسی پیگیری شد
در مورد نجوم تنها کافیست گفته شود که بسیاری از نامها و واژه های امروزی در نجوم ریشه عربی دارند. بتدریج آثار علمی ایرانیان تنها زینت بخش کتاب خانه گردید و هنگامیکه شرق در حال به خواب رفتن علمی و غفلت بود، غرب در حال بیدار شدن بود. اوضاع علمی سایر کشورهای اسلامی و هندوستان و چین هم از ایران بهتر نبود، بلکه بدتر بود
فیزیک در ایران
کشور ما نسبت دیرینه ای در نجوم دارد. قدیمی ترین متن ایران پیش از اسلام، اوستا کتاب دینی زرتشتیان است که متاسفانه فقط یک پنجم آن باقی مانده است. در این متن به کروی بودن زمین اشاره شده است که این یک ردپای نجومی از ایران باستان است. همچنین در متن های دینی زرتشتی مربوط به دوره ساسانی به نام صورت های فلکی، ستاره ها و سیارات اشاره شده است.
مورد دیگر نجوم ایران پیش از اسلام مربوط به قرن اول میلادی یعنی 6 قرن پیش از ظهور اسلام است.در قرن اول میلادی عده ای از فعالان (رهبران دینی که هم رهبر بودن و هم دانشمند) به علتی نامعلوم و زمان اشکانیان از سیستان به هند مهاجرت کردند و دانش و فرهنگ ایرانی را با خود به این کشور بردند و آن را با فرهنگ و دانش هندی آمیخته کردند. گفته می شود این افراد همچنین در هند باقی مانده اند و تمایز نژادی خود را حفظ کرده اند. در هر حال این مسلم است که تقویم ایرانی که این افراد به هند بردند که در آن شروع سال اول بهار است و هنوز در هند مورد استفاده قرار می گیرد. البته آنها عملا از تقویم اروپایی استفاده می کنند اما تقویم رسمی در قانون اساسی این کشور همان تقویم ایرانی است. از کتب قدیمی ایران کتاب نجومی باقی نمانده است غیر یک اثر مهم به نام ذیج شهریاران. ذیج به معنی کتابچه نجومی است که لغت قدیمی فارسی است. این کتاب در زمان بهرام گور و توسط پادشاهان ساسانی تالیف شده است که یک قرن بعد در زمان انوشیروان تصمیم گرفتند این کتاب را کامل تر کنند که به
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 13 صفحه
قسمتی از متن .doc :
مقدمه
بزرگترین آزمایشگاه فیزیک ذرات جهان
ایرنا: سازمان اروپایى تحقیقات هسته اى یا «سرن» واقع در ژنو به عنوان بزرگترین آزمایشگاه فیزیک ذرات جهان، هفته گذشته پنجاهمین سال فعالیت خود را جشن گرفت. فعالیت این سازمان، درک بشر از کهکشان ها را به میزان قابل توجهى افزایش داده و همکارى هاى علمى بین المللى را در این زمینه تقویت کرده است. دولت سوئیس به عنوان هدیه پنجاهمین سال تولد «سرن»، مرکزى به نام «جهان علم و نوآورى» را که یک مرکز شبکه اى جدید و نیز مکانى براى بازدید علاقه مندان است، به این سازمان اهدا کرد. در سازمان اروپایى تحقیقات هسته اى که هدف آن «کشف رازهاى مبداء جهان» اعلام شده است، دانشمندانى از80 کشور جهان فعالیت دارند و حدود 6 هزار و 500 دانشمند دیگر از بیش از500 دانشگاه و مرکز تحقیقاتى دانشمند میهمان آن محسوب مى شوند. به گفته «چارلز کلایبر» وزیر علوم و پژوهش هاى سوئیس، در50 سال گذشته سازمان اروپایى تحقیقات هسته اى کانون همایش و ملاقات دانشمندان مختلف جهان با ریشه هایى از تمامى ملت ها، فرهنگ ها، مذاهب و اقوام بوده است. کلایبر در مراسم جشن پنجاهمین سالگرد تاسیس «سرن» گفت: «در این مرکز مناقشات و دشمنى هاى سیاسى به هیچ وجه راه ندارد و حکمفرمایى همین روحیه باعث شده است این سازمان بتواند در چگونگى شکل گیرى تفکر انسان نسبت به طبیعت و آغاز جهان کمک هاى قابل ملاحظه اى داشته باشد.»
سازمان تحقیقات هسته اى اروپا که در سال1954 توسط 12 کشور بنیان نهاده شد، یکى از نخستین طرح هاى مشترک اروپایى است. مقر این سازمان در ژنو است اما آزمایشگاه بسیار عظیم آن که در زیر زمین قرار دارد، عملاً وارد خاک فرانسه مى شود. وزیر علوم سوئیس گفته است «سرن» در عین حال که یک سازمان سوئیسى است یک سازمان فرانسوى و اروپایى نیز هست. فعالیت هایى که در طول سال هاى گذشته در سازمان تحقیقات هسته اى اروپا انجام شده منجر به سه جایزه نوبل و نیز پیشرفت هاى چشمگیر در زمینه فناورى و مهندسى شده است. یکى از مشهورترین ابداعات مرکز تحقیقات هسته اى اروپا، علامت «دبلیو دبلیو دبلیو» (www) است که هر روز ده ها میلیون کاربر رایانه در سراسر جهان براى ارتباط با یکدیگر از آن استفاده مى کنند. دبلیو دبلیو دبلیو یا شبکه سراسرى جهانى در اوایل دهه 1990 به منظور ایجاد ارتباط میان متخصصان فیزیک ذرات در «سرن» ابداع شد. سازمان تحقیقات هسته اى اروپا در زمینه تکمیل شتاب دهنده هاى ذرات نیز نقش بسیار مهمى داشته است. این شتاب دهنده ها با استفاده از میدان هاى الکترومغناطیس، موج هایى از ذرات با انرژى بسیار زیاد تولید مى کنند که از آنها به عنوان ابزارى براى صنعت، داروسازى و تحقیقات استفاده مى شود. هم اکنون فعالیت هاى «سرن» عمدتاً روى تکمیل «برخورددهنده عظیم هادرون» (LHD) متمرکز است. دانشمندان انتظار دارند که با استفاده از این دستگاه فوق العاده قوى بتوانند درک انسان را از چهار نیروى بنیادى طبیعت به میزان بى سابقه اى افزایش دهند. انتظار مى رود دستگاه ال اچ دى که قرار است در سال2007 شروع به کار کند، عمیقاً به درون ماده نفوذ نموده تا این سئوال را پاسخ دهد که آیا در جهان چیزى به جز آنچه به چشم دیده مى شود، نیز وجود دارد؟
آزمایش فرانک - هرتز
بر اساس نظریه مکانیک کوانتومی میدانیم که دستگاههای اتمی مانند اتم هیدروژن کوانتیدهاند و انرژیهای مجاز گسستهاند بنابراین یک فوتون با انرژی h) hv ثابت پلانک و v فرکانس نور است) تنها در صورتی می تواند توسط اتم جذب شود که انرژی آن با اختلاف انرژی بین دو حالت مجاز در ساختمان اتم برابر باشد. ممکن است این سوال در ذهن ایجاد شود که آیا میتوان انرژی یک دستگاه کوانتیده را از طریق برخورد با ذرات دیگر، مانند الکترون نیز تغییر داد. آزمایش فرانک - هرتز در مقام پاسخ گفتن به این سوال طراحی و اجرا شده است. تاریخچه برای نخستین بار در سال 1914 آزمایش فرانک و هرتز نشان داد که بر انگیختگی انتها توسط بمباران ذرهای امکانپذیر است و کوانتش انرژی بر این فرآیند نیز حاکم است.
آزمایش فرانک هرتز در مورد اتم هیدروژن
فرض کنید اتمهای هیدروژن ، در حالت پایه ، توسط یک باریکه انرژی از الکترونهایی که انرژی جنبشی آنها از 10.2 الکترون ولت (انرژی برانگیختگی اولین حالت برانگیخته هیدروژن) کمتر است بمباران شوند. چون اتم هیدروژن در حالت پایه نمیتواند انرژی خود را کمتر از این تعداد افزیش دهد الکترونها با اتمهای هیدروژن بطور کاملا کشسان برخورد میکنند (برخورد کشسان) و انرژی جنبشی کل ذرات خروجی در این برخورد، با انرژی جنبشی کل ذرات ورودی کاملا برابر است
. از طرف دیگر، الکترونهای تک انرژی که انرژی جنبشی آنها دقیقا برابر با 10.2 الکترون ولت است با اتمهای هیدروژن در حالت پایه برخورد میکنند و این برخورد میتواند غیر کشسان باشد. در این حالت با تبدیل انرژی جنبشی اولیه الکترون به انرژی داخلی اتم هیدروژن ، این اتم یک گذار به ترازهای بالا ، از حالت پایه به اولین حالت برانگیخته ، انجام میدهد. اتمهایی که به این طریق به یک حالت برانگیخته میرسند پس از آن میتوانند با گسیل یک فوتون با انرژی 10.2 الکترون ولت ، به حالت پایه واپاشیده شوند.
اگر الکترونهای بمباران کننده دارای انرژی جنبشی بیشتر از 10.2 الکترون ولت باشند، نیز برخورد کشسان خواهد بود، فقط مقدار 10.2 الکترون ولت به انرژی داخلی برانگیختگی اتم تبدیل خواهد شد. انرژی جنبشی باقیمانده به صورت انژی جنبشی الکترون خروجی ظاهر میشود. با افزایش باز هم بیشتر انرژی ذرات بمباران کننده ، اتمها میتوانند به دومین حالت برانگیخته و به حالتهای بالاتر برسند. در هر کدام از این برخوردهای غیر کشسان ، اتم فقط آن
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
نقش فیزیک در پزشکی
پزشکان براى تشخیص بیمارى ها از انواع وسایل ساده مانند دماسنج و فشارسنج، گوشى طبى (استتوسکوپ) تا دستگاه هاى بسیار پیچیده مانند میکروسکوپ الکترونى، لیزر و هولوگراف که همه براساس قانون هاى فیزیک طراحى و ساخته شده استفاده مى کنند. در این قسمت به ساختمان و طرز کار برخى از آنها مى پردازیم.
رادیوگرافى و رادیوسکوپى
رادیوگرافى عکسبردارى از بدن با پرتوهاى ایکس و رادیوسکوپى مشاهده مستقیم بدن با آن پرتوها است. در عکاسى معمولى از نورى که از چیزها بازتابش مى شود و بر فیلم عکاسى اثر مى کند استفاده مى شوند در صورتى که در رادیوگرافى پرتوهایى را که از بدن مى گذرند به کار مى برند.
پرتوهاى ایکس را نخستین بار در سال ۱۸۹۵ میلادى، ویلهلم کنراد رنتیگن استاد فیزیک دانشگاه ورتسبورگ آلمان کشف کرد. این کشف بسیار شگفت انگیز بود و خبر آن با سرعت در روزنامه هاى جهان منتشر شد. جالب است که رنتیگن بر روى پرتوهاى کاتدى کار مى کرد و به طور اتفاقى متوجه شد که وقتى این پرتوها، که همان الکترون هاى سریع هستند به مواد سخت و فلزات سنگین برخورد مى کنند پرتوهاى ناشناخته اى تولید مى شود او این پرتوها را پرتو ایکس به معنى مجهول نامید.
پرتوهاى ایکس قدرت نفوذ و عبور بسیار زیاد دارند. به آسانى از کاغذ، مقوا، چوب، گوشت و حتى فلزهاى سبک مانند آلومینیوم مى گذرند، لیکن فلزهاى سنگین مانند سرب مانع عبور آنها مى شود. اشعه ایکس از استخوان هاى بدن که از مواد سنگین تشکیل شده اند عبور نمى کنند در صورتى که از گوشت بدن به آسانى مى گذرند. همین خاصیت سبب شده که آن را براى عکسبردارى از استخوان هاى بدن به کار برند و محل شکستگى استخوان ها را مشخص کنند. براى عکسبردارى از روده و معده هم از پرتوهاى ایکس استفاده مى شود لیکن براى این کار ابتدا به شخص مایعاتى مانند سولفات باریم مى خورانند تا پوشش کدرى اطراف روده و معده را بپوشاند و سپس رادیوگرافى صورت مى دهند. کشف پرتوهاى ایکس که به وسیله رنتیگن عملى شد سرآغاز فعالیت هاى دانشمندانى مانند تامسون، بور، رادرفورد، مارى کورى، پیرکورى، بارکلا و بسیارى دیگر شد به طورى که نه فقط چگونگى تولید، تابش و اثرهاى پرتو ایکس و گاما و نور شناخته شد بلکه خود اشعه ایکس یکى از ابزارهاى شناخت درون ماده شد و انسان را با جهان بى نهایت کوچک ها آشنا کرد و انرژى عظیم اتمى را در اختیار بشر قرار داد. پرتوهاى ایکس در پزشکى و بهداشت براى پیشگیرى، تشخیص و درمان به کار مى رود به طورى که در فناورى هاى مربوطه یکى از ابزارهاى اساسى است.
سونوگرافىسونوگرافى عکسبردارى با امواج فراصوت است. فراصوت امواج مکانیکى مانند صوت ۲ است که بسامد آن بیش از ۲۰ هزار هرتز است. این امواج را مى توان با استفاده از نوسانگر پتروالکتریک یا نوسانگر مغناطیسى تولید کرد.
خاصیت پیزوالکتریک عبارت است از ایجاد اختلاف پتانسیل الکتریکى در دو طرف یک بلور هنگامى که آن بلور تحت فشار یا کشش قرار گیرد و نیز انبساط و انقباض آن بلور هنگامى که تحت تاثیر یک میدان الکتریکى واقع شود. بنابراین هرگاه از یک بلور کوارتز تیغه متوازى السطوحى عمود بر یکى از محورهاى بلور تهیه کنیم و این تیغه را میان دو صفحه نازک فولادى قرار دهیم و آن دو صفحه را به اختلاف پتانسیل متناوبى وصل کنیم، تیغه کوارتز با همان بسامد جریان منبسط و منقبض مى شود و به ارتعاش درمى آید و در نتیجه امواج فراصوت تولید مى کند. پدیده پیزوالکتریک در سال ۱۸۸۰ به وسیله پیرکورى کشف شد و از آن علاوه بر تولید امواج فراصوتى، در میکروفن هاى کریستالى و فندک استفاده مى شود. امواج فراصوتى داراى انرژى بسیار زیاد است و مى تواند سبب بالا رفتن دماى بافت هاى بدن انسان، سوختگى و تخریب سلول ها شود. از این امواج در دریانوردى، صنعت و پزشکى استفاده مى شود.
در پزشکى براى تشخیص، درمان و تحقیقات این امواج را به کار مى برند. دستگاهى که براى عکسبردارى به کار مى رود اکوسکوپ۳ یا سونوسکوپ۴ است. اساس کار عکسبردارى با امواج فراصوت بازتابش امواج است در این عمل دستگاه گیرنده و فرستنده موجود است و از بسامدهاى میان یک میلیون تا پانزده میلیون هرتز استفاده مى کنند. دستگاه مولد ضربه هاى موجى در زمان هاى بسیار کوتاه یک تا پنج میلیونیم ثانیه را در حدود ۲۰۰ ضربه در ثانیه مى فرستد و این ضربه ها در بدن نفوذ مى کند و چنانچه به محیطى برخورد کند که غلظت آن با محیط قبلى متفاوت باشد پدیده بازتابش روى مى دهد و با توجه به غلظت نسبى دو محیط مقدارى از انرژى ضربه هاى فراصوت بازتابش مى شود. دستگاه گیرنده این امواج را دریافت مى کند و به کمک دستگاه الکترونى و یک اسیلوسکوپ آن را به نقطه یا نقاط نورانى به تصویر تبدیل مى کند. عکسبردارى با فراصوت را براى تشخیص بیمارى هاى قلب، چشم، اعصاب، پستان، کبد و لگن انجام مى دهند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .DOC ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .DOC :
فیزیک فوتبال
فوتبال مردمی ترین ورزش جهان است. جام جهانی تابستان امسال توسط بیش از صدها میلیون بیننده که بسیاری از آنها فوتبال بازی میکنند، مشاهده خواهد شد. علیرغم چنین علاقه ای، توجه اندک به جنبه های علمی بازی چشمگیر است. برای نمونه گلف و کریکت[2] مورد توجه بیشتری قرار گرفته اند. اما برای یک فیزیکدان، مکانیک و آئرودینامک فوتبال پهنه وسیعی از سئوالات جالب را فراهم می آورد.
هنگامی که موضوع فیزیک فوتبال پیش می آید اغلب صحبت بر سر خط سیر منحنی توپ فوتبال است. برای مثال در طول برگزاری جام جهانی 1974 بینندگان تلویزیون از مشاهده ضربه موزی شکل غیر منتظره بازیکن برزیلی " روبرتو ریولینو" به شگفت آمدند. از آن هنگام توانایی منحرف کردن مسیر توپ به عنوان یکی از مهارتهای بازی به حساب می آید.
اما بینندگان هرگز از مشاهده یک ضربه ماهرانه قوس دار خسته نمی شوند. در سال 1997 طرفداران فوتبال در سراسر دنیا با مشاهده شوت قوس دار کاملاً ویژه ای که توسط یک بازیکن برزیلی دیگر – روبرتو کارلوس- در بازی مقابل فرانسه نواخته شد، هیپنوتیزم شدند. ضربه او که یک شوت آزاد از فاصله 30 متری دروازه حریف بود قبل از آنکه قوس برداشته و در گوشه دروازه فرانسه فرود آید، دیوار دفاعی آنها را با فاصله حداقل 1 متر دور زد. طرفداران تیم انگلستان امیدوارند که "دیوید بکام" –استاد تمام فنون در حال حاضر- در صورت بهبود استخوان شکسته پایش بتواند چنین شگردهایی را در تابستان امسال بکار گیرد.
بیشتر فیزیکدانان میدانند که خط سیر منحنی توپ بخاطر اثری بنام اثر مگنوس[3] است، اما تا حدی در تشریح آن نامطمئن بوده و توضیحات ساده ای که انتشار می یابد اغلب گمراه کننده است. قبل از درنظر گرفتن مسیر منحنی توپ اجازه دهید با مسئله ساده تری یعنی جهش توپ شروع کنیم. این موضوع باز هم بطور ضمنی به جام جهانی اشاره دارد. چه کسی میتواند گل سوم و بحث برانگیز گئوف هورست[4] را در پیروزی 4 بر 2 انگلستان در مقابل آلمان غربی در جام جهانی 1966 فراموش کند؟ شوت هورست از روی تیرک عمودی به داخل گل و سپس به بیرون پرید و در نهایت توسط یک مدافع آلمانی برگشت داده شد. چگونه چنین چیزی ممکن است اتفاق بیافتد؟
جهش توپ
اینکه توپ چگونه از روی زمین می جهد موضوع مهمی در فوتبال است. بر روی سطوح سخت جهش بلند توپ میتواند بازی را بی مزه کننده کند در حالی که یک توپ نرم مطلقاً به بالا نمی جهد. اما این حقیقت که شوت چیزی بجز جهش توپ از روی پا نیست نیز دارای همان اهمیت است. نکته مهم دیگر که باید به آن توجه کرد آنست که جهش یک توپ گلف یا اسکواش[5] از روی یک سطح سخت به دلیل خاصیت ارتجاعی[6] مواد تشکیل دهنده آنها است ولی پوشش توپ فوتبال هیچگونه خاصیت ارتجاعی ندارد. توپ باد نشده ای که به زمین انداخته شود روی زمین می ماند.
برای آنکه نسبت به فیزیک جهش دیدی بدست آوریم ساده ترین حالت را درنظر بگیرید که توپ بطور قائم سقوط میکند. هنگامی که توپ به زمین برخورد میکند سطح تحتانی توپ تخت میشود. لذا تعادلی میان فشار هوا به سمت پایین و نیروی عکس العمل سطح به سمت بالا بوجود می آید (شکل 1الف). از آنجا که فشار هوا ضرورتاً یکنواخت است، نیروی عکس العمل با سطح تماس وآن به نوبت خود با تغییر شکل قائم توپ متناسب است- به شرطی که تغییر شکل زیاد نباشد. یک محاسبه ساده نشان میدهد که تغییر شکل توپ ... ... ... ... (شکل 1ب را ببینید)
از آنجا که ضربه به توپ حقیقتاً یک جهش از روی پا است، اینکه چگونه توپ از روی زمین می جهد نقش کلیدی در فوتبال بازی میکند. الف) در طول یک جهش نیروی ناشی از فشار هوا بر روی پوشش تخت شده توپ با نیروی عکس العمل زمین خنثی میشود. ب) فاصله مرکز توپ تا زمین ... ... برابر است با ... ... ... که در آن ... ... شعاع توپ و ... ... میزان تغییر شکل توپ است. س) برای توپی که بطور قائم سقوط میکند مقدار ... در طول زمان جهش مطابق رابطه ... ... ... ... بطور سینوسی با زمان تغییر میکند که در آن ... ... ، ... ... و ... ... به ترتیب برابر محیط، فشار و جرم توپ اند. د) توپی که تحت یک زاویه کوچک به زمین برخورد میکند در طول جهش روی زمین لیز می خورد. ی) هرچند توپی که تحت یک زاویه بزرگتر به زمین برخورد میکند تا هنگام ترک زمین روی آن میغلتد.
مطابق با رابطه ... ... ... ... ... ... که در آن ... ... محیط توپ، ... ... فشار و ... ... جرم توپ است، بصورت سینوسی با زمان تغییر میکند. زمان جهش برابر است با ... ... ... ... ... (شکل 1س را ببینید).
تقریباً واضح است که سه متغیری که بازه زمانی جهش را معین میکنند- محیط، فشار و جرم توپ- دقیقاً همانهایی هستند که توسط قوائد بازی تعیین میشود. یک توپ معمولی با جرم 0.45 کیلوگرم محیط 70 سانتیمتر و فشار 0.85 اتمسفر زمان جهشی برابر 8 میلی ثانیه دارد – این نتیجه توسط آزمایشهای انجام گرفته با دوربینهای بسیار سریع تایید شده است. جالب است اشاره شود که این زمان از فاصله زمانی 40 میلی ثانیه ای میان تصاویر متوالی تلویزیون کوتاه تر است و این به آن معناست که مغز ما به عنوان تماشاگر این فاصله زمانی را پر کرده و لذا اغلب متوجه جهش واقعی نمی شویم.
در محاسبات زمان و حرکت جهش از اتلاف (انرژی) بخاطر انعطاف پذیری سطح توپ چشمپوشی شده است. این تقریب بر مقیاس زمانی تاثیر قابل توجهی ندارد اما آشکارا موجب میشود که میزان انرژی جنبشی برآورد شده توپ بیشتر از حد واقعی گردد. این اثر را میتوان با نوشتن سرعت توپ پس از جهش ... ... بصورت ... ... ... ... که در آن ... ... سرعت اولیه توپ و ... ... ضریب اتلاف[7] است بیان نمود. این ضریب که برای یک برخورد کاملاً کشسان 1 است، وابسته به طبیعت سطح مورد نظر بوده و میتواند بین 0.8 برای سطح سخت و 0.6 برای چمن کوتاه تغییر کند.
اینکه چگونه توپ پس ازآنکه تحت زاویه ای به زمین می خورد از روی آن جهش میکند، بسیار پیچیده است. توپ ابتدا با سرعت افقی برخوردش روی زمین سر خورده و یک نیروی اصطکاک افقی تولید میکند. این نیرو دارای دو اثر است: موجب کاهش حرکت افقی گشته و یک گشتاور بر توپ اعمال میکند. وجود گشتاور به آن معناست که توپ ضمن آنکه در طول جهش کند میشود شروع به غلتیدن هم می کند. بسته به زاویه ای که توپ با آن به زمین برخورد میکند دو حالت ممکن است اتفاق افتد. توپی که با زاویه کمی نسبت به زمین به آن برخورد میکند میتواند حتی پس از تکمیل شدن جهش روی زمین بلغزد (شکل 1د). اما اگر توپ با زاویه تندی به زمین برخورد کند قسمت پایینی به حالت سکون در می آید و توپ درادامه زمان جهش روی زمین میغلتد (شکل 1ی(
اگر توپ چنین چرخش بالایی دارد که سطح تحتانی آن به سمت عقب حرکت کند، حقیقتاً میتواند در طول جهش شتاب بگیرد. هرچند این رخدادِ عادی نیست و بطور طبیعی توپ توسط جهش کند میشود. لذا شنیدن این نکته از مفسر تلویزیون که توپ ضمن جهش از روی زمین خیس چمن " سرعت بیشتری به خود گرفته" تعجب برانگیز است. فرض محتمل در چنین وضعیتهایی آنست که علیرغم عبارت "افزایش سرعت" توپ در طی جهش میلغزد و آنقدر که ما از تجربه انتظار داریم سرعتش کم نمیشود.
گل بحث برانگیز هورست برای انگلستان در جام جهانی 1966 شاید از مشهورترین جهشهای توپ در فوتبال ناشی شد (شکل 2). هر دو جهش – از روی تیرک عمودی و از روی زمین- را میتوان با استفاده از مفاهیمی که در بالا گفته شد توضیح داد، اگرچه تحلیل جهش از روی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 31 صفحه
قسمتی از متن .doc :
فیزیک آپتیک هندسی
رنگین کمان
رنگین کمان Rainbow * رنگین کمان جلوه شگفت آوری از طبیعت است که موقع بارش نم نم و یا پس از بارندگی دیده میشود. در قدیم مردم خرافی رنگین کمان را نشانی از شور بختی میپنداشتند. و خیال میکردند، رنگین کمان پلی است برای بالا رفتن ارواح و زمانی که آنرا میدیدند گمان میکردند شخصی در آستانه مرگ است.ا ین منظره زیبا از شکستن نوری که از میان قطرات باران گذشته است، پدید میآید. در اینجا قطرات باران هر کدام نقش منشوری را دارند. که نور خورشید را تجزیه و بازتاب می کند و باعث تفکیک رنگها بصورت مرتب و شکل هندسی زیبایی میشوند.میدانیم که نور سفید ترکیبی از هفت رنگ است که بوسیله منشور و ... تجزیه میشود، همان طوری که در منشور ، نوری که کمترین طول موج را دارد (بنفش) بیشتر منحرف میشود، لذا رنگ بنفش با حداکثر انحراف در پایین طیف قرار می گیرد و رنگ قرمز که بیشترین طول موج را دارد، در بالای کمان دیده میشود. ترتیب رنگها بصورت زیر است:قرمز ، نارنجی ، زرد ، سبز ، آبی ، نیلی ، بنفش.طیف به گونه ای می باشد که نمی توان مرز بین دو ناحیه رنگی را مشخص کرد. در ترتیب رنگی فوق ضریب شکست و زاویه انحراف رفته رفته زیادتر شده و طول موج بتدریج کاهش مییابد.چه موقع رنگین کمان دیده میشود؟ * اغلب رنگین کمان موقعی دیده می شود که هم باران میبارد، و نیز از سوی دیگر خورشید میتابد و ما نیز بین این دو قرار گرفتهایم. یعنی خورشید باید از پشت سر ما بتابد و باران هم در جلوی روی ما ببارد. در این حالت نور خورشید از پشت سر ما به قطرات باران میرسد، این قطرات نور را تجزیه کرده و آنرا به شکل نوارهای رنگین درمیآورند (تجزیه نور).* برای وقوع این پدیده ، خورشید ، چشم ناظر و وسط قوس رنگین کمان باید هر سه در یک امتداد مستقیم قرار گرفته باشند. پس اگر خورشید در آسمان خیلی بالا باشد، هرگز چنین خط مستقیمی درست نمیشود، از اینرو رنگین کمان را تنها در صبح زود و یا موقع عصر میتوان دید. نکته جالب توجه در مورد رنگین کمان این است که یک قطبشگر آن را نامرئی میکند. مثلا زمانی که با یک فیلتر قرمز رنگ نور به رنگین کمان نگاه کنیم، فقط زمینهای قرمز رنگ خواهیم دید. علت این امر این است که فقط نور به رنگ قرمز از پولاروید عبور میکند و سایر رنگها جذب آن میشوند.موضوع جالب توجه دیگر ، این است که اگر دو نفر کنار هم ایستاده باشند، یک رنگین کمان واحد را نخواهند دید. این قوس هفت رنگ ، کمان دایرهای میباشد، که سایه سر ناظر مرکز آن دایره است. پس بسته به جای هر فرد و فاصله او تا قطرات باران ، کمانهای متفاوتی خواهیم داشت و هر کس رنگین کمان مخصوص خودش را خواهد دید.