لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
تعمیرات پیشگیرانه مانیتورینگ گازهای اصلی محلول در روغن عایقی، ترانسفورماتور را سالم نگاه می دارد
جلوگیری از خرابی ترانسفورماتورها دشوار است، زیرا قطعات متحرک ندارند و آب بندی شده اند، ردیابی برخی گازهای معین که در روغن عایق حل شده اند، راهی آزموده برای کشف خرابی پیش از ایجاد مشکل و هزینه می باشد .
( نوشته شده توسط: دکتر روبرت پلتیر )
رشد سالانه مصرف انرژی برق در آمریکا حدود دو درصد است. این افزایش تقاضا، نیاز به نیروگاه ها ، خطوط انتقال و در نتیجه ترانس های قدرت خطوط انتقال و توزیع را ایجاب می کند. ترانسفوماتورهای قدرت چه افزاینده و چه کاهنده که از جمله گران ترین اجزای شبکه سراسری توزیع می باسند، بویژه در مناطق پر جمعیت متحمل افزایش بار می گردند. عمر متوسط ترانسفورماتور های قدرت حدود چهل سال است. به گزارش شرکت HSB خرابی ترانسفورماتور همواره در بین پنچ شکایت اصلی آن قرارداد و تعداد دفعات آن رو به افزایش است.
HMOبرای ترانسفورماتور ها
دلیل عمده خرابی ترانسفورماتور، ناتوانی عایق آن در کنترل نوسانات و تنش های حین کار است. اشکال دی الکتریک یا شل بودن اجزای مکانیکی داخلی مانند کلمپها و اتصالات بوشینگ سبب اتصال کوتاه می شود ، مساله مهمتر از دلیل وقوع خرابی ها ، جلوگیری از آنها بوسیله روش های برآورد سلامت ترانسفورماتور و پیش بینی عمر باقی مانده آن است . مدیران می توانند با گسترش فرایند های نگهداری بلند مدت برای ترانسفورماتور ها ، از غافلگیری جلوگیری نمایند . کارهایی از قبیل تعمیر خرابی ها ، بازدید کلی (OVERHAUL) ، تنظیم ولتاژ یا کاهش بار و درنهایت ،تعویض آن جزء نگهداری محسوب می شوند . اغلب برنامه های تعیین بار بر پایه استانداردIEEE C 57/91قرار دارند که توصیه های مفید و معادله های محاسبه عمر باقیمانده و نکاتی درباره دمای غیر مجاز روغن را شامل میشوند .برآورد میزان سلامت ترانس از نظر مالی برای هر شرکت دارای تعداد ترانسفورماتور زیاد چالش محسوب می شود .
1. آتش سوزی 4 جولای : خربی یک ترانس در پست انتقال WESTWING باعث کاهش ذخیره برق منطقه PHOENIX به مدت یکماه طی تابستان 2004 گردید.
الزامات بودجه نیاز به اولویت بندی برآوردهای سلامت بر طبق ارزیابی های ترانسفورماتور دارد . این ارزیابی ها بر پایه بازرسی، مانیتورینگ و کاربرد ابزارهای تحلیل مخاطره آمیز قرار دارند . یک برآورد خوب باید میان عمر و سابقه نگهداری ترانس در برابر سابقه کارکرد و کیفیت رژیم نگهداری پیشگیرانه آن ، تعادل برقرار نماید . نتایج برآورد در زمینه استراتژی مدیریت ترانسفورماتور با گستردگی سیستم ، تفسیر می گردد .
شرکت SERVERONاز دسته بندی زیر برای تمایز ترانسفورماتور ها بر حسب پیامد های خرابی آنها بهره می برد :
بحرانی. واحد هایی که خرابی آنها تاثیر منفی زیادی بر پایداری شبکه انتقال ،درآمد شرکت و اطمینان بخشی خدمات ، می گذارد .
مهم . واحدهایی که اشکال در آنها تاثیر منفی مهمی در در آمد و اطمینان پذیری دارد . بسیاری ترانس های پستهای فرعی انتقال و پستهای اصلی توزیع ، در این دسته جای دارند .
قابل بازیابی . خرابی آنها تاثیر کمی بر درآمد و اطمینان بخشی سیستم دارد ، بیشتر ترانس های کوچک در پست های توزیع، اینگونه اند .
مصرف کننده شدید گاز
پیش از دهه 80 ، تنها راه اندازی و برآورد سلامت یک ترانس، نمونه گیری از روغن عایق کننده آن بطور متناوب و ارسال آن به آزمایشگاه بود . سپس مانیتورهای گاز احتراق که ئیدروژن را به صورت بر جسته اندازه می گرفتند ، وارد صحنه شدند . در دهه 90 سیستم تحلیل گاز محلول (DGA) آنلاین به بازار آمد .
سیستم های اولیه DGA بیشتر بر پایه ذوق هنری بودند تا مبنای علمی. آنها چگالی ئیدروژن و یا یکی از گازهای سوختنی درون روغن ترانسفورماتور را به عنوان پیش بینی کننده مشکلات آینده ترانسفورماتور، اندازه می گرفتند. سیستم های مدرنDGAتا 11 " گاز مشکل زا " را مانیتور می کند ، چگالی آتها و دیگر پارامترهای عملکرد آنها را در لحظه دنبال می نماید و دارای ابزار عیب یابی می باشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
استقامت عایقی تجهیزات
مقدمه:
عایقها عناصر ایدهآلی نبوده و هر عایق بدلایل مختلف تا حد هادی جریان الکتریسیته می باشد. با افزایش شدت میدان الکتریکی ( از طریق افزایش ولتاژ) به ذرات باردار عایق نیروی بیشتری دارد میشود. با افزایش سرعت این ذرات، انرژی جنبشی آنها نیز افزایش می یابد. در صورتیکه هنگام برخورد ، انرژی جنبشی آنها از اختلاف پتانسیل یونیزاسیون مولکولها ی عایق بیشتر باشد موفق به یونیزاسیون مولکولها خواهند شد. چنانچه این پدیده بصورت زنجیری گسترش یابد. بهم الکترونی حاصل باعث شکست عایقی شده و عایق نظیر هادیها خاصیت هدایت می یابد.
شکست الکترونی در یک عایق همیشه در ولتاژ ثابتی صورت نمیگیرد. در واقع این پدیده یک فرآیند تصادفی بوده و به پارامترهای متعددی بستگی دارد از جمله:
الف : دامنه، شکل موج، مدت اثر، لحظه اعمال، پلاریته، سرعت و توزیع میدان الکتریکی
ب : حالت فیزیکی عایق
ج : شرایط محیطی ( دما، فشار هوا، رطوبت، آلودگی و...)
کیفیت توزیع میدان الکتریکی در پدیده شکست عایقی دارای اهمیت زیادی است. شکل با آرایش الکترودها(شکل الکترود و فاصله آنها) مشخص می شود. در یک پست فشار قوی تنوع زیادی از نظر آرایش الکترودی وجود دارد.
عایق های خارجی و داخلی ( External & internal insulation)
عایقها از نظر شدت تاثیرشان نسبت به شرایط محیطی و عوامل خارجی نظیر رطوبت، دما و آلودگی به دو دسته عایق های خارجی و داخلی تقسیم می شوند. عایقهای خارجی به فواصل هوائی و سطوح مجاور هوای آزاد در عایقهای جامد اطلاق می شود. این عایقها تحت تاثیر شرایط جوی و سایر عوامل خارجی(نظیر رطوبت، دما و حشرات و... ) قرار دارند. از طرف دیگر به بخشهای داخلی (جامد، مایع و گاز) عایق بندی تجهیزات که از مواد فوق متاثر میشوند عایق های داخلی اطلاق می شود.
عایق های بازگشت پذیر و بازگشت ناپذیر
از دیدگاه تاثیر پذیری عایقها از شکست الکتریکی میتوان آنها را به دو طبقه عایقهای بازگشت پذیر و بازگشت ناپذیر تقسیم نمود.
عایقهای بازگشت پذیر غالبا از نوع خارجی بوده و قادرند پس از یک شکست الکتریکی مجددا به استقامت الکتریکی اولیه دست یابند. در حال حاضر روش آماری هماهنگی عایقی تنها برای عایقهای بازگشت پذیر که منحنی چگالی احتمال شکست آنها را میتوان بدست آورد قابل استفاده است.
عایقهای بازگشت ناپذیر غالبا از نوع عایقهای داخلی بوده و معمولا از ترکیب دو یا چند عایق مختلف (گاز، مایع، جامد) تشکیل میگردد (کابلهای سیم پیچی ماشین های الکتریکی، بوئینگ ها و پست های G I S). این عایق ها هیچگاه نباید تحت ولتاژهائی که منجر به شکست الکتریکی می شوند قرار گیرند لذا برای این نوع عایقها روش مرصوم هماهنگی عایق همچنان معتبراست.
اثر شرایط محیطی بر استقامت الکتریکی عایقها
روشن است که عایقهای داخلی متاثر از شرایط محیطی نظیر رطوبت، فشار، آلودگی ودرجه حرارت نبوده و لذا استقامت الکتریکی آنها را میتوان برای شرایط مختلف آب وهوائی فرض نمود. برعکس عایقهای داخلی، عایقهای خارجی از شرایط آب و هوائی تاثیر می پذیرند بطوریکه
استقامت الکتریکی عایق با افزایش چگالی هوا( کاهش دما، کاهش ارتفاع از سطح دریا، افزایش فشار هوا) بعلت کاهش ذرات، افزایش می یابد.
استقامت الکتریکی عایق با افزایش رطوبت هوا، بدلیل جذب شدن بارهای حامل توسط ذرات آب، افزایش می یابد.
آلودگیها که به دو صورت آلودگی ناشی از نمک ها وآلودگی ناشی از خاکسترهای صنعتی ظاهر می شوند باعث کاهش استقامت عایقی سطوح خارجی در ولتاژهای با فرکانس شبکه میگردند.( عامل تعیین کننده در فاصله خزندگی creepage مقره، میزان آلودگی منطقه است شرایط آب و هوایی طبق IEC بصورت زیر تعریف می شود.
درجه حرارت to= 20 oc
فشار هوا bo = 101 3 kpa = 760 mmhg
رطوبت مطلق ho = 11 g/m3
استانداردIEC مناطق را از نظر آلودگی به چهار دسته کم اهمیت، سبک، سنگین وخیلی سنگین تقسیم نموده است، ومتناظر هریک فاصله خزندگی مناسبی بر حسب cm/kv pt-ph پیشنهاد نموده است.
تعیین استقامت الکتریکی عایقها
استقامت الکتریکی عایقها در آزمایشاتی که insulation test نامیده می شوند اثبات می گردد. مطابق استاندارد IEC، استقامت الکتریکی عایقها با استقامت آنها در برابر سه طبقه ولتاژ زیر سنجیده می شود.
الف: استقامت عایقی در برابر ولتاژهای عادی کار و اضافه ولتاژهای با فرکانس شبکه توسط آزمون ولتاژ فرکانس شبکه (یک دقیقه)
Power – frequency withstand level/PEWL
ب: استقامت عایقی در برابر امواج صاعقه و امواج با شیب تند توسط آزمون با موج صاعقه استاندارد
Lightning impulse withstand level/LIWL
ج: استقامت عایقی در برابر امواج کلید زنی توسط آزمون موج استاندارد کلید زنی