لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن .doc :
نوع دادة مجموعه
مجموعه ها : متغیرهای ساخت یافته ای هستند که حاوی لیستی از اعداد صحیح ، کارکترها و یا مقادیری از نوع شمارشی هستند. یک مجموعه شبیه آرایه أی است که می تواند گروهی از اعضای ساده را در خود جای دهد . البته اعضای یک مجموعه شبیه یک آرایه تعریف نمی شود.
تعریف مجموعه ها :
یک مجموعه یا متغیر مجموعه درست همانطور که انواع ساخت یافتة دیگر را تعریف می کنیم ، تعریف می شود .
تعاریف :
type
digitset = set of 0..9; (set type of integer elements)
var
odds,Evens,Middle,Mixed:Digitset: (4sets)
نوع مجموعه digitset و چهار متغیر Mixed,Middle,Evens,Odds را تعریف می کنند. هر متغیر مجموعه از نوع digitset می تواند حاوی اعداد صحیح 0 تا 9 باشد. اگرچه برای چهار مجموعه حافظه تخصیص داده می شود. ولی محتویات آنها نامعین است. برای اینکه بتوانیم با یک مجموع کار کنیم، باید آن را با استفاده از یک انتصاب مجموعه تعیین کنیم.
تعریف نوع مجموعه
شکل استفاده
type
set type= set of base type
مثال :
type
letter set = set of ‘A’ .. ‘z’ :
شرح : شناسة set type از روی مقادیر مشخص شده و در base type تعیین می شود. یک متغیر که از نوع set type تعریف می شود ، مجموعه أی است که اعضای آن از مقادیر base type انتخاب می شوند. البته base type باید از نوع ترتیبی باشد.
تذکر : در بیشتر پیاده سازی ها تعداد مقادیر base type از یک مجموعه محدود می شود. به همین دلیل می تواند set of char را به عنوان یک مجموعه تعیین کنید. با وجود این محدودیت نمی توانید از نوع داده Integer به عنوان یک base type استفاده کنید ، اما می توانید زیر بازه های از نوع Integer را تا 128 یا 256 مقدار به کار مقادیری را به دو متغیر مجموعه که در مثال فوق تعریف شده اند ، نسبت می دهد.
لیستی از مقادیر از نوع اصلی مجموعه هستند که در داخل دو کروشه محصور شده اند. بعد از این انتسابها مجموعة odds حاوی ارقام فرد 0 تا 9 است و مجموعة Evens حاوی ارقام زوج این بازه است. می توانیم از این دو مجموعه برای تعیین اینکه یک متغیر دارای ارقام فرد یا زوج است ، استفاده کنیم.
لیترال مجموعه أی [ ‘0’ '9’ ,’+’ ‘-‘ , ‘E’ ‘.’ ] مجموعه أی از کاراکترهاست که می توانند در یک عدد حقیقی وجود داشته باشند. این مجموعه حاوی 14 عضو است. در اینجا از نماد زیر بازه "0" .. "9" استفاده کرده ایم که بهتر از این است که 10 کاراکتر رقمی را به طور جداگانه بنویسیم.
لیترال مجموعه ای
شکل استفاده :
List of elements
[ ‘+’, ‘-‘ , ‘*’ , ‘/’ , ‘<’ , ‘>’ , ‘=’]
شرح : یک مجموعه به این صورت تعریف می شود که اعضای آن یعنی List of elements در دو کروشه محصور شوند. اعضای یک مجموعه باید از نوع ترتیبی یکسان باشند و یا از انواع ترتیبی سازگار باشد. کاماها اعضای List of elements را از هم جدا می کنند. گروهی از اعضا ممکن است با نماد زیر بازه مشخص شوند. (یعنی به صورت minavalue.maxvalue باشند که maxvalue , minvale عباراتی از نوع سازگار با هم هستند و
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 35
مقدمه
این سخن بسیار گفته شده است که برای پی بردن به ساختمان پر کاهی با عمق و دقت، باید جهان را به درستی شناخت؛ امّا آن کس که بتواند با چنین عمق و دقتی به ساختمان پر کاهی پی برد، در هیچ یک از امور جهان نکته تاریکی نخواهد یافت. من شرح حال و زندگی انیشتن را نه برای ریاضدانان و نه برای فیزیکدانان، نه برای اهل فلسفه، نه برای طرفداران استقلال یهود، بلکه برای آن کسانی که می خواهند چیزی از جهان پر تناقض قرن بیستم درک کنند بیان می کنم و اینک شرح حال زندگی او از کودکی تا پایان عمر: آلبرت انیشتین در چهاردهم مارس 1879 در شهر اولم که شهر متوسطی از ناحیه و ورتمبرگ آلمان بود متولّد شد. امّا شهر مزبور در زندگی او اهمیتی نداشته است. زیرا یک سال بعد از تولّد او خانواده وی از اولم عازم مونیخ گردیدند.
پدر آلبرت، هرمان انیشتین کارخانه کوچکی برای تولید محصولات الکترو شیمیایی داشت و با کمک برادرش که مدیر فنی کارخانه بود از آن بهره برداری می کرد. گر چه در کار معاملات بصیرت کاملی نداشت. پدر آلبرت از لحاظ عقاید سیاسی نیز مانند بسیاری از مردم آلمان گرچه با حکومت پروسی ها مخالفت داشت امّا امپراطوری جدید آلمان را ستایش می کرد و صدر اعظم آن «بیسمارک» و ژنرال «مولتکه» و امپراطور پیر یعنی «ویلهم اول» را گرامی می داشت. مادر انیشتین که قبل از ازدواج پائولین کوخ نام داشت، بیش از پدر زندگی را جدی می گرفت و زنی بود اهل هنر و صاحب احساساتی که خاصّ هنرمندان است و بزرگترین عامل خوشی او در زندگی و وسیله تسلای وی از علم روزگار، موسیقی بود.
آلبرت کوچولو به هیچ وجه کودک اعجوبه ای نبود و حتّی مدّت زیادی طول کشید تا سخن گفتن آموخت به طوری که پدر و مادرش وحشت زده شدند که مبادا فرزندشان ناقص و غیر عادی باشد؛ امّا بالاخره شروع به حرف زدن کرد؛ ولی غالباً ساکت و خاموش بود و هرگز بازیهای عادی را که مابین کودکان انجام می گرفت و موجب سرگرمی کودک و محبّت فی ما بین می شود را دوست نداشت.
آلبرت مرتباً و هر سال از پس سال دیگر طبق تعالیم کاتولیک تحصیل کرد و از آن لذّت فراوان برد و حتّی در مواردی از دروس که به شرعیات و قوانین مذهبی کاتولیک بستگی داشت چنان قوی شد که می توانست در هر مورد که همشاگردانش قادر نبودند به سؤالهای معلّم جواب دهند، او به آنها کمک می کرد.
انیشتین جوان در ده سالگی مدرسه ابتدایی را ترک کرد و در شهر مونیخ به مدرسه متوسطه «لوئیت پول» وارد شد. در مدرسه متوسطه اگر مرتکب خطایی می شدند راه و رسم تنبیه ایشان آن بود که می بایست بعد از اتمام درس، تحت نظر یکی از معلّمان، در کلاس توقیف شوند و با در نظر گرفتن وضع نابهنجار و نفرت انگیز کلاسهای درس، این اضافه ماندن شکنجه ای واقعی محسوب می شد...
بخش اول – ریاضی علم استقرا گرایی
پوپر می گوید:
راه درس گرفتن از تجربه، انجام مشاهدات مکرر نیست. سهم تکرار مشاهدات در قیاس باسهم اندیشه هیچ است. بیشتر آنچه که می آموزیم با کمک مغز است. چشم و گوش نیز اهمیت دارند، ولی اهمیتشان بیشتر در اندیشه های غلطی است که مغز یا عقل پیش می نهند. بر همین اساس، با استقراءگرایان مخالفت ورزیده و استقراء را اسطورهای بی بنیاد معرفی کرده است. پوپر با بیان این مطلب که نظریات همواره مقدم بر مشاهدات هستند طرح نوینی را در عرصة روش شناسی علوم تجربی بنیان نهاد. طبق نظر وی روش صحیح علمی عبارت است از آنکه یک نظریه به نحو مستمر در معرض ابطال قرار داده شود. بنابراین یک نظریه برای آنکه قابل قبول باشد باید بتواند از بوتة آزمونهایی که برای ابطال آن طراحی شدهاند، سر بلند بیرون بیاید. پوپر مصرانه ندا سر می دهد که بگذارید نظریه ها بجای انسانها بمیرند . پوپر با ارائه ی نظریه ی ابطال پذیری تلاش کرد مرز بین نظریه های علمی و غیر علمی را مشخص کند. وی چنین بیان می کند.
علمی بودن هر دستگاه، در گرو اثبات پذیری به تمام معنای آن نیست، بلکه منوط به این است که ساختمان منطقیش چنان باشد که رد آن به کمک آزمونهای تجربی میسر باشد.
به عبارت دیگر از دیدگاه پوپر نظریه های علمی اثبات پذیر نستند، بلکه ابطال پذیرند . پوپر با این دیدگاه به مخالفت با تلقیهای رایج از علم پرداخت و بیان کرد که علم و نظریههای علمی هیچگاه از سطح حدس فراتر نمیروند و آنچه که منتهی به پیشرفت علم میشود سلسلهای از حدسها و ابطالها میباشد. پوپر تاکید می کند برای رسیدن به اندشه های نو، هیچ دستور منطقی نمی توان تجویز کرد.
اندیشمندان بسیاری چون برونو و گالیله با مشکلات و مصایب طاقت فرسایی دسته و پنجه نرم کردند تا روش استقرایی در جهان علم نهادینه گردد، اما در قرن بیستم روش استقرایی جاذبه دوران رنسانس خود را از دست داد.
هرچند استقرا نفی نشد، اما فیلسوفان علمی قرن بیستم، در تکاپو بودند تا روش های بهتری را جایگزین آن کنند. و این سیر منطقی تکامل اندیشه در طول تاریخ حیات انسان است. در فلسفه ی علم قرن بیستم، دو دیدگاه از بقیه دیدگاه ها بیشتر مورد توجه واقع شد. یکی دیدگاه ابطال پذیری پوپر بود و دیگری نظزیه انقلاب های علمی کوهن.
کوهن به یک چرخش تاریخی تکیه می کند و معتقد می شود که علم یک سیستم پویاست و به جای معرفت شناسی علم به جامعه شناسی علم توجه می کند. وی نشان داد که علم تکامل تدریجى به سمت حقیقت ندارد بلکه دستخوش انقلاب هاى دوره اى است که او آن را تغییر پارادایم مى نامد. پارادایم یکى از مفاهیم کلیدى کوهن است او معتقد است پارادایم (نظام) یک علم تا مدت هاى مدید تغییر نمى کند و دانشمندان در
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
بنام خدا
ریاضی به چه درد می خورد؟
هر قدر سطح علمی انسان بیشتر باشد فواید ریاضیات را بیشتر لمس کرده و از آن بهره بیشتری می برد، مثلاَ کسی که تا پایان دوران ابتدایی تحصیل کرده در همان سطح توانایی بهره گیری از ریاضیات را دارد، مگر آن هایی که تجربه های جدید علمی به تجربه های خود افزوده باشند؛ همین طور وقتی تحصیلات کسی تا پایان دوره راهنمایی است اولاَ بهره گیری او از ریاضیات بیشتر از کسی است که سواد ابتدایی دارد؛ ثانیاَ تا همان سطح تحصیلات خود از ریاضیات بهره می برد و الی آخر، لذا هر قدر سطح علمی انسانها بیشتر شود بهره ی بیشتری از ریاضیات عاید آنان می شود و دیدگاه وسیع تری نسبت به علم ریاضیات پیدا می کند و کاربردهای ریاضی را در عرصه علم ، تجربه و نوآوری بیشتر مشاهده می کند و نیاز به ریاضی را بیشتر احساس میکند؛ البته این مطلب بعد از پایان دوران عمومی تحصیلات، آنجا که علم به شاخه های مختلف تقسیم می شود به اندازه نیازی که شاخه علمی به ریاضیات دارد از ریاضیات بهره می برد.به عنوان مثال، علوم مهندسی بیشتر از سایر علوم با ریاضیات مانوس هستند و لذا بهره بیشتری از ریاضیات می برند و امروزه ثابت شده است که همه علوم حتی علوم پزشکی، ادبیات، معارف اسلامی قصد دارند که کارهای علمی خود را همچون ریاضیات قانونمند کرده یا ریاضی وار بیان کنند. به عبارت دیگر وقتی پزشکی عمل جراحی خود را به کمک رایانه در اطاق عمل یا در خارج ازکشور کنترل می کند و انجام میدهد در واقع استفاده تمام عیاری از ریاضیات کرده است یا وقتی شاعری کلمات و حروف را از بین دنیایی از حروف و کلمات انتخاب می کند و آن را به صورت شعر یا نظم در می آورد در واقع از ریاضیات در قالب اوزان شعری بهره گرفته که تحت عنوان عروض مطرح است یا وقتی فقیهی در مورد مسأله ای اجتهاد می کند یعنی مسأله ای را با مفروضات دینی و شرایط مقتضیات زمان فتوا می دهد، این نتیجه گیری در واقع روی اصول ریاضی است.
به طور کلی کسی که با توجه به شرایط موجود و پیش آمده بهترین تصمیم را در عرصه کار، مدیریت و زندگی می گیرد آن را بر اساس تفکر و استدلال منطقی انجام می دهد و استنتاج خوب هم به وسیله انسانهایی انجام می گیرد که توانایی خوب اندیشیدن و خوب فکر کردن را دارند؛ از آنجایی که در پیچ و خم های کارهای اداری، مسئولیتی،مدیریت، زندگی، گردونه ها و دو راهی ها صاحب فکر باشیم، خوب فکر کنیم، همه اوضاع را با همه زیروبم هایش ببینیم و سپس با استفاده از تجارب خود و تجارب دیگران، بهترین تصمیم را گرفته و مجدداَ آن را کنترل و بررسی کرده و سپس بهترین نتیجه را با کمترین زمان و هزینه بگیریم. گفتنی است که ریاضی علمی پویا و پیوسته در تکامل است از آنجایی که جهت متکامل شدن راهی به درازی کهکشانها را باید طی نمود. لذا چنانچه بخواهید با فواید و کاربرد ریاضی بیشتر ملموس شوید در یکی از رشته های مربوط ادامه تحصیل دهید تا با فایده و کاربرد آن افزودن بر آنچه شمردیم آشنا شوید اگر چه ریاضیات پایه و ستون همه علوم است اما ادعا بر این نیست که ریاضیات بر علوم دیگر رجحان دارد بلکه ادعای دانشمندان بر این است که علوم دیگر ثمره و میوه ریاضیات اند و ریاضیات هم میوه ناب آنها.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
بنام خدا
ریاضی به چه درد می خورد؟
هر قدر سطح علمی انسان بیشتر باشد فواید ریاضیات را بیشتر لمس کرده و از آن بهره بیشتری می برد، مثلاَ کسی که تا پایان دوران ابتدایی تحصیل کرده در همان سطح توانایی بهره گیری از ریاضیات را دارد، مگر آن هایی که تجربه های جدید علمی به تجربه های خود افزوده باشند؛ همین طور وقتی تحصیلات کسی تا پایان دوره راهنمایی است اولاَ بهره گیری او از ریاضیات بیشتر از کسی است که سواد ابتدایی دارد؛ ثانیاَ تا همان سطح تحصیلات خود از ریاضیات بهره می برد و الی آخر، لذا هر قدر سطح علمی انسانها بیشتر شود بهره ی بیشتری از ریاضیات عاید آنان می شود و دیدگاه وسیع تری نسبت به علم ریاضیات پیدا می کند و کاربردهای ریاضی را در عرصه علم ، تجربه و نوآوری بیشتر مشاهده می کند و نیاز به ریاضی را بیشتر احساس میکند؛ البته این مطلب بعد از پایان دوران عمومی تحصیلات، آنجا که علم به شاخه های مختلف تقسیم می شود به اندازه نیازی که شاخه علمی به ریاضیات دارد از ریاضیات بهره می برد.به عنوان مثال، علوم مهندسی بیشتر از سایر علوم با ریاضیات مانوس هستند و لذا بهره بیشتری از ریاضیات می برند و امروزه ثابت شده است که همه علوم حتی علوم پزشکی، ادبیات، معارف اسلامی قصد دارند که کارهای علمی خود را همچون ریاضیات قانونمند کرده یا ریاضی وار بیان کنند. به عبارت دیگر وقتی پزشکی عمل جراحی خود را به کمک رایانه در اطاق عمل یا در خارج ازکشور کنترل می کند و انجام میدهد در واقع استفاده تمام عیاری از ریاضیات کرده است یا وقتی شاعری کلمات و حروف را از بین دنیایی از حروف و کلمات انتخاب می کند و آن را به صورت شعر یا نظم در می آورد در واقع از ریاضیات در قالب اوزان شعری بهره گرفته که تحت عنوان عروض مطرح است یا وقتی فقیهی در مورد مسأله ای اجتهاد می کند یعنی مسأله ای را با مفروضات دینی و شرایط مقتضیات زمان فتوا می دهد، این نتیجه گیری در واقع روی اصول ریاضی است.
به طور کلی کسی که با توجه به شرایط موجود و پیش آمده بهترین تصمیم را در عرصه کار، مدیریت و زندگی می گیرد آن را بر اساس تفکر و استدلال منطقی انجام می دهد و استنتاج خوب هم به وسیله انسانهایی انجام می گیرد که توانایی خوب اندیشیدن و خوب فکر کردن را دارند؛ از آنجایی که در پیچ و خم های کارهای اداری، مسئولیتی،مدیریت، زندگی، گردونه ها و دو راهی ها صاحب فکر باشیم، خوب فکر کنیم، همه اوضاع را با همه زیروبم هایش ببینیم و سپس با استفاده از تجارب خود و تجارب دیگران، بهترین تصمیم را گرفته و مجدداَ آن را کنترل و بررسی کرده و سپس بهترین نتیجه را با کمترین زمان و هزینه بگیریم. گفتنی است که ریاضی علمی پویا و پیوسته در تکامل است از آنجایی که جهت متکامل شدن راهی به درازی کهکشانها را باید طی نمود. لذا چنانچه بخواهید با فواید و کاربرد ریاضی بیشتر ملموس شوید در یکی از رشته های مربوط ادامه تحصیل دهید تا با فایده و کاربرد آن افزودن بر آنچه شمردیم آشنا شوید اگر چه ریاضیات پایه و ستون همه علوم است اما ادعا بر این نیست که ریاضیات بر علوم دیگر رجحان دارد بلکه ادعای دانشمندان بر این است که علوم دیگر ثمره و میوه ریاضیات اند و ریاضیات هم میوه ناب آنها.