دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد ریاضیات

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 8 صفحه

 قسمتی از متن .doc : 

 

ریاضیات

ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.

ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.

نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.

ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.

چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم. ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.

حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.

در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است. بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد. هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

دید کلی

پیشرفت ریاضیات به این جا نمی‌رسند که قضیه‌های تازه‌ای روی هم انباشته شود، بلکه این پیشرفت همراه با تغییر کیفی ریاضیات است. ولی این تغییر کیفی از راه شکست و نابودی نظریه‌های موجود به دست نمی‌آید بلکه از راه عمیق‌کردن و تعمیمی نظریه‌های موجود و از راه بوجود آمدن نظریه‌های تعمیم‌دهنده تازه که بر پایه پیشرفت‌های قبلی تدارک دیده شده است) صورت می‌گیرد.

دوره‌های اساسی تاریخ ریاضیات

با یک نظر کلی در تاریخ ریاضی ، می‌توان چهار دوره اساسی که از جنبه‌های کیفی با هم اختلاف دارد تشخیص داد. البته مرزبندی دقیق این دوره‌ها ممکن نیست، زیرا مرزهای اساسی هر یک از آنها کم و بیش به تدریج به وجود آمده است، ولی اختلاف این دوره‌ها و عبور از یک دوره به دوره دیگر به خوبی مشخص است.

نخستین دوره

نحستن دوره ، عبارت از دوره‌ای است که ضمن آن ریاضیات به عنوان یک دانش مستقل و نظری به وجود آمد. ان دوره از زمان‌های باستانی آغاز و به سده پنجم پیش از میلاد پایان می‌پذیرد و این به شرطی است که ریاضیات "خالص" و بستگی منطقی بین قضیه‌ها و اثبات آنها ، زودتر از آن ، در یونان به وجود نیامده باشد (در سده پنجم پیش از میلاد ، حکمهای منظم هندسی مثل "مقدمات" بقراط(= هیپوکراتوس‌) خیوسی به وجود آمد). این دوره ، دوره شکل گرفتن حساب و هندسه است که ما به اندازه کافی آن را بررسی کردیم. در آن زمان ، ریاضیات ، از بستگی مستقیمی که قانون‌های جداگانه و منفرد آن ، با عمل داشتند به وجود آمد، قانون‌هایی که خود زاییده آزمایش‌اند، ولی هنوز به عنوان دستگاه واحدی که به صورت منطقی به هم مربوط باشد تشکیل نشده است. خصلت نظری‌بودن ریاضی که همراه با اثبات منطقی قضیه‌های آن باشد، خیلی به تدریج و متناسب با ماده‌های خام موجود ، به وجود آمد. حساب و هندسه هم از یکدیگر جدا نبود و به طور جدی به هم آمیخته بود.



خرید و دانلود تحقیق در مورد ریاضیات


تحقیق در مورد ریاضیات و کاربرد آن

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 13 صفحه

 قسمتی از متن .doc : 

 

ریاضی 

 هدف «ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» . دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.» دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.» اهداف گرایش‌های مختلف این رشته عبارتنداز: 1- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد. 2- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است. 3- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیش‌دانشگاهی باشند. ماهیت : « ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همه‌جا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند» فارغ‌التحصیلان این رشته می‌توانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش‌ خصوصی در اموری همانند طراحی سیستمها در امر بهینه‌سازی و بهره‌وری ، در بخش صنعت برای اموری همانند مدل‌سازیهای ریاضی و در آموزش و پرورش و ... ، مسوولیتهای متفاوتی را به عهده گیرند. گرایش‌‌های مقطع لیسانس: «رئیس اتحادیه بین‌المللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.» «ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان می‌پردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده می‌شود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان می‌گردد» «وقتی صحبت از ریاضی محض می‌شود نباید تصور کرد که تنها باید در گوشه‌ای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایده‌های ریاضی از ذهن پژوهشگران نمی‌روید بلکه ریاضیدانها غالبا الهام خود را از طبیعت می‌گیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.» عموما ریاضیات کاربردی به شاخه‌ای از ریاضی گفته می‌شود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،‌فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخه‌ای گفته می‌شود که به نظریه‌پردازی ریاضی می‌پردازد اما باید توجه داشت که امروزه این دو گرایش آن‌چنان در هم ادغام شده‌اندکه مرزی را نمی‌توان بین آنها مشخص کرد.



خرید و دانلود تحقیق در مورد ریاضیات و کاربرد آن


تحقیق در مورد ریاضیات محض و کاربردی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 3 صفحه

 قسمتی از متن .doc : 

 

ریاضیات محض و کاربردی

Mathematics ماهیت کار ریاضی یکی از قدیمی ترین و پایه ای ترین رشته های علوم است . ریاضی دانان از نظریه های ریاضی , روشهای محاسبه , آلگوریتمها و آخرین دستاوردهای رایانه ای برای حل مسائل اقتصادی , علمی , مهندسی , فیزیک و تجاری استفاده می کنند.کار ریاضی دانان به دو بخش گسترده تقسیم می شود . ریاضی محض و ریاضی کار بردی . این دو گروه کاملا از یکدیگر قابل تمایز نبوده و اغلب بایکدیگرهمپوشانی دارند. ریاضی دانان محض(نظری) با گسترش مبانی جدید و تشخیص روابط کشف نشده میان قوانین موجود ریاضی باعث گسترش دانش ریاضی می شوند . اگرچه آنان به دنبال گسترش دانش پایه بوده بی آنکه لزوما موارد کاربردی آنرا بررسی کنند ، چنین دانش مطلقی , نوعی راهبرد مفید در ایجاد وپیشبرد بسیاری از دستاوردهای مهندسی و علمی بوده است. بسیاری از ریاضیدانان محض به عنوان استاد در دانشگاه ها استخدام شده و زمان کاری خود را بین تدریس و امور تحقیقی تقسیم می کنند. از طرف دیگر، ریاضی دانان کاربردی با بهره گیری از نظریات و روشهای ریاضی مانند روشهای محاسبه و مدل سازی ریاضی به فرمولبندی وحل مسائل عملی در امور تجاری , دولتی , مهندسی و درعلوم اجتماعی، فیزیک و امور مربوط به زندگی می پردازند . به عنوان مثال , برای برنامه ریزی درخطوط هوایی میان شهر ها , بررسی اثر ومیزان ایمنی داروهای جدید , خصوصیات آیرودینامیکی پیش مدل اتومبیل ها و مقرون به صرفه بودن روشهای دیگر تولید به تجزیه و تحلیل کار آمدترین راه می پردازند. امکان دارد ریاضی دانان کاربردی که دست اندر کار تحقیق و گسترش صنعتی هستند با حل مسائل مشکل باعث ایجاد یا تقویت روشهای ریاضی شوند .گروهی از ریاضی دانان به نام رمزیاب به تجزیه و تحلیل و کشف سیستمهای رمزی می پردازند که به صورت کد بوده واز طریق آنها اطلاعات نظامی , سیاسی , مالی یا اجرایی و قانونی رد و بدل می شود. ریاضی دانان کاربری با یک مساله کاربردی شروع کرده , اجزای تفکیک شده عملیات مورد نظر را در فکر مجسم می کنند و سپس اجزا را به متغیر های ریاضی تبدیل می کنند. ریاضی دانان غالبا با نمونه سازی توسط راه حلهای فرعی ، بوسیله رایانه به تجزیه و تحلیل روابط میان متغیرها و حل مسائل پیچیده می پردازند. قسمت اعظم کار در ریاضی کار بردی به وسیله افراد با عنوانی غیر از ریاضی دان انجام می شود . در حقیقت ، از آنجائیکه ریاضی شالوده ایست که بر اساس آن بسیاری ازرشته های علمی بنا می شود شمار افرادی که از فنون ریاضی بهره می گیرند بیشتر از کسانیست که رسما" به عنوان ریاضی دان شناخته میشوند . به عنوان مثال , مهندسان , دانشمندان علوم رایانه , فیزک دانان و اقتصاد دانان از جمله کسانی هستند که به شکل وسیعی از علم ریاضی بهره می جویند. گروهی از افراد متخصص مانند آماردانان , آمارگیران , تحلیل گران محقق در عملیات , در حقیقت در شاخه خاصی از ریاضی متخصص می باشند . بسیار پیش میاید که ریاضی دانان کاربردی برای دستیابی به راه حلهایی در مسائل گوناگون با افراد دیگر شاغل در سازمان همکاری کنند . محیط کار ریاضی دانان غالبا"در دفاتر راحت کار میکنند .آنها اغلب جزئی از یک تیم متشکل از متخصصین علوم مختلف که ممکن است شامل اقتصاددانان , مهندسان , دانشمندان علوم رایانه ای , فیزیک دانان , تکنسین ها و دیگر افراد باشد .تحویل به موقع پروژه ها , اضافه کاری , تقاضاهای خاص برای اطلاعات یا تجزیه و تحلیل و مسافرتهای طولانی به منظور شرکت در سمینارها یا کنفرانسها جزئی از شغل آنان محسوب می شود . ریاضی دانانی که در دانشگاهها مشغول به کارند معمولا"در زمینه تدریس و تحقیق مسئولیتهایی بر عهده دارند. این افراد اغلب یا به تنهایی امور تحقیقاتی را اداره می کنند و یا ازهمیاری دانشجویان فارغ التحصیل و علاقه مند به موضوعات تحقیقی بهره مند می شوند. فرصتهای شغلی بیشترین فرصتهای شغلی در سرویسهای تحقیقی و آز مایشی , آموزشی , امنیتی , سیستمهای تبادل کالا ، مدیریتی و روابط عمومی وجود دارد . دربین مراکز تولیدی ، صنایع هوا فضا و دارویی اصلیترین استخدام کننده ها میباشند . گروهی از ریاضی دانان نیزدر بانکها و یا شرکتهای بیمه مشغول به کارند. آموزش و ادامه تحصیل بسیاری از فرصتهای شغلی که در کارهای پژوهشی برای ریاضیدانان در نظر گرفته میشود بصورت عضوی از یک تیم حرفه ای می باشد . دانشمندان محقق در چنین مشاغلی یا در زمینه تحقیقات پایه و مبانی نظری و یا در تحقیقات عملی برای ایجاد یا بهبود فرایند تولید مشغول به کار می شوند . اکثر افرادی که دارای مدرک لیسانس یا فوق لیسانس بوده و در صنایع خصوصی کار میکنند , نه به عنوان ریاضی دان بلکه بعنوان برنامه نویس رایانه , تحلیل گر سیستم یا مهندس سیستم رایانه ای مشغول به کارند. دوره های ریاضی مورد نیاز این مدرک شامل حساب دیفرانسیل , معادلات تفاضلی و جبر خطی و انتزاعی می باشد . دوره های اضافی میتواند نظریه های احتمالات و آمار , آنالیز ریاضی , آنالیز عددی , توپولوژی , ریاضیات گسسته و منطق ریاضی را در برگیرد . بسیاری از دانشگاه ها برای دانشجویانی که در رشته ریاضی تحقیق می کنند , در زمینه رشته های مربوط به ریاضی مانند علوم رایانه ای , مهندسی , فیزیک و اقتصاد دوره هایی بر گذار می کنند . برای بسیاری از کار فرمایان ,آگاهی همزمان در ریاضی و علوم رایانه ای , اقتصاد یا دیگر علوم نوعی مزیت محسوب می شود . یک محصل ریاضی آینده نگر باید تا جایی که امکان دارد بسیاری از دروس ریاضی را در دبیرستان بیاموزد . در مورد ریاضیات کاربردی آموزش دیدن در زمینه هایی که قرار است ریاضی در آن به کار برده شود بسیار مهم است . ریاضی به شکل وسیعی در علوم فیزیک ,آمار , مهندسی مورد استفاده قرار می گیرد . علوم رایانه ای , تجاری , مدیریت صنعتی , اقتصاد , امور مالی , شیمی , زمین شناسی , علوم روزمره و اجتماعی وابسته به ریاضی کار بردی می باشند . ریاضی دانان باید در زمینه برنامه نویسی رایانه ای از اطلاعات جامعی برخوردار باشند چرا که اکثر محاسبات ریاضی پیچیده و مدل سازی ریاضی بوسیله رایانه انجام می شود. ریاضی دانان نیاز به قدرت استدلال خوب و مداومت برای تشخیص ، آنالیز و به کار بردن مبانی ریاضی در مسائل فنی دارند . مهارتهای ارتباطی مهم می باشد چرا که ریاضی دانان بایستی در زمینه راه حلهای مطرح شده با افرادی وارد بحث شوند که احتمالا" اطلاع کافی ازعلم ریاضی ندارند. چشم انداز کار انتظار می رود که در آینده از میزان استخدام افراد به عنوان ریاضی دان کاسته شود چرا که مشاغل اندکی با نام علم ریاضی وجود خواهد داشت . هر چند دارندگان مدرک PHD و فوق لیسانس با اطلاعات جامعی در زمینه ریاضی و علوم مربوطه مانند مهندسی یا علوم رایانه ای احتمالا از فرصتهای شغلی مطلوب تری برخوردار خواهند بود . با این حال , بیشتر این افراد به جای عنوان ریاضی دان از عنوان کاری بر خوردار می شوند که نمایانگر شغل آنان می باشد . پیشرفت تکنولوژی معمولا باعث گسترش کاربرد علم ریاضی می شود و در آینده به افرادی که در این رشته مهارت یابند نیاز پیدا خواهیم کرد . با این وجود افرادی که در امور صنعتی یا دولتی مشغول به کار می شوند علاوه بر علم ریاضی در علوم مربوطه نیز به دانش پیشرفته ای نیاز خواهند داشت ریاضی دانان برای یافتن شغل باید با افرادی رقابت کنند که در علوم مربوط به رشته ریاضی تخصص دارند . موفق ترین جویندگان کارکسانی هستند که می توانند مبانی ریاضی را در مسائل واقعی زندگی بکار برده و از مهارتهای ارتباطی ,گروهی و رایانه ای مطلوبی بهره مند هستند . در صورت نیاز سازمان آموزش و پرورش , اکثر دارندگان مدرک لیسانس می توانند به عنوان دبیر در مدارس مشغول بکار شوند. رقابت کاری در میان دارندگان مدرک فوق لیسانس و در امور تحقیقی و نظری بسیار با لاست . از آنجایی که اکثر مشاغل دانشگاهی در اختیار دارندگان مدرک PHDاست , لذا بسیاری از فارغ التحصیلان رشته ریاضی , بدنبال استخدام در مشاغل دولتی یا صنعتی می باشند. میزان در آمد در ایالات متحده در سال 2000, میانگین درآمد سالانه ریاضی دانان 68640 دلار بوده است.

منبع :www.knowclub.com



خرید و دانلود تحقیق در مورد ریاضیات محض و کاربردی


تحقیق در مورد رابطه ریاضیات و هنر

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 11 صفحه

 قسمتی از متن .doc : 

 

رابطه ریاضیات و هنر مقدمه:اهمیت فوق العاده ای که ریاضیات ، در جامعه ی امروزی و در فعالیت گوناگون ترین تخصص ها دارد، بر کسی پوشیده نیست . باوجود این ، خیلی زیاد نیستند کسانی که علاقمند به ریاضیات باشند. البته تنها کسانی که کار و فعالیتشان به ریاضیات مربوط می شود ، علاقمند به ریاضیات نیستندبلکه کم هم نیستند مشتاقانی که ساعت های فراغت خود را ، با ریاضیات می گذرانند. همه ی این ها چه حرفه ای ها و چه علاقمندان ، نه تنها فایده و اهمیت ریاضیات را می شناسند بلکه در ضمن ، به ریاضیات شوق می ورزند و می توانند زیبایی و ظرافتی که در مسأله ها ، قضیه ها و روش های ریاضی وجود دارد را احساس کنند . احساس و منطق را با هیچ نیرویی نمی توان از هم جدا کرد و هر جدایی ساختگی منجر به تحریف هر دوی آنها می شود . هر احساس اگر احساس واقعی باشد، خردمندانه است چراکه احساس واقعی نمی تواند جدا از اندیشه و خرد آدمی پدید آید. ارتباط هنر و ریاضی : هر انسانی از تماشای چشم انداز یک دامنه ی سر سبز آرامش خود را باز می یابد ، در عین حال ، به فکر فرو می رود . شاعر احساس درونی خود را بیان می کند . نقاش با قلم و بوم خود تلاش می کند که دیگران را در شادی خود شریک کند . گیاه شناس در پی گیاه مورد نظر در رده های خاصی می رود . زبان شناس می خواهد ریشه و سر چشمه ی نام گذاری گیاه و دلیل آن را پیدا کند . داروشناس در جستجوی ویژگی درمانی گیاه است و ریاضی دان نحوه ی قرار گرفتن گل و گلبرگ ها یا اندازه و شکل ها را مورد مطالعه قرار می دهد . ولی هم گیاه عضوی یگانه است و هم انسان و اگر بخواهیم برخورد انسان با گیاه را بررسی کنیم ناچاریم ، به همه ی این جنبه ها توجه داشته باشیم . ریاضیات و رابطه آن با هنر : " اشر" نقاش معروف هلندی در سال 1971 میلادی در سن 72 سالگی و یک سال پیش از مرگ خود نوشت : « وقتی که هوشمندانه با رمز و راز های دور و بر خود برخورد کردم و وقتی به تجزیه و تحلیل مشاهده های خود پرداختم ، به ریاضیات رسیدم . من آموزش جدی در دانش ندیده ام ولی گمان می کنم بیش تر با یک ریاضی دان وجه مشترک داشته باشم تا با یک هنرمند . » و " رودن" (1840- 1917 ) مجسمه ساز مشهور فرانسوی می گوید : « من یک رویا پرداز نیستم ، بلکه یک ریاضی دان ام . مجسمه های من تنها به خاطر این خوب اند که ساخته و پرداخته ی اندیشه ی ریاضی اند . » از آن طرف "ج.ه هاردی" ریاضی دان انگلیسی معتقد است : « معیار ریاضی دان مانند معیار نقاس یا شاعر ، زیبایی است . اندیشه ها هم مانند رنگ ها یا واژه ها باید در هماهنگی کامل و سازگار با یکدیگر باشند . زیبایی نخستین معیار سنجش است . » جایگاه هنر در درس ریاضی : اگر این را بپذیریم که ، تصور و خیال ، یکی از سرچشمه های اصلی آفرینش های هنری است ، آن وقت ناچاریم قبول کنیم که ، در ریاضیات هم ، دست کم عنصر های زیبایی و هنر وجود دارد چرا که مایه ی اصلی کشف های ریاضی ، همان تصور و خیال است . به قول ولادیمیر ایلیچ نویسنده ی « دفاتر فلسفی » ، تصور و خیال « حتی در ریاضیات هم لازم است ، حتی کشف حساب دیفرانسیل و انتگرال هم ، بدون تصور و خیال ، ممکن نبود . » با هیچ نیرنگی ، نمی توان از کشش انسان ها به سمت زیبایی ها جلوگیری کرد و آن چه زشت و نازیبا است را جانشین زیبایی ها کرد . آدمی ، از همان روزهایی که می شنود ، می بیند و درک می کند ، از موسیقی و تقاشی و شعر لذت می برد و چه به صورت لالایی مادر باشد یا آهنگ گوش نواز چایکووسکی ، چه بیتی عامیانه و کوچه باغی باشد یا سرودی از لسان الغیب ، چه هنرمندانه قالی های دست باف باشد و چه ظرافت ها و رنگ های چشم نواز بهزاد و کمال الملک ، همه جا انسان را به سوی خود می کشاند و غرق



خرید و دانلود تحقیق در مورد رابطه ریاضیات و هنر


تحقیق در مورد ریاضیات در زندگی و عمل

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 5 صفحه

 قسمتی از متن .doc : 

 

ریاضیات در زندگی و عمل

ریاضیات و زندگیعلم لقمه برگرفتن از سفره طبیعت است . و ریاضی زاییده احتیاجو در آغازمبتنی بر تجربه. ریاضیات انعکاس دنیای واقعی در ذهن ماست. به عقیده بعضی‌ها :ریاضیات زیباترین زبان برای توصیف طبیعت و روابط بین پدیده‌های طبیعی است.سیلوستر می‌گوید:”ریاضیات ،مطالعه شباهتها در تفاوتها و مطالعه تفاوتها درشباهتهاست.”علت اساسی موفقیت ریاضیدانان در آفریدن علمی به این زیبایی که عمیق‌ترین معرفت بشری شمرده می‌شود:سخت‌گیری بدون بخشش کوچکترین خطاها در کنار روش و معیارهای منطقی آنها به همراه جدیت ، خلاقیت ، به غایت اندیشیدن و نیز بلند پروازی و جسارت شکستن هر چه موجود است. به هر قسمت از زندگی که کنجکاوانه و با دقت بنگریم ، اثر مستقیم یا غیر مستقیم ریاضیات در آن مشاهده می‌کنیم. نمونه آن کشف اخیر این مساله توسط دانشمندان است که :” یکی از انواع حشرات که بر روی شاخ و برگ درختان لانه سازی می‌کند، روش کارش بر اساس یک فرمول پیچیده ریاضی است.”در حالت کلی ریاضیات راه های متعددی برای باز شدن فکر در اختیار ما قرار دارد که از مهمترین آنها مطالعه ی ریاضیات از جمله شاخه ی تر کیبیات است.ریاضیات این کمک را به ما میکند تا مشکلات و موضوعات زندگی را بهتر و راحت تر تجزیه و تحلیل کنیم.آمارهای جهانی نشان می دهد طلاق در خانواده هایی که حداقل یکی از همسران ریاضی خوانده است در مقایسه با سایر خانواده ها بسیار کمتر است.

ریاضیات و علوماکثر ریاضیدانان بگونه طبیعت شناس هستند یا اینکه هم فیزیکدان و هم ریاضیدان هستند. یعنی فیزیکدانان برای حل مشکلی از طبیعت یا بررسی مسایل طبیعی به ریاضیات مراجعه نموده‌اند.بنابرین با ابزار ریاضی و ذهن خلاق فیزیکی میتوان پرده از خیلی مبهمات و مجهولات برداشت و ریاضی فیزیکی شد.و به کشفهای بزرگی دست یافت که الگوی دانشمندان هم این بوده‌ است.پس علوم مختلف بهم تنیده شده و مکملهای همدیگرند.رشد یکی به دیگری وابسته هست و لازم پیشرفت در یک شاخه از علم پیشرفت در شاخه ای دیگر هم هست. مثالهای زیر این مسیله را برای ما روشن تر میکند.

کارل فردریک گوس (۱۷۷۷-۱۸۵۵) روی نقشه های جغرافیایی کار می گرد. با روش گوس توانستند بسیاری از نقشه های جغرافیایی را نقشه برداری اصلاح کنند. ولی این روش که برای تهیه و تصحیح نقشه های جغرافیایی در نظر گرفته شده بود، برای حل مساله ی حرکت آب در اطراف یک جسم و یا حرکت هوا در اطراف بال هواپیما هم به کار گرفته شد.می بینید، ریاضیات سالها از صنعت جلوتر است و انسان می تواند به یاری ریاضیات مساله های پیچیده ی صنعت را حل کند. به کمک یک نظریه ی ریاضی که پیش تر کشف شده بود توانستند مساله های عملی مهمی را حل کنند.جیمس کلارک ماکسول (۱۸۳۱-۱۸۷۹) فیزیکدان انگلیسی، قانون نوسان های الکترو مغناطیسی را به یاری معادله های ریاضی بیان کرد. او با روش خالص ریاضی نتیجه گرفت و ثابت کرد موجهای الکترو مغناطیسی با سرعتی نزدیک به سرعت نور منتشر می شوند. در ضمن ماکسول تاکید کرد در طبیعت به جز موج های کوتاه، موجهای الکترومغناطیسی بلند هم وجود دارند. پیش بینی ماکسول به حقیقت پیوست و ۲۵ سال بعد، موجهای رادیویی کشف شدند. در زمان ما دقت فیزیک امروزی متوجه ذره های بنیادی است که مهم ترین آنها الکترون، پروتون و نوترون هستند. ولی آیا شما می دانید همه ی این ذره های بنیادی پیش از مشاهده پیشگویی و بعد کشف شدند. نخستین ذره ی بنیادی یعنی الکترون را ژوزف جان تامسون، فیزیکدان انگلیسی (۱۸۵۶-۱۹۴۰) کشف کرد ولی پیش بینی آن را ج بستون، فیزیکدان ایرلندی در سال ۱۸۷۲ و سپس هلمهولتس (۱۸۲۱-۱۸۹۲) فیزیکدان و ریاضیدان آلمانی در سال ۱۸۸۱ کرده بودند.مساله ای به نام حرکت ذره های ریز- الکترون ها، پروتونها، نوترونها و . . . وجود دارد که بررسی آن، قانون تغییر ذره ها را در شرایط متفاوت مشخص و تنظیم می کند. در این بررسی بسیاری از پدیده های مربوط به فیزیک اتمی و فیزیک هسته ای روشن می شوند. این بررسی به صورت یکی از شاخه های فیزیک ر آمده است و به نام مکانیک “کوانتایی” معروف است.بسیاری از کشف های مربوط به مکانیک کوانتایی و بسیاری از قانون های آن براساس پیشگویی های نظری و بر اساس نظریه ها و روش های ریاضی به دست آمده اند. دانشمندان هم براساس همین پیشگویی های نظری، بررسی ها و پژوهش های



خرید و دانلود تحقیق در مورد ریاضیات در زندگی و عمل