لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
تاریخ ریاضیات
مقدمه:
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد. قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
شروع ریاضیات در یونان:قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.در اوایل قرن ششم ق.م. فیثاغورث(500-572 قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل میدهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز میداشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمیداند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و میتوان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح میکرد و هرجا را که بر روی آن انگشت مینهاد مرکزی از برای پیشرفت تمدن یونانی میشد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیدهایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوقالعاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانهای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.هیپارک نخستین کسی بود که تقسیمبندی معمولی بابلیها را برای پیرامون دایره پذیرفت. به این
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 40
تاریخ ریاضیات
مقدمه:
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد. قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
شروع ریاضیات در یونان:قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.در اوایل قرن ششم ق.م. فیثاغورث(500-572 قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل میدهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز میداشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمیداند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و میتوان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح میکرد و هرجا را که بر روی آن انگشت مینهاد مرکزی از برای پیشرفت تمدن یونانی میشد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیدهایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوقالعاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانهای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.هیپارک نخستین کسی بود که تقسیمبندی معمولی بابلیها را برای پیرامون دایره پذیرفت. به این
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
تاریخ ریاضیات
ریاضیات در چین
فهرست مطالب
خلاصه ایی از تاریخ ریاضیات در چین
تاریخچه ریاضیدانان و کارهای انجام شده دو حوضة ریاضیات
مراجع در دسترس
تاریخچه
روشهای دسترسی به سایر صفحات
خلاصه ایی از تاریخ ریاضیات در چین
منابع اولیه عبارتند از: «گسترش ریاضیات در چین و ژاپن» اثر Mikami و ریاضیات چینی اثر Li yan و Dushiran تاریخچه زیر را مشاهده نمائید:
1- نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش
نماد سازی اعشاری سنتی- یک نماد برای هر یک از 10.9.8.7.6.5.4.3.2.1،100 و 1000 و 10000 و..
بنابراین 2034 نوشته میشود با نمادهایی به شکل 2 و 1000و3و10 و4 یعنی دوبار 1000 و 3 بار 10 باضافة 4. که باز میگردد به روش نوشتاری چینی.
محاسبه با استفاده از تکه های کوچک خیزران بعنوان مقیاسهای شمارش شکل گرفت. شکل قرار گرفتن مقیاسهای شمارش نمایانگر یک روش اعشاری ساده بوده و برای نوشتن عبارات طولانی، عدد صفر نمایانگر یک فاصله بود. ترتیب نوشتن از چپ به راست شبیه روش شمارش عربی در 400 سال قبل از میلاد و یا زودتر بوده.
جمع: نمادهای شمارش برای دو عدد در پائین قرار می گرفتند و یک عدد بالای دیگری اعداد از چپ به راست با هم جمع می شدند و در صورت نیاز انتقال انجام میشد. منها نیز به همین روش.
ضرب: جدول ضرب 90*9 ضربهای اعداد بزرگ مانند روش ما با نتیجهگیری بر مبنای مقیاسهای فیزیکی انجام میشد. تقسیمهای اعداد بزرگ مانند روشهای رایج ولی نزدیکتر به روش galley بود.
2- Zhoubi suanjing (بهترین روش محاسبة شاخصها و منحنی های صعودی) (صد سال قبل از میلاد مسیح)
یکی از تئوریهای منحنی های صعودی راتوصیف میکند قبل از آن Han dynasty (206 سال قبل از میلاد مسیح) ریاضی زودتر در کتاب سوزی 213 قبل از میلاد مسیح.
بیان و کاربرد هندسه فیثاغورثی برای مساحی، ستاره شناسی و غیره. گسترش هندسه فیثاغورثی
محاسباتی شامل اعداد کسری معمولی
3- نه فصل در مورد هنر ریاضی اثر jiuzhang suanshu (صد سال قبل از میلاد مسیح) گرد آوری ریاضیات بر پایه Han dynasty 249 مسئله در 9 فصل.
کاملترین مرجع مساحی و موثرترین کتاب ریاضیات هینی. گزارشات و تفسیرهای فراوان.
فصل 1: محاسبه مساحت: مباحث سیستماتیک در مورد الگوریتمهای مورد استفاده در شاخصهای شمارش اعداد کسری شامل alg برای LCM , GCD مساحت اشکال سطح شامل مربع، مستطیل. مثلث، ذوذنقه،دایره و قطاع دایره و قطاع کره دوایر متحد المرکز، بعضاً تخمینی و بعضاَ دقیق.
بخشهای 2و3و6 در مورد تناسب، سری ها، توزیع نسبت و ضرایب صحیح بخش 4، روشهای محاسبه سطح و حجم. توضیح روشهای معمول برای محاسبه ریشهای مربع و مکعب می اشد اما نتایج را به کمک محاسبه با نمادهای عددی بدست می آورد.
بخش 5: مشاوره های ساختمانی. حجم مکعب، متوازی السطوح، هرم ناقص هرم سه وجهی، هرم، استوانه، چهارضلعی. مخروط و مخروط ناقص و کره بعضاً تخمینی و بعضاً با 3-Pi
بخش 7: زیادی ها و کسرها: اشکال خطا و اشکال خطا دوگانه.
بخش 8: آرایش مستطیلی: بیان کننده روشهای محاسبه برای حل معادلات 3 مجهولی یا بیشتر. شامل بکارگیری اعداد منفی (مرکز برای اعداد مثبت و سیاه برای اعداد منفی) قواعد اعداد صحیح.