لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 36
توابـــع
مفاهیم اساسی
مفهوم تابع
طبق تعریفی که اویلر در 1749 به دست داده است , تابع اغلب به عنوان کمیت متغیر variable quantity ی که وابسته به کمیت متغیر دیگری است توضیح داده می شود. تعریفی چنین از مفهوم تابع برای مقاصد بسیاری کفایت می کند , اما در دوران گسترش بیشتری از ریاضیات آشکار شد که دادن محتوی عمومیتر و مجردتری به مفهوم تابع هم ضروری هم سودمند است .
ماهیت این مفهوم وابستگی کمیتها نیست که معمولاً مراد از آنها اعداد است , که میتوانند در رابطه «کمتر از یا بزرگتر از » مقایسه شوند , بلکه خود واقعیت تناظر correspondence است , که بر مبنای آن اشیای معینی به عنوان تخصیص یافته به اشیای معین دیگر در نظر گرفته می شود. به این ترتیب مفهوم تابع به تعاریف مجموعه نظریه ای set – theoretical definitions تحویل شده است .
تناظرها . هر میله فلزی هنگامی که گرم شود تغییر می کند . به عنوان مثال , فرض می کنیم یک میله مسی در 0 C به طور l0=200 واحد طول , u , مثلاً سانتیمتر یا اینچ باشد , در این صورت l , طول آن در درجه حرارت t0C توسط (t0.000016 +1)200=l مشخص می شود .
با این فرمول formula هر مقدار t بین 00C و 0C100 در تناظر با طول lی بین u200 و u200.32 قرار داده شده است .
به همین ترتیب با هر مقدار کالا مبلغ معینی پول , به عنوان قیمت فروش آن , متناظر است , و با هر شماره صفحه این کتاب , عددی متناظر است که تعداد حروف واقع در آن صفحه را بیان می کند .
تناظرها نه تنها بین اعداد , بلکه بطور عمومی تر , بین عنصرهای aی واقع در مجموعه A و عنصرهای bی واقع در مجموعه B وجود دارند ; به عنوان مثال , هر صندلی نمایش یک تئاتر متناظر با یک بلیط ورودی و یک تماشاچی خاص است . به این ترتیب , تناظر مورد بحث توسط رابطه ی Fی تعریف شده بر B A با حوزه تعریف AD(F) و برد BR(F) معین می شود .
اگر نسبت به این رابطه F به هر عنصر a از حوزه D(F) آن یک و تنها یک عنصر b از برد R(F) آن متناظر باشد , در این صورت رابطه را تک مداری single-value می گویند و در این صورت از تابع function یا نگاشت mapping از مجموعه A بتوی into مجموعه B صحبت می کنیم ( شکل )
عنصر b از برد تابع متناظر با عنصر نخستین a''original'' از حوزه آن را نگاره یا تصویر a''image'' می نامیم . در نتیجه تابع f مجموعه ای از جفتهای مرتب ''ordered pairs'' (a,b)ای است که عنصر اول آنها متعلق به حوزه تعریف D(F) و عنصر دوم آنها متعلق به برد R(F) است .
در مورد نگاشت از A بتوی B داریم ; D(F)=A یعنی , هر عنصر a A به عنوان عنصری نخستین رخ میدهد , و در مورد نگاشت از A بروی B ''onto'' , علاوه بر این , هر عنصرBb به عنوان نگاره ای مطرح می شود.
عنصر yی را که توسط تابع f به عنصر x تخصیص داده شده است , اغلب با f(x) نمایش می دهیم و در این صورت تناظر مورد بحث y=f(x) x نوشته می شود.
عنصر x را شناسه یا آرگومان ''argument'' و عنصر متناظر y آن را مقدار تابع f(x) ''function value'' در نقطه x می نامند .
حوزه تعریف ''domain of definition'' ( یا تنها حوزه ) تابع x y =f(x) را با X و برد آن را با Y نمایش می دهیم . اگر f تابعی از A بتوی B باشد , آنگاه واضحاً A X و BY .
نمایش توابع
برای توصیف یک تابع باید حوزه تعریف و برد آن و قاعده ای برای تناظر به دست بدهیم .
نمودار. در نمودار تابع حوزه و برد از لحاظ نموداری نمایش داده می شوند و تناظر مربوطه با پیکانهایی مشخص می شود ( شکل ) . از هر عنصر حوزه تنها یک خط سودار خارج می شود , اما ممکن است یکی یا بیش از یکی از این خطها به هر عنصر برد ختم شود.
7
6
5
4
3
2
1
حوزه تعریف
برد
جدول مقادیر . قاعده تناظر را می توان به جای استفاده از نمودار در جدول مقادیر نیز قرار داد ( شکل ) . عنصرهای حوزه را در سطر بالای جدول وارد می کنیم و زیر هر یک , عنصر متناظر آن از برد را قرار می دهیم . جدول مقادیر تنها می تواند تعدادی متناهی از جفتهای مرتب را به دست دهد , و برای توصیف کامل تابع دلخواه F کفایت نمی کند .
توضیح با کلمات . اگر حوزه و برد یک تابع متناهی نباشد یا آنقدر وسیع باشند که دیگر نمایش نمودار یا جدول مقادیر آن بر صفحه کاغذ ممکن نباشد , در این صورت دادن توصیف دقیق ''exact description'' حوزه و برد , همراه با قاعده ای که به ازای هر عنصر حوزه بتوان عنصر متناظر آن از برد را به دست آورد , کافی است .
تابع را میتوان بدون استفاده از نمادهای ریاضی , به کمک جمله ای به زبان روزمره , بطور کامل تعریف کرد, به عنوان مثال , در صورتی که به هر مسابقه تقسیم بندی اول لیگ فوتبالی خارج قسمت تعداد بلیتهای ورودی و تعداد سکنه محلی که مسابقه در آنجام برقرار می شود را متناظر کنیم , تابعی را تعریف کرده ایم . این تابع می تواند اطلاع معینی از علاقه ای را به دست دهد که عامه مردم در بازیهای خاص نشان می دهند . مثالهای بسیاری از قواعد تناظر می توان یافت که کلاً یا جزئاً با کلمات تنظیم شده اند.
نمودار مختصاتی . نمودار مختصاتی ''diagram'' نیز یک تابع را نمایش می دهد اگر مجموعه ای از اعداد محور افقی را به عنوان حوزه تعریف و مجموعه ای از اعداد محور قائم را به عنوان برد انتخاب کرده به آرگومان x از حوزه تعریف دقیقاً آن مقدار از y را تخصیص دهیم که به ازای آنها نقطه با مختصات y, x نقطه ای از نمودار باشد . اما , هر خم بدلخواه رسم شده در یک دستگاه مختصات را نمی توان به عنوان نمایش تابع در نظر گرفت . تناظر داده شده به کمک خم باید تک مقداری ''single-valued'' باشد, و این درحالتی است که خم نمودار مختصاتی مورد بحث توسط هر خط موازی محور قائم حداکثر در یک نقطه قطع شده باشد .
فرمول. بیشترین روش به کار رفته در نمایش یک تابع در ریاضیات فرمول است. در این روش عناصر حوزه و برد تنها عددها , یا دست کم اشیای ریاضی ''mathematical objects'' اند که در مورد آنها میتوان قاعده های محاسبه '' rules of calculation ''ی مناسب به دست داد , به عنوان مثال :
y=sinx (3) ( 2) y=7x+2 (1)
در صورتیکه معلومات خاصی در مورد حوزه تعریف تابع نداده باشند , معمولاً آن اعدادی را متعلق به آن در نظر می گیریم که به آنها بتوان با استفاده از فرمول مورد بحث مقدار معینی منسوب کرد . این اعداد در حالت (1 ) و (3) جمیع اعداد حقیقی اند , و در حالت ( 2 ) جمیع اعداد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
تابع و لگاریتم در ریاضیات
تاریخچه مختصر ریاضیات
اولین مطلب :
تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند. البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد. قبل از تاریخانسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.از ریاضیدانان بزرگ اسلامی یکی خوارزمی میباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود.برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.تاریخچه و پیشینه تابع
«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک
30صفحه
تابع
در ریاضیات ، تابع رابطهای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعهای دیگر (شاید یک عضو از مجموعه) را بیان میکند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخههای ریاضی به حساب میآید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابهای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل میشوند.
تعریف تابع
در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید میکند معکوس این مطلب را در تعریف تابع بکار نمیبرند. یعنی در واقع یک تابع میتواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطهای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
به عنوان مثال تابع f(x)=x2 بیان میکند که ارزش تابع برابر است با مربع هر عددی مانند x
در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی میکنند. با این شرط که هرگاه دو زوج با مولفههای اول یکسان در این رابطه موجود باشند آنگاه مولفههای دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه مینامند. مفهوم تابع اساسی اکثر شاخههای ریاضی و علوم محاسباتی میباشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.
تابع
14صفحه
قسمتی از نمودار یک تابع. هر عدد x در عبارت f(x) = x3 - x قرار میگیرد.
در ریاضیات، یک تابع رابطهای است که هر متغیر دریافتی خود را فقط به یک خروجی نسبت میدهد. علامت استاندارد خروجی یک تابع f به همراه ورودی آن، x میباشد یعنی. به مجموعه ورودیهایی که یک تابع میتواند داشته باشد دامنه و به مجموعه خروجیهایی که تابع میدهد برد میگویند.
برای مثال عبارت f(x) = x2 نشان دهنده یک تابع است، که در آن f مقدار x را دریافت میکند و x2 را میدهد. در این صورت برای ورودی 3 مقدار 9 به دست میآید. برای مثال، برای یک مقدار تعریف شده در تابع f میتوانیم بنویسیم، f(4) = 16.
معمولاً در تمارین ریاضی برای معرفی کردن یک تابع از کلمه f استفاده میکنیم و در پاراگراف بعد تعریف تابع یعنی f(x) = 2x+1 را مینویسم و سپس f(4) = 9. وقتی که نامی برای تابع نیاز نباشد اغلب از عبارت y=x2 استفاده میشود
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 4
تعریف تابع گاما به واسطهٔ انتگرال معین انجام میشود. اما تعریف تابع گامای ناکامل با استفاده از یک انتگرال نامعین صورت میپذیرد. دو نوع تابع گامای ناکامل وجود دارد: یکی تابع گامای ناکامل بالا است که حد پایین انتگرال آن متغیر است و دیگری تابع گامای ناکامل پایین است که حد بالای انتگرال آن متغیر است.بدین ترتیب داریم:
تابع گامای ناکامل بالا:
/
تابع گامای ناکامل پایین:
/
/
توزیع بتا پریم توزیعی احتمالی است که برای اعداد حقیقی بزرگتر از ۰ تعریف میشود و دارای دو پارامتر α و β است. تابع توزیع احتمال آن:
/
است که B(α,β) تابع بتا است. این توزیع با نام توزیع بتای نوع دوم نیز شناخته میشو