لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
موارد بکار رفته در فنرها
جدول 3-24 هزینه های مشترک مرتبط با مواد بکار رفته در فنرها را برحسب میزان فولاد کربن بصورت 1.0 نشان می دهد.
نوار فنری: اکثر فنرهای مسطح از نوار فولادی با درجه 1065 , 1074 , 1095 و 1050 ساخته می شوند. خصوصیات و ویژگی های تنشی و کششی و شکل پذیری در شکل 24.2 نشان داده شده است. میزان کربن در محدودة بین 1050 تا 1095 قرار دارد. در حالی که تمام کربنها در این سطوح یافت می شوند منحنی ها را نمی توان برحسب نوع ترکیب شناسایی کرد. شکل 24.3 میزان تنش کششی را نشان می دهد. بررسی سختی Rockwell بمنظور تعدیل نوار فولاد – کربن صورت می گیرد. ساختار و ترکیب لبه ها در شکل 4-24 نشان داده شده است. میزان شکل پذیری نوار فولادی در جدول 4-24 بیان شده است. هر نوع خصوصیات نوعی و نمونه ای در مورد آلیاژ فنر و جنسهای آنها در جدول 5-24 ارائه شده اند.
4-24- فنرهای متراکم مارپیچی:
1-4-24- عمومی
هر فنر متراکم مارپیچی یک فنر با انتهای باز است که در برابر تراکم و اعمال نیرو برای ذخیره انرژی مقاوم است. این فنر می تواند ساختارهای گوناگونی داشته باشد و به شکلهای متنوع ساخته شود، جنس مواد بکار گرفته شده معمولاً (یکسان) است اما از نظر اشکال فنرها برحسب شرایط قرارگیری فنر و فضای موجود تنوع زیادی دیده می شود. معمولاً فنر در سرتاسر آن، دارای قطر یکسان است. اشکال مخروطی، حفره ای (شبکه ای)، hour glass برخی از اشکالی هستند که برحسب نیاز بکار گرفته می شوند. فنرهای متراکم مارپیچی در حالت پیچشی تحت فشار قرار می گیرند. فشارها در محدودة الاستیک در یک سطح مقطع از فنر یکسان و هم شکل نیستند. فشار اعمال شده به فنر در محیط داخلی فنر، بیشتر از بقیه نقاط است. در برخی حالات فشار در حالت اتصال، در حد مطلوب و مناسب قرار نمی گیرد. در چنین حالاتی، فشارهای خمشی پس از تعیین شدن محدودة الاستیک صرفنظر می شود این فشارها با اشکال جدید و در نقاط دیگر اعمال می شوند.
2-4-24- اصطلاحات فنی فنر تراکمی:
تعاریف ارائه شده، مطالب و اصطلاحاتی هستند که بصورت متداول بکار گرفته می شوند و در صنعت فنر مورد استفاده قرار می گینرد. شکل 5-24 ارتباطات بین خصوصیات و ویژگی ها را بیان می کند.
قطر سیم d : سیم دایره ای (مدور) اقتصادی ترین نوع سیم برای این کاربرد است از سیم های چهارگوش در مواردی که فضا محدود باشد، استفاده می شود و همین طور معمولاً بمنظور کاهش وزن بکار گرفته می شود.
قطر سیم پیچ (Coil) : قطر خارجی (OD) در زمان کارکرد فنر، یکی از مشخصه های آن است. قطر داخلی برای مواردی که در داخل فنر، میله بکار رفته است، کاربرد دارد. قطر اصلی D تقریباً برابر OD یا افزودن اندازه سیم به قطر داخلی است. قطر سیم پیچ زمانی که فنر فشرده می شود، افزایش می یابد. این افزایش اگرچه ناچیز است، اما باید برای داشتن دقت
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
قانون لنز که در مورد جریانهای القایی بکار میرود چنین بیان میشود که جریان القایی در مدارهای بسته در جهتی است که با عامل بوجود آورنده خود مخالفت میکند. این قانون علامت منفی موجود در قانون فاراده را توجیه میکند.
مقدمه
طبق قوانین القای الکترومغناطیسی اگر شارمغناطیسی گذرا از مدار تغییر کند، نیرو محرکه الکتریکی در مدار جاری می شود. با برقراری نیرو محرکه القایی در مدار، جریان الکتریکی القایی در آن جاری می شود. طبق قانون لنز جهت جریان القایی در مدار در جهتی است که میدان مغناطیسی حاصل از آن با تغییرات شار مغناطیسی گذرا از مدار مخالفت می کند. اگر چکشی را از بالای نردبانی رها کنیم، هیچ نیازی به قاعدهای که بگوید چکش به طرف مرکز زمین یا در جهت مخالف آن حرکت میکند، نداریم. اگر در این موقع کسی از ما بپرسد که از کجا میدانید که چکش سقوط خواهد کرد، بهترین پاسخی که میتوانیم بدهیم این است که بگوییم، همیشه به این صورت بوده است و اگر بخواهیم جوابمان علمیتر باشد، میتوانیم بگوییم که زمانی که چکش سقوط میکند، انرژی پتانسیل گرانشی آن کاهش مییابد و برعکس انرژی جنبشی آن افزایش پیدا میکند.
اما اگر چکش به جای سقوط ، به طرف بالا برود، در این صورت انرژی جنبشی و انرژی پتانسیل آن هر دو افزایش پیدا میکنند و این موضوع پایستگی یا بقای انرژی را نقض میکند. استدلال مشابه را میتوان در مورد تعیین جهت نیروی محرکه الکتریکی که با تغییر شار مغناطیسی در یک مدار القا میشود، بکار برد، یعنی در این مورد اخیر نیروی محرکه القایی باید در جهتی باشد که با اصل پایستگی سازگار باشد و این با استفاده از قانون لنز توضیح داده میشود.
تاریخچه
در سال 1834 ، یعنی سه سال بعد از این که فاراده قانون القا خود را ارائه داد (قانون القا فاراده)، هاینریش فریدریش لنز (Heinrich Friedrich Lenz) قاعده معروف خود را که به قانون لنز معروف است، برای تعیین جهت جریان القایی در یک حلقه رسانای بسته ارائه داد. این قانون به صورت یک علامت منفی در قانون القای فاراده ظاهر میگردد. به این معنی که در رابطه نیروی محرکه القایی یک علامت منفی قرار داده و اعلام کنند که این علامت بیانگر قانون لنز است.
تشریح قانون لنز
حلقه رسانایی را در نظر بگیرید که به یک گالوانومتر حساس متصل است. حال آهنربایی را در دست گرفته و به آرامی به این حلقه ، نزدیک کنید. ملاحظه میگردد که با نزدیک شدن آهنربا به حلقه عقربه گالوانومتر منحرف شده و وجود جریانی را در مدار نشان میدهد. این جریان را جریان القایی میگویند. حلقه جریان ، مانند آهنربای میلهای ، دارای قطبهای شمال و جنوب است.
حال اگر آهنربا را از حلقه دور کنیم، باز هم گالوانومتر منحرف میشود، اما این بار انحراف در جهت مخالف است و این امر نشان دهنده این مطلب است که جریان در جهت مخالف در حلقه جاری شده است. اگر میله آهنربا را سر و ته کنیم و آزمایش را تکرار کنیم، باز همان نتایج حاصل خواهد شد، جز این که جهت انحرافهای عقربه گالوانومتر عوض خواهند شد. برای تشریح این آزمایش با استفاده از قانون لنز به صورت زیر عمل میکنیم:
زمانی که آهنربا را به آرامی به حلقه نزدیک میکنیم، تعداد خطوط شار مغناطیسی که از حلقه میگذرد، تغییر میکند و همین امر سبب ایجاد یا القا جریان در حلقه میشود و چون در ابتدا هیچ جریانی وجود نداشت، این جریان باید در جهتی باشد که با هل دادن آهنربا به سمت حلقه مخالفت کند. برعکس ، اگر بخواهیم آهنربا را از حلقه دور کنیم، باز جهت جریان در حلقه عوض شده و از دور کردن آن جلوگیری میکند. یعنی در حالت اول اگر قطب N آهنربای میلهای در طرف حلقه باشد، جریان القایی در حلقه به گونهای خواهد بود که در برابر آن یک قطب N ایجاد کند تا مانع نزدیک شدن آهنربا شود.
حال زمانی که آهنربا را از حلقه دور میکنیم، حلقه جهت جریان خود را عوض نموده و با ایجاد قطب S ، آهنربا را جذب کرده و مانع از دور کردن آن میشود.
قانون لنز و پایستگی انرژی
اگر توضیحات فوق بر اساس قانون لنز نبوده و عکس آن چیزی که گفته شد، اتفاق بیفتد، یعنی اگر جریان القایی به تغییری که باعث بوجود آمدن آن شده است، کمک کند، قانون بقای انرژی نقض میشود، یعنی اگر هنگام نزدیک کردن قطب آهنربا به حلقه در برابر آن قطب مخالف S ایجاد شده و آهنربا را جذب کند، در این صورت آهنربا باید به طرف حلقه شتاب پیدا کند و رفته رفته انرژی جنبشی آن افزایش پیدا کند و در همین هنگام انرژی گرمایی نیز ظاهر میشود. یعنی در واقع از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
قانون لنز که در مورد جریانهای القایی بکار میرود چنین بیان میشود که جریان القایی در مدارهای بسته در جهتی است که با عامل بوجود آورنده خود مخالفت میکند. این قانون علامت منفی موجود در قانون فاراده را توجیه میکند.
مقدمه
طبق قوانین القای الکترومغناطیسی اگر شارمغناطیسی گذرا از مدار تغییر کند، نیرو محرکه الکتریکی در مدار جاری می شود. با برقراری نیرو محرکه القایی در مدار، جریان الکتریکی القایی در آن جاری می شود. طبق قانون لنز جهت جریان القایی در مدار در جهتی است که میدان مغناطیسی حاصل از آن با تغییرات شار مغناطیسی گذرا از مدار مخالفت می کند. اگر چکشی را از بالای نردبانی رها کنیم، هیچ نیازی به قاعدهای که بگوید چکش به طرف مرکز زمین یا در جهت مخالف آن حرکت میکند، نداریم. اگر در این موقع کسی از ما بپرسد که از کجا میدانید که چکش سقوط خواهد کرد، بهترین پاسخی که میتوانیم بدهیم این است که بگوییم، همیشه به این صورت بوده است و اگر بخواهیم جوابمان علمیتر باشد، میتوانیم بگوییم که زمانی که چکش سقوط میکند، انرژی پتانسیل گرانشی آن کاهش مییابد و برعکس انرژی جنبشی آن افزایش پیدا میکند.
اما اگر چکش به جای سقوط ، به طرف بالا برود، در این صورت انرژی جنبشی و انرژی پتانسیل آن هر دو افزایش پیدا میکنند و این موضوع پایستگی یا بقای انرژی را نقض میکند. استدلال مشابه را میتوان در مورد تعیین جهت نیروی محرکه الکتریکی که با تغییر شار مغناطیسی در یک مدار القا میشود، بکار برد، یعنی در این مورد اخیر نیروی محرکه القایی باید در جهتی باشد که با اصل پایستگی سازگار باشد و این با استفاده از قانون لنز توضیح داده میشود.
تاریخچه
در سال 1834 ، یعنی سه سال بعد از این که فاراده قانون القا خود را ارائه داد (قانون القا فاراده)، هاینریش فریدریش لنز (Heinrich Friedrich Lenz) قاعده معروف خود را که به قانون لنز معروف است، برای تعیین جهت جریان القایی در یک حلقه رسانای بسته ارائه داد. این قانون به صورت یک علامت منفی در قانون القای فاراده ظاهر میگردد. به این معنی که در رابطه نیروی محرکه القایی یک علامت منفی قرار داده و اعلام کنند که این علامت بیانگر قانون لنز است.
تشریح قانون لنز
حلقه رسانایی را در نظر بگیرید که به یک گالوانومتر حساس متصل است. حال آهنربایی را در دست گرفته و به آرامی به این حلقه ، نزدیک کنید. ملاحظه میگردد که با نزدیک شدن آهنربا به حلقه عقربه گالوانومتر منحرف شده و وجود جریانی را در مدار نشان میدهد. این جریان را جریان القایی میگویند. حلقه جریان ، مانند آهنربای میلهای ، دارای قطبهای شمال و جنوب است.
حال اگر آهنربا را از حلقه دور کنیم، باز هم گالوانومتر منحرف میشود، اما این بار انحراف در جهت مخالف است و این امر نشان دهنده این مطلب است که جریان در جهت مخالف در حلقه جاری شده است. اگر میله آهنربا را سر و ته کنیم و آزمایش را تکرار کنیم، باز همان نتایج حاصل خواهد شد، جز این که جهت انحرافهای عقربه گالوانومتر عوض خواهند شد. برای تشریح این آزمایش با استفاده از قانون لنز به صورت زیر عمل میکنیم:
زمانی که آهنربا را به آرامی به حلقه نزدیک میکنیم، تعداد خطوط شار مغناطیسی که از حلقه میگذرد، تغییر میکند و همین امر سبب ایجاد یا القا جریان در حلقه میشود و چون در ابتدا هیچ جریانی وجود نداشت، این جریان باید در جهتی باشد که با هل دادن آهنربا به سمت حلقه مخالفت کند. برعکس ، اگر بخواهیم آهنربا را از حلقه دور کنیم، باز جهت جریان در حلقه عوض شده و از دور کردن آن جلوگیری میکند. یعنی در حالت اول اگر قطب N آهنربای میلهای در طرف حلقه باشد، جریان القایی در حلقه به گونهای خواهد بود که در برابر آن یک قطب N ایجاد کند تا مانع نزدیک شدن آهنربا شود.
حال زمانی که آهنربا را از حلقه دور میکنیم، حلقه جهت جریان خود را عوض نموده و با ایجاد قطب S ، آهنربا را جذب کرده و مانع از دور کردن آن میشود.
قانون لنز و پایستگی انرژی
اگر توضیحات فوق بر اساس قانون لنز نبوده و عکس آن چیزی که گفته شد، اتفاق بیفتد، یعنی اگر جریان القایی به تغییری که باعث بوجود آمدن آن شده است، کمک کند، قانون بقای انرژی نقض میشود، یعنی اگر هنگام نزدیک کردن قطب آهنربا به حلقه در برابر آن قطب مخالف S ایجاد شده و آهنربا را جذب کند، در این صورت آهنربا باید به طرف حلقه شتاب پیدا کند و رفته رفته انرژی جنبشی آن افزایش پیدا کند و در همین هنگام انرژی گرمایی نیز ظاهر میشود. یعنی در واقع از
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
آلیاژهای بکار رفته در پره های توربین
آلیاژهای بکار رفته در توربین گازی معمولاً از جنس سوپرآلیاژهای پایه نیکل (پره های متحرک) و پایه کبالت (پره های ثابت) می باشد. روشهای عمده تولید پره ها معمولاً ریخته گری و فورج می باشند نحوه ساخت پره های سوپرآلیاژها در سال 1940 شروع شد. و از آن به بعد پیشرفتهای قابل توجه در نحوه ساخت و افزایش استحکام صورت گرفت که ذوب در خلاء بصورت القایی (VIM) بصورت تجاری از سال 1950 و بعد از آن آلیاژهای پلی کریستالی از سال 1970 شروع به تولید شد.
از دهه 60، آلیاژهای پلی کریستال دارای نظم دانه ای خاصی شده بطوریکه انجماد جهت دار پره های توربین در سال 1980 پره های تک کریستالی وارد مرحله ای جدید از تولید شدند.
خلاصه از مشخصات سوپرآلیاژهای پایه نیکلی
سوپرآلیاژها، موادی هستند که در حرارتهای بالا (85% دمای ذوب آلیاژ) دارای استحکام مکانیکی بالا و مقاوم در برابر از بین رفتن سطح (مثلاً خوراکی) می باشند. سوپرآلیاژهای پایه نیکلی از مهمترین و پرکاربردترین آلیاژها در مقایسه با سوپرآلیاژ پایه کبالت و یا پایه آهن بشمار می روند وجود نیکل بعنوان فلز پایه می تواند باعث استحکام پذیری این آلیاژ با روشهای معمول (رسوب سختی) شود. با آلیاژ نمودن با کروم و آلومینیوم می توان پایداری سطح آلیاژ بدست آمده را جهت کاربردهای مختلف مهیا نمود.
ترکیبات شیمیایی سوپرآلیاژهای پایه نیکلی
ترکیبات شیمیایی بسیاری از سوپرآلیاژهای پایه نیکل که با بیش از 12 عنصر میباشند یکی از پیچیده ترین آلیاژها بشمار می روند. در عملیات ذوب ریزی عناصر مضری مثل سیلسیوم، فتقر، گوگرد، اکسیژن و نیتروژن کنترل و عناصر ناچیز مثل سلنیوم، بیموت و سرب در حد PPm (خصوصاً برای ساخت قطعات با شرایط بحرانی) نگهداشته میشوند. که در این جا فقط به ترکیبات شیمیایی سوپرآلیاژ IN-738 می پردازیم.
Ta
B
C
V
Cb
AL
Ti
Mo
W
Fe
Co
Ni
Cr
عناصر
آلیاژ
1.75
0.001
0.10
0
0.90
3.4
3.4
1.75
2.6
0.2
8.3
61.6
16
IN-738
وجود عناصری همچون مولیبدن، نیوبیم و تنگستن علاوه بر افزایش استحکام، باعث ایجاد و تشکیل کاربیدهای مفید می گردند. و از طرفی عناصر کرم و آلومینیوم باعث پایداری سطح می شوند و با ایجاد لایه اکسیدی محافظ ، مقاومت به اکسیداسیون و خوردگی را افزایش می دهند.
میکروساختارهای سوپرآلیاژهای پایه نیکل:
فازهای عمده ای در آلیاژهای پایه نیکل وجود دارد که عبارتند از:
فاز زمینه : این فاز بصورت پیوسته و غیر مغناطیسی می باشد این فاز در برگیرنده درصد بالایی از عناصر کبالت، آهن، کرم، مولیبدن و تنگستن می باشد. نیکل خالص معمولاً دارای خواص خزشی ضعیفی است در حالیکه سوپرآلیاژهای نیکل با داشتن فاز دارای استحکام بالا در درجه حرارتهای زیاد می باشد.
فاز : وقتی مقدار کافی آلومینیوم و تیتانیوم به آلیاژ اضافه شود رسوبات با ترکیب Ti و با شبکه f:c.c در زمینه ایجاد می شود در فاز ممکن است عناصری مثل Nb، Ta و Cr بطور محسوس وجود داشته باشند.
فاز دارای ترکیب بین فلزی (Intermetalic compound) با شبکه f.c.c با شرایط (Super laftic) شبیه ساختار
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
آلیاژهای بکار رفته در پره های توربین
آلیاژهای بکار رفته در توربین گازی معمولاً از جنس سوپرآلیاژهای پایه نیکل (پره های متحرک) و پایه کبالت (پره های ثابت) می باشد. روشهای عمده تولید پره ها معمولاً ریخته گری و فورج می باشند نحوه ساخت پره های سوپرآلیاژها در سال 1940 شروع شد. و از آن به بعد پیشرفتهای قابل توجه در نحوه ساخت و افزایش استحکام صورت گرفت که ذوب در خلاء بصورت القایی (VIM) بصورت تجاری از سال 1950 و بعد از آن آلیاژهای پلی کریستالی از سال 1970 شروع به تولید شد.
از دهه 60، آلیاژهای پلی کریستال دارای نظم دانه ای خاصی شده بطوریکه انجماد جهت دار پره های توربین در سال 1980 پره های تک کریستالی وارد مرحله ای جدید از تولید شدند.
خلاصه از مشخصات سوپرآلیاژهای پایه نیکلی
سوپرآلیاژها، موادی هستند که در حرارتهای بالا (85% دمای ذوب آلیاژ) دارای استحکام مکانیکی بالا و مقاوم در برابر از بین رفتن سطح (مثلاً خوراکی) می باشند. سوپرآلیاژهای پایه نیکلی از مهمترین و پرکاربردترین آلیاژها در مقایسه با سوپرآلیاژ پایه کبالت و یا پایه آهن بشمار می روند وجود نیکل بعنوان فلز پایه می تواند باعث استحکام پذیری این آلیاژ با روشهای معمول (رسوب سختی) شود. با آلیاژ نمودن با کروم و آلومینیوم می توان پایداری سطح آلیاژ بدست آمده را جهت کاربردهای مختلف مهیا نمود.
ترکیبات شیمیایی سوپرآلیاژهای پایه نیکلی
ترکیبات شیمیایی بسیاری از سوپرآلیاژهای پایه نیکل که با بیش از 12 عنصر میباشند یکی از پیچیده ترین آلیاژها بشمار می روند. در عملیات ذوب ریزی عناصر مضری مثل سیلسیوم، فتقر، گوگرد، اکسیژن و نیتروژن کنترل و عناصر ناچیز مثل سلنیوم، بیموت و سرب در حد PPm (خصوصاً برای ساخت قطعات با شرایط بحرانی) نگهداشته میشوند. که در این جا فقط به ترکیبات شیمیایی سوپرآلیاژ IN-738 می پردازیم.
Ta
B
C
V
Cb
AL
Ti
Mo
W
Fe
Co
Ni
Cr
عناصر
آلیاژ
1.75
0.001
0.10
0
0.90
3.4
3.4
1.75
2.6
0.2
8.3
61.6
16
IN-738
وجود عناصری همچون مولیبدن، نیوبیم و تنگستن علاوه بر افزایش استحکام، باعث ایجاد و تشکیل کاربیدهای مفید می گردند. و از طرفی عناصر کرم و آلومینیوم باعث پایداری سطح می شوند و با ایجاد لایه اکسیدی محافظ ، مقاومت به اکسیداسیون و خوردگی را افزایش می دهند.
میکروساختارهای سوپرآلیاژهای پایه نیکل:
فازهای عمده ای در آلیاژهای پایه نیکل وجود دارد که عبارتند از:
فاز زمینه : این فاز بصورت پیوسته و غیر مغناطیسی می باشد این فاز در برگیرنده درصد بالایی از عناصر کبالت، آهن، کرم، مولیبدن و تنگستن می باشد. نیکل خالص معمولاً دارای خواص خزشی ضعیفی است در حالیکه سوپرآلیاژهای نیکل با داشتن فاز دارای استحکام بالا در درجه حرارتهای زیاد می باشد.
فاز : وقتی مقدار کافی آلومینیوم و تیتانیوم به آلیاژ اضافه شود رسوبات با ترکیب Ti و با شبکه f:c.c در زمینه ایجاد می شود در فاز ممکن است عناصری مثل Nb، Ta و Cr بطور محسوس وجود داشته باشند.
فاز دارای ترکیب بین فلزی (Intermetalic compound) با شبکه f.c.c با شرایط (Super laftic) شبیه ساختار