دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درباره انتگرال

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

12- انتگرال فوریه تابع f را بدست آورید.

حال: چون این تابع زوج است پس

 

با توجه به انتگرال لاپلاس داریم:

 

 

13- (برق 76) حاصل سری را به کمک بسط فوریه تابع متناوب در بازه (1/1-) بدست آورید.

 

 

حل:

 

 

14- (مکانیک 71-70) تابع f در بازه با ضابطه تعریف شده است. سری فوریه کسینوسی نیمه دامنه f را بدست آورید.

حل:

 

 

 

 

15- (مکانیک 70-69) تابع و a عدد ثابت نادرست مفروض است. سری فوریه تابع f(t) را بدست آورید.

 

حل: تابع f(x) زوج است پس:

 

 

 

 

 

 

16- سری فوریه مثلثاتی تابع و را بدست آورید.

حل:

 

 

 

 

 

17- بسط نیم دامنه ای سری کسینوسی فوریه تابع و را بدست آورید.

حل:

 

 

 

 

18- اگر بسط فوریه بصورت باشد آنگاه بسط فوریه تابع و را بدست آورید.

حل: اگر از بسط فوریه تابع ، جمله به جمله انتگرال گیری کنیم به بسط فوریه تابع می رسیم. البته را باید محاسبه کنیم.

 

 

 

 

19- (برق 70-69) هر گاه تابع f(x) بصورت زیر تعریف شده باشد، آنگاه در سری فوریه f(x)، ضریب کدام جملات ممکن است غیر صفر باشد:

 

حل: چون f(x) زوج است پس . پس ضرایب زوج و فرد سینوسی صفر است.

 

 

با توجه به رابطه بدست آمده، اگر n زوج باشد، ولی اگر n را فرد انتخاب کنیم، . پس ضرایب جملات فرد کسینوسی غیر صفر می باشد. البته n=2 یک نقطه مبهم است. با رفع ابهام و جلوگیری متوجه می شویم که حد در n=2 نیز صفر است.



خرید و دانلود تحقیق درباره انتگرال


تحقیق درباره انتگرال تصادفی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 67

 

انتگرال تصادفی: (18)

فرآیند x(t)، انتگرال پذیر MS است اگر

(5-39)

قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)

نتیجه: (5-41)

فصل ششم: زنجیرهای مارکف:

فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)

 

و اگر آنگاه:

حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.

تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.

تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.

احتمالات انتقال: (20)

احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:

(6-3)

احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.

این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.

تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.

هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:

 

سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:

 

(6-5)

و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:

(6-6)

نمونه هایی از زنجیره های مارکف: (20)

1) زنجیرهای مارکف همگن: (18)

تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)

که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.

مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.

(6-8)

بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.

زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:

یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد

همچنین و

مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.

الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن به شکل زیر می باشد. یکسان بودن سطرها



خرید و دانلود تحقیق درباره انتگرال تصادفی


تحقیق درباره انتگرال 10 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

انتگرال :

در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.

 

انتگرال یک تابع مساحت زیر نمودار آن تابع است.

از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود . اگر تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند . اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند. محاسبه انتگرال

اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم: 1.f تابعی در بازه (a,b) در نظر می گیریم . 2.پاد مشتق f را پیدا می کنیم که تابعی است مانند f که و داریم: 3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می گیریم: بنابراین مقدار انتگرال ما برابر خواهد بود. به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم . معمولاً پیدا کردن پاد مشتق تابع f کار ساده ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارتند از :

انتگرال گیری بوسیله تغییر متغیر

انتگرال گیری جزء به جزء

انتگرال گیری با تغییر متغیر مثلثاتی

انتگرال گیری بوسیله تجزیه کسرها

روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می رود همچنین می توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می توانید به انتگرال گاوسی مراجعه کنید . تقریب انتگرالهای معین

 

محاسبه سطح زیر نمودار بوسیله مستطیل هایی زیر نمودار.هر چه قدرعرض مستطیل ها کوچک میشوندمقدار دقیق تریاز مقدار انتگرال بدست میآید.

انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی ترین روش ها ،روش مستطیلی نامیده می شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روش هایی معروف برای تخمین مقدار



خرید و دانلود تحقیق درباره انتگرال 10 ص