دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد تعریف امواج اولتراسوند فراصوت

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 19 صفحه

 قسمتی از متن .doc : 

 

رفتار موجی ـ ذره‌ایدر سال 1901 ماکس پلانک (Max Planck: 1947-1858) اولین گام را به سوی مولکول نور برداشت و با استفاده از ایده‌ی تقسیم نور، جواب جانانه‌ای به این سؤال داد. او فرض کرد که انرژی تابشی در هر بسامدِ ν ــ بخوانید نُو ــ به صورت مضرب صحیحی از νh است که در آن h یک ثابت طبیعی ــ معروف به «ثابت پلانک» ــ است. یعنی فرض کرد که انرژی تابشی در بسامد ν از «بسته های کوچکی با انرژی νh» تشکیل شده است. یعنی اینکه انرژی نورانی، «گسسته» و «بسته ـ بسته» است. البته گسسته بودن انرژی به‌تنهایی در فیزیک کلاسیک حرفِ ناجوری نبود‌ (همان‌طور که قبل‌تر در مورد امواج صوتی دیدیم)، بلکه آنچه گیج‌کننده بود و آشفتگی را بیشتر می‌کرد، ماهیتِ «موجی ـ ذره‌ای» نور بود. این تصور که چیزی ــ مثلاً همین نور ــ هم بتواند رفتاری مثل رفتار «موج» داشته باشد و هم رفتاری مثل «ذره»، به طرز تفکر جدیدی در علم محتاج بود.

تعریف امواج اولتراسوند فراصوتامواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته می‌شود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین 20 هرتز تا 20000 هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز ، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت می‌کند. در حرکت یا گسیل موج مکانیکی ، ماده منتقل نمی‌شود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ می‌دهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج سر و کار داریم. روشهای تولید امواج فراصوت روش پیزو الکتریسیته تاثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته می‌گویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی ، نیروی الکتریکی تولید می‌کنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها می‌شود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج می‌شود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک می‌گویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین ماده‌ای بود که برای ایجاد امواج فراصوت از آن استفاده می‌شد که اکنون هم استفاده می‌شود. اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده می‌شود که سرامیکی بوده و بطور مصنوعی تهیه می‌شوند. از نمونه این نوع کریستالها ، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته می‌باشند. به این مواد که واسطه‌ای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا تراسدیوسر (transuscer) می‌گویند. یک ترانسدیوسر اولتراسونیک بکار می‌رود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند. روش مگنتو استریکسیون این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبی‌های مغناطیسی کوچک بطور خود به خود با دو قطبی‌های مجاور خود همخط شوند) تحت تاثیر میدان مغناطیسی بوجود می‌آید. مواد مزبور در این میدانها تغییر طول می‌دهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در می‌آیند و می‌توانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد. کاربرد امواج فراصوت 1. کاربرد تشخیصی (سونوگرافی) 2. بیماریهای زنان و زایمان (Gynocology) مانند بررسی قلب جنین ، اندازه ‌گیری قطر سر (سن جنین) ، بررسی جایگاه اتصال جفت و محل ناف ، تومورهای پستان. 3. بیماریهای مغز و اعصاب (Neurology) مانند بررسی تومور مغزی ، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی. 4. بیماریهای چشم (ophthalmalogy) مانند تشخیص اجسام خارجی در درون چشم ، تومور عصبی ، خونریزی شبکیه ، اندازه ‌گیری قطر چشم ، فاصله عدسی از شبکیه. 5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه‌ کبدی. 6. بیماری‌های قلبی (cardology) مانند بررسی اکوکار دیوگرافی. 7. دندانپزشکی مانند اندازه‌گیری ضخامت بافت نرم در حفره‌های دهانی. 8. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمی‌کنند. بنابراین برای زنان و کودکان بی‌خطر می‌باشند. 9. کاربرد درمانی (سونوتراپی) 10. کاربرد گرمایی با جذب امواج فراصوت بوسیله بدن بخشی از انرژی آن به گرما تبدیل می‌شود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع می‌کند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش می‌دهد. کشش در scars (اسکار=جوشگاههای زخم) افزایش می‌دهد و باعث بهبود آنها می‌شود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها می‌شود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است. میکروماساژ مکانیکی به هنگام فشردگی و انبساط محیط ، امواج طولی فراصوتی روی



خرید و دانلود تحقیق در مورد تعریف امواج اولتراسوند فراصوت


تحقیق درمورد تاثیر امواج بر گیاهان

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

فهرست مطالب

تبدیل الگوهای کاری سلول‌های زنده گیاهان به نت موسیقی 2

انرژى گرفتن از گیاهان 5

تبدیل الگوهاى کارى سلول‌هاى زنده گیاهان به نت موسیقى 5

گیاهان به کاوش قلمرو خود می پردازند: 8

گیاهان از خود دفاع می کنند : 9

گیاهان استدلال می کنند : 9

گیاهان حساس هستند : 10

آیا گیاهان می شنوند؟ 11

نتایج عجیب آزمایش تأثیر تلفن همراه بر گوجه‌فرنگی 12

تأثیر مستقیم موسیقی بر روی گیاهان: 15

منابع: 16

تاثیر امواج بر گیاهان

تبدیل الگوهای کاری سلول‌های زنده گیاهان به نت موسیقی

از زمان‌هاى بسیار قدیم، پزشکان به این حقیقت آشنا بودند که صداى موسیقى در شفاى پاره‌اى امراض به‌خصوص بیمارى‌هاى روانى اعجاز مى‌کند. رشد گیاهان را سرعت مى‌بخشد و در حیوانات و انسان‌هائى که در معرض انواع صداها قرار مى‌گیرند و تغییرات و تحولات کاملاً محسوسى پدید مى‌آورد و اینک براساس دانش جدید، همه این پدیده‌ها نشانگر آن است که امواج صدا حامل نوعى انرژى هستند که عمیقاً بر روى سلول‌ها اثر مثبت یا منفی، باقى مى‌گذارند. در مصر قدیم، صدا به‌عنوان یکى از ابزارهاى اصلى براى درمان پاره‌اى بیمارى‌هاى به‌کار مى‌رفت. یونانیان، ایرانیان، هندى‌ها، سرخ‌پوستان آمریکا و بسیارى از قبایل بدوى از این سیستم معالجه سود مى‌گرفتند. فیثاغورث حکیم یونانی، در آموزش‌هاى خود، از صدا به‌عنوان یک نیروى خلاق نام مى‌برد که ارتعاشات آن هم جنبه مادى و فیزیکى و هم اثرات معنوى دارد. او مدعى بود که این علم را در انجمن‌هاى سرى مصر فرا گرفته است. بنابراین مقدمه، اگر در مصر قدیم به خواص و آثار مرتبط بر صدا تا این حد آشنائى داشتند کاملاً منطقى به‌نظر مى‌رسد که جنبه‌هاى آکوستیک معمارى (بخشى از علم فیزیک که به مطالعه اصوات و امواج صوتى مى‌پردازد، امکانات یک مکان از نظر پخش امواج صوتى را آکوستیک مى‌گویند.) را در ساختمان هرم رعایت کرده باشند و حقایق مشهود نیز این گمان را تأیید مى‌نماید.

در تمدن و فرهنگ ملل قدیم به‌خصوص در افسانه‌هاى ملت چین، مکرر از نوعى ”نداسنگ“ یاد مى‌شود. این سنگ‌ها از نوع یشم بوده و به هنگام برخورد دو قطعه از آنها، آوائى خوش شبیه به آهنگ موسیقى شنیده مى‌شود. چینى‌ها این طنین را صدائى آسمانى و نداى بزرگ طبیعت مى‌نامیدند. همچنانکه صوفیان، لفظ ”هو“ را که به معناى حق یا ”الله“ به‌کار مى‌برند، کلمه‌اى پرطنین و مقدس مى‌شمارند.

یکى از جالب‌ترین تجربیات در مورد تأیید صدا به‌وسیله خانم ”دوروتى رتالاک“ همسر یک موسیقیدان به عمل آمده است. وى به اتفاق ”فرانسیس برومن“ استاد رشته زیست‌شناسى دانشگاه آمریکا، چند نمونه گیاه را براى انجام مطالعات خود انتخاب کردند. یک نمونه از گیاهان در مقابل بلندگوئى که صدا تند موسیقى ”راک“ از آن پخش مى‌شد و نمونه‌هاى مشابه دیگر در مقابل موسیقى ملایم کلاسیک قرار داده شد و غرض این بود که رشد آن گیاهان، با نمونه‌هاى مشابهى که در فضاى ساکت نگاهدارى مى‌شد مقایسه شود. نتیجه آزمایش نشان داد که گیاهان دسته اول سعى داشتند تا آنجا که ممکن است خود را از منبع صدا دور کنند تا آنجا که زاویه انجراف و خمش گیاه تا ۸۰ درجه رسید، ساقه‌ها باریک و شکننده شد و چندى بعد بعضى از آنها به کلى خشکید. در حالى‌که در گیاهان دسته دوم عکس این حالت مشاهده شد، ساقه‌ها خود را به بلندگو نزدیک ساخته و به دور آن پیچیدند ریشه‌ها قوت گرفت، شکوفه‌ها زودتر از موعد شکفتند و گیاه درشت و استوار گردید.

بعدها ”دکتر دیل کوچمن“ استاد علوم باغبانى و گیاه‌شناسى ایستگاه کشاورزى تجربی، تجربیات خانم ”دوروتى رتالاک“ را با نمونه‌ها و امکانات بیشترى که در اختیار داشت دنبال نمود و نتایج خود را به قرار زیر بیان نمود:

۱. در صورتى‌که گیاه با موسیقى مطبوع خود تغذیه شود، در یک سوم زمان طبیعى لازم، شکفته مى‌شود و به ثمر مى‌رسد.

۲. چنانچه شدت و ارتفاع صوت و یا زمان ”تغذیه صوتى گیاه“ بیش از حد لازم باشد، در این‌صورت واکنش منفى نشان مى‌دهد و نتیجه معکوس مى‌شود.

۳. انواع آلات موسیقى بر روى گیاهان تأثیرهاى متفاوت دارند، نوع موسیقى و زمان تغذیه صوتى هر گیاه باید بر حسب تجربه مشخص شود.

۴. هر گیاه آهنگ و موسیقى خاص خود را دوست دارد و در مقابل آن بیشترین حساسیت را نشان مى‌دهد. بسیارى از گیاهان ظاهراً به نواى ”فلوت“ یا ”ویلون“ بیش از سازهاى دیگر عکس‌العمل نشان مى‌دهند.

براساس تحقیقات دکتر ”سینگ“ استاد دانشگاه هند، پس از سال‌ها تجربه در زمینه آثار صدا، این نتایج حاصل شده است:

۱. موسیقى موجب مى‌شود که گیاه به مقدار ۶۰% الى ۱۰۰% درصد اکسیژن بیشتر از حد متعارف آزاد کند و چون مقدار اکسیژن آزاد شده دقیقاً متناسب با مقدار کربن جذب شده از گازکربنیک موجود در هوا است، در نتیجه گیاه مقدار بیشترى رشد مى‌کند و مقدار فراوان‌ترى گل یا میوه مى‌دهد.

۲. تحریکات مکرر موسیقى موجب ایجاد تغییرات مثبت در کروموزم‌هاى سلولى پاره‌اى از گیاهان مى‌گردد و به دگرگونى ماهیت و اصل آن منتهى مى‌شود (کروموزم: رشته‌هاى موجود در سلول‌هاى جنسى که عامل انتقال صفات وراثتى هستند)

۳. تأثیر صدا در متابولیسم گیاهان نه یک افسانه موهوم، بلکه یک پدیده فیزیکى مشخص و قابل اندازه‌گیرى است که همانند نور و حرارت، از عوامل مؤثر و قطعى به شمار مى‌رود.

اداره کشاورزى هندوستان، با استفاده از تجربیات ”دکتر سینگ“ در سال ۱۹۵۸ به کمک موسیقى از ۲۸ تا ۶۱ درصد میزان محصول برنج و نیشکر را بالا برد.



خرید و دانلود تحقیق درمورد تاثیر امواج بر گیاهان


تحقیق در مورد امواج فروسرخ

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 1 صفحه

 قسمتی از متن .doc : 

 

امواج فروسرخ

امواج فروسرخ نوعی از امواج الکترومغناطیسی هستند که بعد از برخورد با جسم موجب گرم شدن آن می‌شود. این امواج دسته‌ای از پرتو‌های نامرئی خورشید هستند. به همین سبب وقتی در مقابل نور خورشید قرار می‌گیریم احساس گرما می‌کنیم. این امواج دارای طول موج بیش تر از امواج مرئی و دامنهٔ کمتر از آن‌ها هستند. به همین دلیل در نمودار طیف الکترومغناطیس بعد از امواج مرئی (قابل مشاهده) قرار دارد. این امواج در نمودار بعد از رنگ قرمز در امواج مرئی که کم ترین شکست را نسبت به بقیهٔ رنگ‌ها دارد قرار می‌گیرد. به همین سبب به آن‌ها امواج فروسرخ یا مادون قرمز می‌گویند.

کاربرد‌ها

در تلفن همراه

قابلیت تبادل اطلاعات از راه بیسیم به وسیلهٔ پرتوی نامرئی فروسرخ (اینفرارد). شما می‌توانید به وسیلهٔ این قابلیت اطلاعاتی مانند عکس‌، فیلم‌و یا دیگر موارد را به گوشی‌های تلفن همراه دیگر و یا رایانهٔ خود ارسال نمایید. البته باید توجه داشته باشید سرعت انتقال اطلاعات با فروسرخ بسیار پایین است و برای انتقال فایل‌ها با حجم بالا از نظر زمانی مناسب نیست.

فیزیوتراپی

در فیزیوتراپی جهت درمان بسیاری از بیماریها و کنترل درد از سیستم IR استفاده می‌گردد.



خرید و دانلود تحقیق در مورد امواج فروسرخ


تحقیق در مورد نور و امواج الکترومغناطیس

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 26 صفحه

 قسمتی از متن .doc : 

 

نور و امواج الکترومغناطیس

مقدمه

امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجاییکه مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل نارسایی مکانیک کلاسیک را دانست. لذا در این فصل دانش نور را تا پیش از ارائه شدن رابطه ی مشهور پلانک بررسی می کنیم و در فصل جداگانه ای خواص امواج الکترومغناطیسی بعد از مکانیک کوانتوم و نسبیت بررسی خواهد شد.

خواص نور

نخستین مسئله ای مهم جلوه می کرد این بود که نور چیست؟ از آنجاییکه عامل دیدن بود و در تاریکی چیزی دیده نمی شد، سئوال این بود که نور چیست؟ چرا می بینیم و نور چگونه و توسط چه چیرزی تولید می شود؟ بالاخره این نظریه پیروز شد که نور توسط اجسام منیر نظیر خورشید و مشعل تولید می شود. بعد از آن مسئله انعکاس نور مورد توجه قرار گرفت و اینکه چرا برخی از اجسام بهتر از سایر اجسام نور را باز تابش می کنند؟ چرا نور از برخی اجسام عبور می کند و از برخی دیگر عبور نمی کند؟ چرا نور علاوه بر آنکه سبب دیدن است موجب گرم شدن نیز می شود؟ نور چگونه منتقل می شود؟ سرعت آن چقدر است؟ و سرانجام ماهیت نور و نحوه ی انتقال آن چیست؟

نخستین آزمایش مهم نور توسط نیوتن در سال 1666 انجام شد. وی یک دسته اشعه نور خورشید را که از شکاف باریکی وارد اتاق تاریکی شده بود، بطور مایل بر وجه یک منشور شیشه ای مثلث القاعده ای تابانید. این دسته هنگام ورود در شیشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد.

نیوتن دسته اشعه خارج شده را بر یک پرده سفید انداخت. وی مشاهده کرد که به جای تشکیل یک لکه سفید نور، دسته اشعه در نوار رنگینی که به ترتیب مرکب از رنگهای سرخ، نارنجی، زرد، سبز، آبی و بنفش است پراکنده شده است. نوار رنگینی را که از مولفه های نور تشکیل می شود، طیف می نامند.

نیوتن نظر داد که نور از ذرات بسیار ریز - دانه ها - تشکیل می شود که با سرعت زیاد حرکت می کند. علاوه بر آن به نظر نیوتن نور در محیط غلیظ باسرعت بیشتری حرکت می کند. اگر نظر نیوتن در مورد سرعت نور درست می بود می بایست سرعت نور در شیشه بیشتر از هوا باشد که می دانیم درست نیست.

هویگنس در سال 1690 رساله ای در شرح نظریه موجی نور منتشر کرد. طبق اصل هویگنس حرکت نور به صورت موجی است و از چشمه های نوری به تمام جهات پخش می شود. هویگنس با به کاربردن امواج اصلی و موجک های ثانوی قوانین بازتاب و شکست را تشریح کرد. هویگنس نظر داد که سرعت نور در محیط های شکست دهنده کمتر از سرعت نور در هوا است که درست است.

پیروزی نظریه موجی نور

نظریه دانه ای نیوتن هرچند بعضی از سئوالات را پاسخ می گفت، اما باز هم پرسش هایی وجود داشت که این نظریه نمی توانست برای آنها جواب قانع کننده ای ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بیشتر منحرف می شوند؟ چرا دو دسته اشعه ی نور می توانند بدون آنکه بر هم اثر بگذارند، از هم بگذرند؟

اما بر اساس نظریه موجی هویگنس، دو دسته اشعه ی نورانی می توانند بدون آنکه مزاحمتی برای هم فراهم کنند از یکدیگر بگرند. هویگنس نمی دانست که نور موج عرضی است یا موچ طولی، و طول موج های نور مرئی را نیز نمی دانست. ولی چون نور در خلاء نیز منتشر می شود، وی مجبور شد محیط یا رسانه حاملی برای این انتشار این امواج در نظر بگیرد. هویگنس تصور می کرد که این امواج توسط اتر منتقل می شوند. به نظر وی اتر محیط و مایع خیلی سبکی است و همه جا، حتی میان ذرات ماده نیز وجود دارد.

نظری هویگنس نیز بطور کامل رضایت بخش نبود، زیرا نمی توانست توضیح دهد که چرا سایه ی واضح تشکیل می شود، یا چرا امواج نور نمی توانند مانند امواج صوت از موانع بگذرند؟

نظریه موجی و دانه ای نور بیش از یکصد سال با هم مجادله کردند، اما نظریه دانه ای نیوتن بیشتر مورد قبول واقع شده بود، زیرا از یکطرف منطقی تر به نظر می رسید و از طرف دیگر با نام نیوتن همراه بود. با وجود این هر دو نظریه فاقد شواهد پشتوانه ای قوی بودند. تا آنکه بتدریج دلایلی بر موجی بودن نور ارائه گردید



خرید و دانلود تحقیق در مورد نور و امواج الکترومغناطیس


تحقیق درباره امواج صوتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 48

 

امواج صوتی

امواج صوتی شکلی از امواج مکانیکی طولی هستند که عموماً در هوا منتشر شده ( اگر چه قابل انتشار در تمام محیط های مادی نیز می باشند ) و در برخورد با گوش انسان ، احساس شنیدن را ایجاد می کنند . بنابراین ، امواجی با این مشخصات که قابلیت درک توسط گوش انسان نباشد ، صوت اطلاق نمی شوند . عوامل محدود کننده صوت برای درک حسی آن ، فرکانس و بلندی است .

محدوده فرکانس درک برای انسان ، بین 16 تا 20000 هرتز است . امواج خارج از این محدوده فرکانس را مادون صوت ( فروصوت ) و ماوراء صوت ( فراصوت ) ، می نامند .

نحوه تولید صوت

نوسان ممتد یک محیط الاستیک می تواند تحت شرایطی باعث ارتعاش مولکول های هوای مجاور و تغییر مداوم فشار هوا گردد که این تغییر فشار به طور محدود و جزئی ، کمتر و بیشتر از فشار اتمسفر است . این موج به صورت طولی در هوا منتشر گردیده و در محدوده معینی از نظر فرکانس و دامنه برای انسان قابل درک است و به آن صوت می گویند . مثال ساده آن ، ارتعاش دیافراگم بلندگو و تولید صوت است .

ساده ترین امواج صوتی ، امواج سینوسی هستند که دارای سه مشخصه ، فرکانس f ، طول موج و دامنه فشار P مربوط به خود بوده . در یک منحنی سینوسی ، یک نقطه قله و یک نقطه دره از دامنه وجود دارد و این دو تغییر دامنه به یک اندازه احساس می گردد . موج صوتی سینوسی با سه مشخصه اصلی فرکانس ، دامنه و طول موج معرفی می شود و روابط زیر بر آن حاکم می باشد :

( 1-1 )

T : زمان متناوب

C : سرعت برحسب متر بر ثانیه

در صورتی که دامنه تغییرات برحسب فشار هوا در نظر گرفته شود ، معادله موج فشار به صورت زیر خواهد بود :

( 2-1 )

: دامنه فشار در زمان t

: حداکثر دامنه فشار هوا

: سرعت زاویه ای

: اختلاف فاز

گوش انسان به طور طبیعی قادر به درک امواج صوتی با حداقل دامنه فشار 20 میکرو پاسکال یا است که آن را آستانه شنوایی می نامند . هر پاسکال ده میکروبار است .

سنجش تغییرات دامنه صوت ، شامل تر و آسان تر از دامنه های دیگر ( شدت و توان ) می باشد . بدین لحاظ در مباحث اندازه گیری صوت در محیط کار ، عموماً فشار مورد اندازه گیری قرار می گیرد .

انواع صوت از نظر محیط انتشار

با توجه به تمایز مشخصه های صوتی در محیط انتشار ، صوت برحسب محیط به دو گروه تقسیم می شود :

الف ـ صوت هوایی : اصواتی هستند که در هوا یا گاز منتشر و به گوش می رسند .

ب ـ پیکری : اصواتی که از طریق محیط مایع یا جامد نتشر شده و به طریقه مستقیم ( از طریق تماس جمجمه ) یا پس از تبدیل به صوت هوایی ، قابل شنیدن هستند .

سرعت موج صوتی

سرعت موج صوتی که جزء امواج طولی است در یک محیط مادی ، بستگی به خواص محیط دارد . محیط های گوناگون دارای چگالی ، الاستیسیته و اینرسی مخصوص به خود هستند و تحت این خواص ، موج صوتی در آن ها تولید و منتشر می گردد . برای هر محیط یک مدول الاستیکی معرفی نموده اند که تابع خواص آن محیط است . هر چه دانیسته محیط انتشار بیشتر باشد ، سرعت موج صوتی نیز بیشتر خواهد بود . بدین ترتیب سرعت صوت در مایعات بیشتر از هوا و در جامدات بیشتر از مایعات است . در جامدات سرعت موج ، وابسته به مدول یانگ و چگالی آن است .

مدول یانگ عبارت از نسبت تنش تراکمی یا تنش کششی محیط به کرنش تراکمی است .

( 3-1 )

Y : مدول یانگ ( Pa )

: چگالی

در محیط های انتشار مایع ، سرعت موج صوتی تابع مدول حجمی ( تغییر فشار به تغییر حجم نسبی ) و چگالی مایع است . مدول حجمی از جدول زیر ، که مربوط به ضریب تراکم است ، به دست می آید . مدول حجمی عکس ضریب تراکم است . برای محاسبه سرعت موج در مایعات ، از رابطه ( 4-1 ) استفاده می شود .



خرید و دانلود تحقیق درباره امواج صوتی