دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق در مورد رسانای الکتریکی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 16 صفحه

 قسمتی از متن .doc : 

 

رسانای الکتریکی (هادی):

به هر ماده ای که بتواند جریان الکتریکی را از خود عبور دهد رسانای الکتریکی یا هادی الکتریک (هدایت کننده جریان الکتریکی ) گویند مانند فلزات و به هر ماده که نتواند جریان الکتریکی را از خود عبور دهد نارسانا یا غیرهادی گویند مانند پلاستیک ، چرم ، کاغذ وغیره

مقاومت چیست ؟

هر هادی الکتریکی در برابر عبور جریان مقداری مقاومت از خود نشان میدهد این مقاومت باعث میشود که جریان عبوری از هادی محدود شود، مثال دو لیوان آب را به یاد بیارید وقتی بین دولیوان که مقدار آبشان با هم برابر نبود لوله ای وصل کردیم آب از طرف لیوان پرتر به طرف لیوانه نصفه در درون لوله به حرکت در آمد حالا اگر یک شیر سر راه این لوله قرار دهیم چنانچه شیر را به سمت بسته شدن بچرخانیم لوله ارتباطی تنگ تر میشود در نتیجه جریان آب کاهش پیدا میکند یعنی مقاومت سر راه لوله را افزایش داده ایم پس مقدار مقاومت سر راه لوله تعیین کننده مقدار جریان آب عبوری از لوله است در واقع شیر یک وسیله برای کنترل جریان آب است به همین صورت با کم و زیاد کردن مقاومت موجود در مسیر یک مدار میتوان جریان کل مدار را کنترل کرد . مقدار مقاومت بستگی به جنس هادی و طول آن دارد که آن را بر حسب اهم میسنجند.

یک اهم عبارتست از مقدار مقاومتی که اگر به دو سریک منبع ولتاژ یک ولتی وصل شود جریان یک آمپر از آن عبور کند .

هنگام در گیری سربازهای سیم و سربازهای الکترونی ، الکترونها با سلاح های گرم به جون سیم می افتند و در اثر این جنگ و آتش سوزی مقداری از انرژی سربازهای الکترونی بصورت گرما هدر میرود (میدونم که بی مزه بود شما زحمت انتقاد کردن رو نکشید البته اگر خواننده ای باشه که از این خبرها نیست) پس یکی از کارهایی که مقاومت انجام داد این بود که مقداری از جریان را تبدیل به گرما کرد در بعضی جاها ما عمداً برای تولید گرما از مقاومت استفاده میکنیم مثل مقاومت تنگستن لامپ یا سیم مقاومت داری که در سماورهای برقی یا بخاری برقی ها استفاده میکنیم که بهش المنت هم میگن.

در این جور مواقع که گرما کار مورد نیاز ما را انجام میده میگیم سیم یا دستگاه انرژی الکتریکی رو مصرف کرده اما هر وقت که این گرما رو لازم نداشته باشیم و بیخودی تولید بشه میگیم مقاومت سیم مقداری انرژی الکتریکی رو تلف کرده (آخ آخ چه کار بدی ) مثل گرمایی که در سیمهای انتقال انرژی (سیمهای رابط ) تولید میشه .

شکل ظاهری مقاومتها:

مقاومت ممکن است چندین حلقه سیم مسی نازک که به دور هسته ای پیچیده شده است باشد، و یا از مواد نیمه رسانا مانند کربن ساخته شده باشد. مواد نیمه رسانا نسبت به رساناها مقاومت بیشتری در برابر عبور جریان از خود نشان میدهند. مقاومتها به اشکال و اندازه های مختلفی ساخته میشوند که رایجترین آنها ، مقاومتهای رنگی هستند که از آنها در جریانهای پایین استفاده میشود و در جریانهای بالا معمولا از مقاومتهای سرامیکی یا آجری استفاده میشود که نسبت به مقاومتهای رنگی حجم بیشتری دارند .

سمبل مداری مقاومت به این شکلها است

 

 

 

حالا میخواهیم یک رابطه بین این سه کمیت پیدا کنیم:

مقاومت ، جریان ، ولتاژ

بازم مثال لیوان آب (راست میگن که آب مایه حیاته ؟)

گفتیم اگه یه شیر سر راه لوله رابط دو لیوان قرار دهیم میتونیم جریان آب رو کنترل کنیم حالا فرض کنید شیر آب رو به اندازه ای تنظیم کردیم که در هر ثانیه یک سی سی آب وارد لیوان نصفه میشه حالا میایم به جای لیوان پر آب یه گالن پر آب وصل میکنیم آیا بازم همون مقدار آب وارد لیوان نصفه میشه ؟

مسلماً اینجور نیست چون فشار آب زیاد شده . به ازای یک ثانیه آب بیشتری از لوله عبور میکنه پس هرچه فشار آب رو زیاد کنیم (اختلاف سطح آبها) جریان آب بیشتر میشه به همین صورت هم در مدار الکتریکی هر چه فشار الکتریکی (ولتاژ) رو افزایش دهیم در صورت ثابت بودن مقاومت مدار جریان نیز بیشتر میشود

آقای اهم این قانون رو کشف کرده که به این صورته:

مقاومت / ولتاژ= جریان عبوری از سیم



خرید و دانلود تحقیق در مورد رسانای الکتریکی


تحقیق درباره ی پوشش عایق های الکتریکی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

پوشش عایق های الکتریکی

مقدمه

مواد نانوساختار هم‌اکنون در حال پیدا کردن مصارف گسترده‌ای به ویژه در الکترونیک، مکانیک، فوتونیک، مغناطیس و مواد زیست دارویی می‌باشند. مواد نانوساختاری در مقایسه با مواد مشابهی که دارای همان ترکیب بوده ولی اندازه کریستالی معمولی دارند، دارای خواص بسیار بهتری هستند. خواص مکانیکی این مواد نیز به علت اندازه مناسب ذراتشان بسیار مطلوب است [1].

اصلاح سطوح فلزی برای دستیابی به مقاومت در برابر سایش و خوردگی، روشی مناسب از لحاظ تجاری می‌باشد. کروم سخت (ترسیب شده با الکترود) یکی از موادی است که به صورت گسترده برای پوشش‌های محافظ به کار می‌رود. پوشش‌های سرامیکی ـ چه به شکل تک فازی و چه به شکل کامپوزیتی ـ نیز معمول می‌باشند و با استفاده از روش پلاسما ـ اسپری به کار می‌روند. در این روش، ماده پوشاننده (غالباً به شکل پودر) درون یک جریان پلاسما پاشیده شده، در آن گرم شده، به سوی سطح مقصد شتاب داده می‌شود. پس از پوشاندن سطح، سرامیک به سرعت سرد شده و یک لایه پوششی ایجاد می‌کند [2و3].

هر دو روش پوشش با کروم و سرامیک دارای مشکلات مختلفی است که می‌تواند کاربرد آنها را محدود کند. در روش پوشش‌دهی الکترودی با کروم، از مواد خطرناکی استفاده می‌شود. استفاده از انواع روش‌های حفاظت از محیط زیست، استفاده از کروم سخت را بسیار گران قیمت می‌کند. پوشش‌های پلاسما ـ اسپری سرامیکی با در نظر گرفتن هزینه‌های تمیزکاری ارزان‌تر از کروم می‌باشند؛ ولی ترد بوده و در چسبندگی به سطح دارای محدودیت می‌باشند که برای کروم سخت نیز به عنوان مشکل به حساب می‌آید، لذا نیاز به مواد بهتر برای احساس می‌شود و محققان هم‌اکنون به دنبال یافتن مواد جانشین می‌باشند [2].در پنج سال گذشته کنسرسیومی از شرکت‌ها، دانشگاه‌ها و پرسنل نیروی دریایی ایالات متحده آمریکا به نوع جدیدی از پوشش‌های سرامیکی نانوساختار مقاوم در برابر سایش دست یافته‌اند. رهبری این کنسرسیوم بر عهده Intrament و دانشگاه Connecticut بوده و اعضای آن از این قرارند: شرکت A&A ، دانشگاه راتگرز، مؤسسه فناوری استیونز، مرکز جنگ سطحی نیروی دریایی (بخش Carderock) و کارخانه کشتی‌سازی نیروی دریایی آمریکا. این طرح را دفتر تحقیقاتی نیروی دریایی آمریکا تعریف کرده، موضوع آن دست یافتن به آن عده از خواص مکانیکی و سایشی می‌باشد که با استفاده از مواد معمول قابل دست‌یابی نیستند. منظور از مواد معمول، مواد با ساختار میکرونی یا بزرگ‌تر می‌باشد [1].نانوساختارها، ساختارهای بسیار ریزی هستند که ابعادی کمتر از 100 نانومتر دارند. این اندازه می‌تواند اندازه دانه، قطر ذره یا فیبر و یا ضخامت لایه باشد (شکل1). تغییرات عمده در خواص مواد با کوچک شدن اندازه میکروساختارها به دو علت است: اول اینکه با کوچک شدن اندازه دانه، تعداد اتم‌ها در مرزها یا سطوح به شدت افزایش می‌یابد. در یک ماده پلی‌کریستال با اندازه دانه 10 نانومتر، %50 از اتم‌ها در مرزهای دانه حضور دارند که باعث ایجاد ماده‌ای با خواص بسیار متفاوت از حالت معمول ماده می‌شود و علت دیگر به این قاعده مربوط می‌شود که بسیاری از خواص فیزیکی تحت تأثیر یک طول ویژه قرار دارند. وقتی اندازه ماده از این مقدار کمتر می‌شود خواص به شدت تغییر می‌کند. تاکنون به علت ناتوانی در تولید یکپارچه مواد با کیفیت بالا، این تغییرات در خواص و مدهای خستگی به خوبی

شناخته نشده بود. این وضعیت با دستیابی به موفقیت‌هایی در زمینه تولید نانومواد و همچنین یافتن روابط درونی بین خواص در مقیاس نانو با ساختار و خواص در مقیاس بزرگ به سرعت در حال تغییر است [1].

تولید پوشش‌های نانوسرامیک

راهبرد گسترش مواد پوششی نانوساختار، بر روی ترکیبات پوشش‌های فعلی و استفاده از لوازم ته‌نشین‌سازی موجود برای تولید آنها متمرکز شده است. تنها با تغییر اندازه ساختار پوشش‌ها، کاربرد آنها بسیار ساده‌تر شده است. یکی از پوشش‌های در حال گسترش، یک نانوسرامیک با ترکیبAl2O3-13TiO2 می‌باشد. این پوشش مقاومت سایشی و قدرت اتصالی بالایی از خود نشان می‌دهد که در سرامیک‌های معمول دیده نمی‌شود. در حال حاضر از این ماده در پوشش دادن سطح کشتی‌ها و زیردریایی‌های نیروی دریایی ایالات متحده آمریکا استفاده می‌شود که باعث کاهش هزینه‌های ناشی از خوردگی و سایش شده است [1و4].

روش پلاسما ـ اسپری که برای تولید پوشش‌های سرامیکی استفاده می‌شود از لحاظ نظری بسیار ساده بوده، ولی در عمل بسیار پیچیده است. یک گاز بی‌اثر از درون

یک منطقه تخلیه الکتریکی می‌گذرد و تا دمای بسیار بالا گرم می‌شود (معمولاً K10000 تا 20000)، پلاسما که سریعاً در حال انبساط است با فشار از درون یک نازل که مقابل سطح مقصد قرار گرفته است با سرعتی بین 1200 تا 1500 متر بر ثانیه به بیرون رانده می‌شود. ذرات به درون پلاسما پاشیده و در آن گرم شده، شتاب می‌گیرند. چون پلاسما و ذرات هر دو داغ هستند نیاز به گرم کردن سطح، حداقل می‌باشد. پیچیدگی، ناشی از تعداد زیاد عواملی است که باید انتخاب شوند و می‌توانند روی ساختار و خواص سطح تأثیر بگذارند. دما و سرعت پلاسما به نیروی اعمالی بر تفنگ، نوع گاز و شدت جریان گاز مصرفی بستگی دارد. معمولاً دو گاز به کار می‌رود، یک گاز بی‌اثر مثل هلیوم یا آرگون و یک گاز دیگر مثل هیدروژن. عوامل دیگر تأثیرگذار عبارتند از : ساختار ذرات پودر، فاصله تفنگ تا سطح مقصد، محل و زاویه پاشنده‌های پودر و نحوه آماده‌سازی سطح مقصد [4].



خرید و دانلود تحقیق درباره ی پوشش عایق های الکتریکی


دانلودتحقیق درباره ی برق و الکتریسیته 58 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 61

 

توان الکتریکی که اغلب به عنوان برق یا الکتریسیته شناخته می شود، شامل تولید و ارایه انرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاه های صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی و فرایندهای صنعتی بکار می رود.

تاریخچه اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال1800م این آزمایش را انجام داد، شناخته می شده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال 1878م، توماس ادیسون جایگزین عملی تجاری ای را برای روشنایی های گازی و سیستم های حرارتی ایجاد کرد و به فروش رساند که از الکتریسته جریان مستقیمی استفاده می کرد که بطور منطقه ای تولید و توزیع شده بود، استفاده می کرد. در سیستم جریان مستقیم ادیسون، ایستگاه های تولید توان اضافی می بایست نصب می شدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانه اجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاه های تولید جدید مورد نیاز ساخته شوند. نیاز به نیروگاه های اضافی ابتدا توسط قانون اهم بیان شده است: بدلیل اینکه تلفات با مربع جریان یا بار و با خود مقاومت متناسب است، بکار بردن کابل های طولانی در سیستم ادیسون به مفهوم داشتن ولتاژهای خطرناک در برخی نقاط یا کابل های بزرگ و گران قیمت و یا هر دوی اینها بود.

نیکولا تسلا که مدت کوتاهی برای ادیسون کار می کرد و تئوری الکتریسته را بگونه ای درک کرده بود که ادیسون درک نکرده بود، سیستم جایگزینی را ابداع کرد که از جریان متناوب استفاده می کرد. تسلا بیان داشت که دو برابر کردن ولتاژ جریان را نصف می کند و منجر به کاهش تلفات به میزان 4/3 می شود و تنها یک سیستم جریان متناوب اجازه انتقال بین سطوح ولتاژ را در قسمت های مختلف آن سیستم ممکن می سازد. او به توسعه و تکمیل تئوری کلی سیستم اش ادامه داد و جایگزین تئوری و عملی ای را برای تمامی ابزارهای جریان مستقیم آن زمان ابداع کرد و ایده های بدیعش را در سال 1887م در 30 حق انحصاری اختراع به ثبت رساند.

در سال 1888م کار تسلا مورد توجه جرج وستینگهاوس که حق انحصاری اختراع یک ترانسفورماتور را در اختیار داشت و یک کارخانه روشنایی را از سال 1886م در گریت بارینگتون، ماساچوست راه اندازی کرده بود، قرار گرفت. اگرچه که سیستم وستینگهاوس می توانست از روشنایی های ادیسون استفاده کند و دارای گرم کننده نیز بود، اما این سیستم دارای موتور نبود. توسط تسلا و اختراع ثبت شده اش، وستینگهاوس یک سیستم قدرت برای یک معدن طلا در تلورید، کلورادو در سال 1891 ساخت که دارای یک ژنراتور آبی 100 اسب بخار(75 کیلو وات) بود که یک موتور 100 اسب بخار (75 کیلو وات) را در آنسوی خط انتقالی به فاصله 5/2 مایل (4 کیلومتر) تغذیه می کرد. سپس در یک قرارداد با جنرال الکتریک که ادیسون مجبور به فروش آن شده بود، شرکت وستینگهاوس اقدام به ساخت یک نیرگاه در نیاگارا فالس کرد که دارای سه ژنراتور تسلای 5000 اسب بخار بود که الکتریسته را به یک کوره ذوب آلومینیوم در نیاگارا ، نیویورک و به شهر بوفالو، نیویورک به فاصله 22 مایل (35 کیلومتر) انتقال می داد. نیروگاه نیاگارا در 20 آوریل 1895م شروع به کار کرد.

انرژی الکتریکی در حال حاضر

امروزه سیستم انرژی الکتریکی جریان متناوب تسلا کماکان مهمترین ابزار ارایه انرژی الکتریکی به مصرف کنندگان در سراسر جهان است. با وجود جریان مستقیم ولتاژ بالا (HVDC) برای ارسال مقادیر عظیم الکتریسته در طول فواصل بلند بکار می رود، اما قسمت اعظم تولید الکتریسته، انتقال توان الکتریکی، توزیع الکتریسته و داد و ستد الکتریسته با استفاده از جریان متناوب محقق می شود.

در بسیاری از کشورها شرکت های توان الکتریکی کلیه زیرساخت ها را از نیروگاه ها تا زیرساخت های انتقال و توزیع در اختیار دارند. به همین علت، توان الکتریکی به عنوان یک حق انحصاری طبیعی در نظر گرفته می شود. صنعت عموماْ به شدت با کنترل قیمت ها کنترل می شود و معمولا مالکیت و عملکرد آن در دست دولت است. در برخی کشورها بازارهای الکتریسته وسیع با تولید کننده ها و فروشندگان الکتریسته، الکتریسته را مانند پول نقد و سهام معامله می کنند.

انتقال توان الکتریکی دومین فرایند ارائه الکتریسیته به مصرف کننده هاست. الکتریسیته توسط نیروگاه های برق تولید می شود و سپس توسط فروشنده ها به مصرف کنندگان نهایی به عنوان یک کالا فروخته می شود. انتقال توان الکتریکی و شبکه توزیع الکتریسیته اجازه ارائه الکتریسیته تولید شده را به مصرف کننده ها می دهد. فرایند صنعتی شدن سریع قرن 20 ام خطوط و شبکه های انتقال را تبدیل به بخش مهمی از زیر ساخت های اقتصادی در کشورهای صنعتی، کرد. شبکه های برق امکانات تولید زیادی را ممکن می سازند، نظیر سدهای هیدرو الکتریک، نیروگاه های سوخت فسیلی، نیروگاه های هسته ای و ... که توسط سازمان های بهره برداری خصوصی و عمومی، برای تولید مقادیر بزرگی از انرژی و ارائه آن به شبکه های توزیع برای تحویل به مصرف کننده های خریدار، گردانده می شوند. معمولاً الکتریسیته را در طول فواصل بلند از طریق ترکیبی از خطوط انتقال توان هوایی (مانند آنچه در شکل مشاهده می شود) یا کابل های زیر زمینی ارسال می کنند. اولین ژنراتور هیدروالکتریک بزرگ در آبشار نیاگارای ایالات متحده (که تحت دیدگاه فنی نیکلا تسلا ساخته و نصب شده بود) نصب شد و از طریق خطوط انتقال، الکتریسیته را برای بوفالو، نیویورک فراهم ساخت.

ورودی شبکه

یک شبکه انتقال از: نیروگاه های برق، پست های برق و مدارات انتقال ساخته شده است. معمولاً برق از طریق یک جریان متناوب سه فاز انتقال می یابد. در نیروگاه ها، برق را در سطح ولتاژی نسبتاً پایین در حدود 10 تا 15 کیلو ولت تولید می کنند، سپس توسط ترانسفورماتور نیروگاه، آن را به یک ولتاژ بالا (220 تا 440 کیلو ولت) جریان متناوب می رسانند تا آن را به یک پست برق که نقطه خروجی شبکه است و در فواصل دور قرار دارد، انتقال دهند.

تلفات

به منظور کاهش درصد تلفات توان لازم است که الکتریسیته را در ولتاژهای بالا انتقال دهیم. هرچه که ولتاژ بالاتر باشد جریان کمتر خواهد بود که این امر اندازه ی کابل مورد نیاز و میزان انرژی تلف شده را کاهش می دهد. انتقال در طول خطوط بلند معمولاً در ولتاژهای 100 کیلو



خرید و دانلود دانلودتحقیق درباره ی برق و الکتریسیته 58 ص


تحقیق/ عایقهای الکتریکی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 47

 

عایقهای الکتریکی

اصولاً قسمتهای عایق ماشینهای الکتریکی ، ترانسفورماتور ها ،خطوط هوایی و غیره به صورتی طراحی می شود که بتوانند به طور مداوم تحت ولتاژ معینی کارکرده و ضمناً قدرت تحمل ضربه های ولتاژ را در لحظات کوتاه داشته باشند .

هر نوع تغییرات ناگهانی و شدید در شرایط کاری شبکه، موجب ظهور جهشها یا پالسهای ولتاژ می شود . برای مثالمی توان اضافه ولتاژ های ناشی از قطع و یا وصل بارهای زیاد به طور یکجا ، جریانهای اتصال کوتاه ، تغییر ناگهانی مدار و غیره رانام برد .

رعد و برق نیز هنگامی که روی خطوط شبکه تخلیه شود ، باعث ایجاد پالسهای فشار قوی با دامنه زیاد و زمان کم می شود .

لذا عایق های موجوددر ماشینهای الکتریکی و تجهیزات فشار قوی باید از نظر استقامت در مقابل این نوع پالسها نیز طبقه بندی شده و مشخص شوند . عایقهای الکتریکی با گذشت زمان نیز در اثر آلودگی و جذب رطوبت فاسد شده و خاصیت خود را از دست می دهند .

در مهندسی برق سطوح مختلفی از مقاومت عایقی تعریف شده است که هر کدام بایستی در مقابل ولتاژ معینی استقامت نمایند . (ولتاژ دائمی و ولتاژ لحظه ای هر کدام به طور جداگانه مشخص می شوند )و البته طبیعی است که ازدیاد ولتاژ بیشتر از حد مجاز روی عایق باعث شکست آن می شود . در عمل دو نوع شکست برای عایق ها می توان باز شناخت ،حرارتی و الکتریکی .

زمانی که عایق تحت ولتاژ قرار دارد ، حرارت ناشی از تلفات دی الکتریکی می توان باعث شکست حرارتی شود . باید توجه نمود که افزایش درجه حرارت باعث کاهش مقاومت اهمی عایق و نتیجتاً افزایش تصاعدی درجه حرارت آن خواهد شد .

خلاصه اینکه عدم توازن بین حرارت ایجاد شده در عایق با انچه که به محیط اطراف دفع می نماید ، موجب افزایش درجه حرارت آن شده و این پروسه تا زمانیکه عایق کاملاً شکسته شده و به یک هادی الکتریسته در آید ، ادامه می باید .

شکست الکتریکی در عایق ها به دلیل تجزیه ذرات ان در اثر اعمال میدان الکتریکی نیز صورت می گیرد .

با توجه به آنچه گذشت ، عایقهای الکتریکی عموماً در معرض عواملی قرار دارند که باعث می شود در ولتاژ نامی نیز حالت نرمال خود را از دست بدهند . لذا در انتخاب عایقها ، عایق با کلاس بالاتر انتخاب می شود . اندازه گیریهای مختلفی که جهت شناسایی نواقص موجود در عایق ها انجام می گیرند عبارتند از :

اندازه گیری مقاومت D.C عایق یا جریان نشتی ان ، تلفات دی الکتریک ، ظرفیت خازنی عایق ، توزیع ولتاژ در عایق ، دشارژهای جزئی در عایق و میزان پارازیتهای حاصل از آن و تست استقامت الکتریکی عایق .

تعیین میزان و تلفات یک عایق ومقایسه آن با مقادیر اولیه ، معیار خوبی برای ارزیابی وضعیت آن می باشد . اصولاً افزایش تلفات در عایق های جامد ناشی از جذب رطوبت و در روغن ها به دلیل افزایش در صد آب یا آلودگیهای دیگر درآن می باشد .

باید دانست که مقدار تلفاتی که در مورد یک ترانس اندازه گیری می شود ، جمع تلفات روغن و ایزولاسیونجامد سیم پیچ بوده و هرگاه تلفات عایق یک ترانس از مقدار مجاز تجاوز نماید ، ابتدا باید روغن را به طور جداگانه مورد آزمایش قرار داد تا بتوان وضعیت ایزولاسیون سیم پیچی را ارزیابی نمود .

با توجه به انکه با تعیین مقدار تلفات به طور مطلق و بدون در نظر گرفتن ابعاد فیزیکی و جنس عایق نمی توان قضاوت صحیحی در مورد ان به عمل آورد ، بهترین پارامتری که می تواند وضعیت ایزولاسیون را مشخص نماید نسبت مولفه اکتیو به راکتیو جریان نشتی عایق می باشد . با اندازه گیری ظرفیت تلفات عایق می توان وضعیت ان را از نظر استقامت حرارتی ، میزان رطوبت جذب شده و عمر عایق ارزیابی نمود .

تجربه نشان داده است که در موارد زیر خطر اتصال کوتاه در ایزولاسیون تجهیزات الکتریکی که مستقیماً به فساد عایق مربوط باشد ، وجود ندارد :

الف : وقتیکه ایزولاسیون دارای ضریب تلفات عایق ثابتی است و با مروز زمان افزایش نمی یابد .

ب: وقتیکه ضریب تلفات عایق روغن بوشینگ دژنکتورهای روغنی که مستقیماً روی کلید اندازه گیری شده است ، بدون توجه به اندازه گیری قبلی در حد استاندارد باشد .

با اندازه گیری ظرفیت خازنی ایزولاسیون تجهیزات الکتریکی در دوفرکانس و یا دو درجه حرارت مختلف می توان اطلاعاتی مشابه با نتیجه تست تلفات دی الکتریک از وضعیت عایق بدست آورد .

وجه تمایز تست ظرفیت خازنی در دو فرکانس مختلف با دستگاههایی که جهت همین کار ساخته شده اند در این است که در هر درجه حرارتی قابل انجام بوده و احتیاجی به گرم کردن ترانس و یا تجهیزات دیگر نیست و به همین جهت پرسنل را از حمل و نقل دستگاهها و ادوات نسبتاً سنگین که برای گرمایش بکار می روند بی نیاز می سازد.

در این روش اساس کار بر این اصل مبتنی است که ظرفیت خازن با تغییر فرکانس تغییر می نماید . تجربه نشان داده است که در مورد ایزولاسیون سیم پیچ هایی که آب زیادی به خود جذب نموده اند نسبت بین ظرفیت خازنی در فرکانسهای 2 و 50 هرتز حدود دو بوده و در مورد ایزولاسیون خشک این نسبت حدود یک خواهد بود .

اندازه گیری فوق معمولاً بین سیم پیچ هر یک از فازها و بدنه در حالتیکه بقیه سیم پیچ ها نیز ارت شده اند انجام می گیرد . دقیقترین روش برای بررسی نتایج بدست امده در هر آزمایش مقایسه آن با مقادیر کارخانهای و یا تستای مشابه قبلی می باشد که البته در این عمل باید ارقام بر اساس یک درجه حرارت واحد اصلاح شد باشند . چنانچه مقایسه فوق



خرید و دانلود تحقیق/ عایقهای الکتریکی


تحقیق/ انواع موتورهای الکتریکی و کاربرد آنها

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 45

 

انواع موتورهای الکتریکی و کاربرد آنهافهرست مطالب

عنوان صفحه

انواع موتورهای متناوب 1

میدان گردان 2

موتور سنکرون 5

موتور القایی 8

موتورهای القایی دو فازه 11

موتور یک فاز 14

موتورهای القایی با قطب های شکاف دار 18

موتور سنکرون 21

موتورهای القایی 23

دستگاههای الکترومکانیکی 25

مدارهای ریله 26

کلیدهای قدرت 29

ترانسفورماتور 31

پست های فشار قوی 31

انواع پست ها 32

اجزاء تشکیل دهنده پستها 36

ترانسفورماتورهای قدرت 37

دستگاههای حفاظت کنترل ترانسفورماتورها 38

رله بوخهلتس 39

انواع موتورهای متناوب :

چون مقدار زیادی از قدرت الکتریکی تولید شده بصورت متناوب میباشد ، بیشتر موتورها طوری طرح شده اند که با جریان متناوب کار کنند . این موتورها در بیشتر موارد میتوانند دو برابر موتورهای جریان مستقیم کارکنن و زحمت آنها در موقع کارکردن کمتر است ، چون در موتورهای جریان مستقیم همیشه اشکالاتی در کموتاسیون آنها ایجاد میشود که مستلزم عوض کردن ذغالها یا زغال گیرها و یا تراشیدن کلکتور است . بعضی موتورهای جریان متناوب با موتورهای جریان مستقیم کاملا فرق دارند ، بطوریکه حتی در آنها از رینگ های لغزنده هم استفاده نمیشود و برای مدت طولانی بدون ایجاد درد سر کار میکنند .

موتورهای جریان متناوب ، عملا برای کارهایی که احتیاج به سرعت ثابت دارند ، مناسب هستند . چون سرعت آنها به فرکانس جریان متناوب اعمال شده به سر های موتور ، بستگی دارد . اما بعضی از آنها طوری طرح شده اند که در حدود معین ، دارای سرعت متغیر باشد .

موتورهای جریان متناوب میتوانند طوری طرح شوند که با منبع جریان متناوب یک فاز یا چند فاز کار کنند . ولی چه موتور یک فاز باشد و یا چند فاز ، روی اصول یکسانی کار میکنند ، اصول مزبور عبارتست از این که جریان متناوب اعمال شده به موتور یک میدان مغناطیسی گردانی تولید



خرید و دانلود تحقیق/ انواع موتورهای الکتریکی و کاربرد آنها