دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

مقاله درمورد بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

موضوع :

بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو

فهرست مطالب

عنوان صفحه

فصل اول

بالانس دو صفحه ای یا دینامیکی……………………………………. ………………1

کنترل ارتعاشات ناشی از لنگی محورهای دوار……………………… ………………..1

بالانس موتورهای رفت و برگشتی…………………………………… ………..……2

کنترل ارتعاشات پیچشی……………………………………………………………3

کنترل فرکانس های طبیعی………………………………………………………….3

فصل دوم

مقدمه……………………………………………………… ………… ….…….4

منابع تولید ارتعاش………… …… ………………………………………….……4

ارتعاش خودرو و مسأله آسایش انسان …………………………………….…....….10

ارتعاش خودرو با یک درجه آزادی………………………………………………..…12

فصل سوم

مقدمه………………………………………………………………………….13

نصب شافت های متوازن کننده……………………………………………….….…16

فصل اول

روشهای کنترل ارتعاشات

2-1 بالانس دو صفحه ای یا دینامیکی

وقتی نامیزانی در بیش از یک صفحه ظاهر شود یک نیرو و یک گشتاور پدیدار می شود . همانطور که قبلاً گفتیم روش بالانس تک صفحه ای عبارت بود از بالانس روتورهای دیسکی شکل صلب،اگر روتور یک جسم طویل صلب باشد ، نامیزانی به شکل یک ارتعاش نسبتاً بزرگ در فرکانس متناظر با سرعت دورانی روتور ظاهر می گردد . در این حالت با افزودن جرم هایی در هر دو صفحه دلخواه می توان به موازنه دست یافت . برای راحتی معمولاً صفحات انتهایی روتور انتخاب می شوند . به طور کلی یک روتور بلند ، مانند آرمیچر موتور یا میل لنگ اتومبیل را می توان به صورت مجموعه ای از دیسکهای نازک ، هر کدام با مقداری نامیزانی در نظر گرفت . این روتورها را می توان چرخاند تا نامیزانی آن آشکار شود .ماشین هایی که برای آشکار سازی و تصحیح نامیزانی روتور به کار می رود ماشینهای بالانسینگ نامیده می شود . اصولاً ماشینهای بالانسینگ تشکیل شده است از یاتاقان های تکیه گاهی که روی فنر نصب می شوند به طوری که با حرکت آنها نیروهای نامیزان آشکار می شوند. با معلوم بودن دامنه هر یاتاقان و فاز نسبی آنها می توان نامیزانی روتور را تعیین و تصحیح کرد .

3-1 کنترل ارتعاشات ناشی از لنگی محورهای دوار

در بخش قبل سیستم روتور- شافت ، صلب در نظر گرفته شد ولی در عمل تمام محورهای دوار انعطاف پذیر هستند بنابراین تمایل دارند که در سرعت های معینی کمانش کرده و به طور پیچیده ای دچار لنگی شوند . لنگی می تواند به صورت دوران صفحه مابین صفحه خمیده شده و خط و اصل مرکز یاتاقان ها تعریف گردد . لنگی ناشی از عواملی است از قبیل نامیزانی، اصطکاک سیال در یاتاقان ها ، نیروهای ژیروسکوپی و استهلاک هیستریک در محور می باشد . لنگی می تواند هم جهت با چرخش محور یا در خلاف جهت آن روی دهد و سرعت چرخش می تواند مساوی با سرعت چرخش محور باشد یا با آن مساوی نباشد.

یک محور در حال گردش در سرعت های معینی ارتعاشات عرضی بیش از حدی از خود نشان می دهد. این سرعت با فرکانس های طبیعی سیستم متناظر می باشد و به سرعت بحرانی موسوم است و در این حالت تشدید رخ می دهد.

در سرعت بحرانی انحراف محور زیاد بوده و نیروی وارده به یاتاقان ها خیلی زیاد است و باعث ارتعاش بدنه ماشین خواهد شدو این می تواند منجر به صدمات ساختمانی به یاتاقان ها و بدنه گردد. به علاوه انحراف زیاد محور موجب تغییر شکل دائمی آن و یا برخورد روتور با محفظه می گردد. دامنه ارتعاش در سرعت بحرانی زمانی به حد خطرناک می رسد که فرصت لازم برای رسیدن به آن دامنه را داشته باشد. بنابراین اگر ماشین از سرعت بحرانی سریع عبور کند دامنه می تواند فابل قبول باشد در حالی که عبور آهسته به توسعه دامنه های بزرگ کمک می کند و می تواند خسارت جبران ناپذیری ایجاد کند.

4-1 بالانس موتورهای رفت و برگشتی

اجزاء متحرک اصلی یک موتور رفت و برگشتی عبارتند از : پیستون ، میل لنگ و شاتون.

ارتعاشات در موتورهای رفت و برگشتی در اثر عوامل زیر رخ می دهد :

تغییرات متناوب فشار گاز درون سیلندر

نیروهای اینرسی که در قسمت های متحرک تمرکز یافته اند .

یک موتور تک سیلندر به طور اجتناب ناپذیری نامیزان است ، در حالی که در یک موتور چند سیلندر می توان با آرایش مناسب لنگ ها ، نیروها و گشتاورهای موجود را بالانس نمود و از میزان ازتعاشاتی که درون موتور ایجاد می شود ، به خاطر حرکت های رفت و برگشتی پیستون و انفجارهای درون سیلندر کاهش می‏یابد .



خرید و دانلود مقاله درمورد بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو


تحقیق در مورد تست ارتعاش آکوستیک

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 27 صفحه

 قسمتی از متن .doc : 

 

تست ارتعاش آکوستیک

فضاپیما در معرض محیط‌های دینامیک متفاوتی قرار می‌گیرد که ممکن است شامل بارهای شبه استاتیک، ارتعاش و آکوستیک هنگام پرتاب؛ شوک‌های انفجاری تولید شده توسط مکانیزم‌های جدایش؛ جهش روی مدار، و بعضی اوقات بارهای فرود سیاره‌ای گرایشی در صنعت هوافضا وجود دارد که بیشتر بر تحلیل‌های سازه‌ای و کمتر بر آزمایش برای شبیه‌سازی این محیط‌ها تاکید می‌کند زیرا آزمایش دینامیک فضاپیما وقت گیر، همراه با ریسک و پر هزینه است.

هرچند، همان طور که دکتر ادوارد استهان، مدیرقبلی آزمایشگاه پیشران جت (JPL) به دنبال شکست دو فضاپیمای لارس در 1999 به تعدادی از دانشجویان می‌گوید، «مسئله کلیدی تست کردن آن را بسازید. تست کنید و بیشتر تست کنید، زیرا وقتی (از دست) رفته باشد دیگر خیلی دیر است.» با شناخت نقش ضروری آزمایش NASA منابع قابل توجهی را به ایجاد شیوه‌هی خلاقانه و کارامد‌تر در آزمایش دینامیک اختصاص می‌دهد.

تصویر 1 پرتاب یک شاتل فضا پیما را از (KSA) مرکز فضایی کندی NASA نشان می‌دهد. دانستن مقدار سیال جت می‌توان تصور کرد که یک فضاپیمای پرتاب شده توسط شاتل یا حامل پرتاب قابل مصرف (ELV) محیطی با نویز و ارتعاشات شدید را طی کند. در دوران اولیه برنامه‌های فضایی، ساخت مدل‌های آزمایش توسعه (DTM)فضاپیما که صرف آزمایش می‌شدند، متداول بود. همچنین، بیشتر سخت‌افزار فضاپیماها به خاطر بارهای دینامیک خیلی محافظه‌کارانه طراحی شده بود. در مقابل در فرهنگ سریعتر بهتر، ارزانتر، امروزه، اغلب سخت‌افزار فضاپیما تنها یک بار ساخته می‌شود و این واحد پرواز اولیه در معرض آزمایش‌ها زمینی قرار می‌گیرد و سپس پرتاب می‌شود. علاوه بر این با تکامل صنعت هوافضا حاشیه‌های طراحی سازه کاهش یافته‌اند و تاکید بر تحلیل کمتر بر آزمایش است. تمام این مسائل به نیاز به نوآوری در افزایش کارایی تست دینامیک به منظور اجتناب از شکست پرواز ضمن حداکثر سازی عملکرد و حداقل سازی هزینه، اشاره می‌کند. این مقاله تعدادی تکنیک جدید برای تست دینامیک را شرح می‌دهد. که در برنامه‌های فضایی تحت مدیریت JPL و سایر مراکز NASA پیاده‌سازی شده‌اند.

تست ارتعاش نیروی محدود

تصویر 2 نمایش یک هنرمند از رسیدن کاوشگر Cassian Huygens‌به قمر زحل، ؟ در 2004 را نشان می‌دهد، و تصویر 3 فضاپیمای با ارتفاع دو طبقه باشکوه Cassian را که برای آزمایش ارتعاشات اتفاقی در JPL در 1997تنظیم شده است را نشان می‌دهد. مورد آزمایش فضاپیمای پرواز واقعی بود که اواخر سال به سمت زحمل پرتاب شد. در تست ارتعاش فضاپیما هشت نیروسنج پیزوالکتریک محور بینی لرزاننده و فضاپیما قرار داده شده بودند تا نیروها و گشتاورهای عکس العملی لرزاننده را اندازه‌گیری کنند. (1) محدودسازی نیروی لرزاننده مقاومت ظاهری مکانیکی آرایش پایه پرواز را شبیه‌سازی می‌کند و آزمایش‌های تکراری را در تشدید موارد آزمایش به حداقل می‌رساند. این مشکل برای سالها به تست‌های ارتعاشات هوافضا آسیب رسانده است. تصویر 4 تراکم طبیعی قدرت شتاب لرزاننده (PSD) درشت Cassiniرا نشان می‌دهد. شکاف‌های نشان داده شده در تصویر 4 در فرکانس 17، 30 و 37 هرتز به ترتیب مربوط به فرکانس‌های اصلی تشدید کاوشگر Huggens، مولد ترموالکتریک رادیو ایزوتوپ نگه داشته شده (RTG) و تانکهای سوخت موشک می‌باشد. در این فرکانس‌ها این اجزا مانند جاذب‌های دینامیک عمل می‌کنند که به شدت ورودی ارتعاشات را هنگامی که فضاپیما بر روی حامل پرتاب قرار داده شده است که دارای مقاومت ظاهری مکانیکی محدودی می‌باشد، کاهش می‌دهد.

بدون محدود‌سازی نیرو خطر شدید تست‌های تکراری و شکست مصنوعی این اجزا هنگام تست ارتعاش وجود خواهد داشت.

حد نیرو برای تست ارتعاشات می‌تواند با در نظر گرفتن دو نوسانگر جفت شده ما در آنچه در تصویر 5 نشان داده شده محاسبه شود. برای سیستم‌های توزیع یافته معادل جرم‌های نوسانی جرم موثر مودال می‌باشد که ترم جرم در بسط مودال تابع پاسخ فرکانس‌ ظاهری جرم می‌باشد. حداکثر پاسخ نوسانگر بار و بنابر آن حداکثر نیروی عمل کننده بین نوسانگرها در حالتی که فرکانس‌های تشدید دو نوسانگر جفت شده برابر باشد اتفاق می‌افتد. و در پایین‌تر از دو فرکانس تشدید سیستم جفت شد روی می‌دهد. حداکثر نیروی اعمال شده PSD که برای این مورد محاسبه شده در تصویر 5 در مقابل نسبت playload‌ به جرم‌های نوسانگر منبع برای سه محور ضریب کیفیت بار Q2 که برابر یک به روی دو برابر نسبت بحرانی میرایی می‌باشد نشان داده شده است. توجه کنید منحنی‌های تصویر 5 که وقتی بار و مقاومت ظاهری منبع برابر هستند، همچنان که اغلب در مورد سازه‌های فضایی این طور می‌باشد، نسبت نیرو به جرم ضربدر شتاب ورودی تنها ریشه دوم 2 یا 3 می‌باشد. این کمبود تقویت شدید بین زیر سیستم‌ها در آرایش‌های سازه‌ای زمینی ساخته شده سالها قبل مشاهده شده بود[ 3] سیستم‌های مکانیکی یک درجه آزادی با تقویت شدید Q‌مرتبط، ابتدا در کتاب درسی و متاسفانه در تست‌های قراردادی ارتعاشات رخ می‌دهند.

اندازه‌گیری نیروی ارتعاشی پرواز:

تصویر 6 آزمایش نیروهای ارتعاشات شاتل (SVF) را نشان می‌دهد که یکی از playload‌های به کار برده شده در ماموریت STS96‌که در پرتاب شکل 1 نشان داده شده می‌باشد. هدف آزمایش SVF به دست آوردن اندازه‌های نیروی پرواز برای اعتباربخشی به شیوه‌های تئوری استخراج حدود نیرو مانند آنچه در تصویر 5 نشان داده شده، می‌باشد. تصویر 7 PSD نیروی نهایی عمود بر سطح مشترک بین پوشش دهنده playload‌و دیواره جانبی شاتل را نشان می‌دهد که طی بازه زمانی 5/2 ثانیه متناسب با حداکثر بارگذاری آکوستیک در هنگام پرتاب اندازه‌‌گیری شده است. نسبت نیروی اندازه‌گیری شده PSD‌ به اندازه‌گیری سابق PSD شتاب دیواره جانبی () تقسیم بر جرم پوشش دهنده (100kg) به توان 2 برابر با 2 است، که



خرید و دانلود تحقیق در مورد تست ارتعاش آکوستیک