لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 31
سیستمهای ترکیبی Soft Computing :
ما به کجا می رویم؟
چکیده:
Soft Computing یک روش محاسباتی است که شامل منطق فازی،محاسبات عصبی ، محاسبات تکمیلی و محاسبات احتمالی می باشد.بعد از یک نگاه اجمالی به اجزای Soft Computing ،برخی از مهمترین ترکیبات آنرا مورد بررسی و تجزیه وتحلیل قرار میدهیم.ما بر روی توسعه کنترل کننده های الگوریتمی هوشمند،همانند استفاده از منطق فازی برای کنترل پارامترهای محاسبات تکمیلی تاکید میکنیم و در مورد کاربرد الگوریتمهای تکمیلی برای تنظیم کنترل کننده های فازی صحبت خواهیم کرد.ما بر روی سه کاربرد از Soft Computing در جهان واقعی تاکید میکنیم که همگی توسط سیستمهای ترکیبی ایجاد شده اند.
1- نگاه کلی به Soft Computing
Soft Computing (SC) واژه ای است که در ابتدا توسط زاده برای مشخص کردن سیستمهایی که " از خطای بی دقتی، مبهم بودن و کمی درست بودن ،برای کنترل درست،کم هزینه و سازگارتر با جهان واقعی استفاده میکنند."
بطور معمول SC شامل چهار تکنیک می باشد:دوتای اول آن ،سیستمهای استدلال آماری(PR) و منطق فازی(FL) ،بر پایه استدلال بر اساس دانش است . دو تای دیگر،محاسبه عصبی (NC) و محاسبه تکمیلی(EC) ،بر پایه روشهای تحقیق و بهینه سازی بر اساس داده می باشند. با توجه به اینکه ما به یک توافق در مورد چارچوب SC یا ماهیت این پیوستگی دست پیدا نکرده ایم، غیره منتظره بودن این روش جدید انکارناپذیر است. این مقاله نمونه ساده شده ای از این سرفصلهای بسیار گسترده می باشد که می توانید آنها را در پی نوشت 5 پیدا کنید.
2- اجزا و رده بندی SC
1-2 محاسبه فازی
اصلاح اشتباه و ابهام را می توان در کارهای گذشته کلیین و لوکازوئیچ ،منطق دانان چند فازی که در اوایل دهه 1930 استفاده از سیستمهای منطقی سه ارزشی(که بعداً بوسیله منطق با ارزش بینهایت دنبال شد) را برای نشان دادن نامعینی ، مجهول بودن یا سایر ارزشهای احتمالی بین ارزشهای واقعی بین ارزشهای درست و غلط جبر بول کلاسیک را پیشنهاد کردند،دنبال نمود.در سال 1937 ،اندیشمند ماکس بلک پیشنهاد کرد که از یک پروفایل همبستگی برای نشان دادن مفاهیم مبهم استفاده شود. در حالیکه ابهام به نشانه های گنگ و نا مشخص ناشی از لبه های مرزی تیز مربوط میشد.این مسئله تا سال 1965 ادامه پیدا کرد،زمانی که زاده یک تئوری کامل از مجموعه های فازی(که متناظر آن منطق فازی میباشد)را ارائه نمود،که بر اساس آن ما می توانستیم تصویر کلی که بدرستی تعریف نشده است را نشان داده و آنرا کنترل نماییم.
بعبارت دقیقتر،منطق فازی را می توان به صورت یک تابع منطقی از منطق چند ارزشی آلف-1 لوکازوئیچ دانست.اگرچه،در مفهوم وسیعتر،این تعبیر دقیق تنها یکی از چهار جنبه FL را نشان میدهد. بطور خاص ،FL دارای یک جنبه منطقی ،که از اجداد منطقی چند ارزشی آن مشتق شده ،یک جنبه فرضی که از نمایش مجموعه ای از مرزهایی که بدرستی تعیین نشده است نشات گرفته ،یک جنبه ارتباطی ،که برروی نمایش واستفاده از روابط منطقی متمرکز است و یک جنبه اپیستمیک که در برگیرنده استفاده از FL برای دانش فازی مبتنی بر سیستمها و بانکهای اطلاعاتی می باشد،است.
یک بررسی جامع از منطق فازی و محاسبه فازی را می توان در پی نوشت 11 مشاهده کرد.منطق فازی به ما یک زبان همراه با علم نحو و معانی خاص آنرا میدهد ،که توسط آن ما می توانیم اطلاعات کیفی راجع به مشکلی که قرار است حل شود را ترجمه می کند. بطور خاص ،FL به این اجازه را می دهد که از متغیرهای زبان شناسی برای شبیه سازی سیستمهای دینامیکی استفاده کنیم. اینها متغیرهایی با ارزش فازی هستند که بوسیله یک لیبل (عبارت ایجاد شده توسط علم نحو)و یک معنی(یک تابع عضویت که توسط یک دستورالعمل نحوی محلی تعیین شده است) مشخص میشوند.معنی یک کتغیر کلامی می تواند بصورت یک محدودیت قابل انعطاف برای ارزش آن ،تفسیر شود.این محدویتها بوسیله عملیات استنتاجی فازی و بر اساس modus-ponens عمومی شده ،گسترش می یابند.این مکانیسم استدلالی ،همراه با خصوصیات درون یابی آن ،FL را با توجه به تغییر در پارامترهای سیستم ،اختلالات ،و غیره قدرتمند ساخته است که یکی از ویژگیهای اصلی FL هم همین توانمند بودن آن است.
2-2 محاسبه احتمالی
بجای بررسی مجدد تاریخچه احتمال ،ما بر روی توسعه احتمالی (pc)تمرکز کرده وراهی که در محاسبه فازی مورد استفاده قرار می گیرد را نشان می دهیم .همانگونه که در شکل 1 نشان داده شده است ،می توانیم محاسبه احتمالی را به دو گروه تقسیم کنیم :سیستم های یک ارزشی وسیستمهای بین ارزشی .
Bayesian Belief Networks (BBNS) ،براساس کارهای Bayes ،یک نمونه عمومی از سیستمهای استدلالی یک ارزشی هستند .آنها بوسیله روشهای تخمینی مورد استفاده در اول نسل سیستمهای خبره همانند تئوری تائید Myanوقانون Bayesian که اصلاح شده PROSPECTOR است ،شروع کردند وتبدیل به روشهای نرمالی برای انتشار ارزش های احتمالی در شبکه ها شدند .به طور کلی سیستم های استدلالی احتمالی دارای پیچیدگی نمایی هستند ،مخصوصا زمانی که نیاز داریم که توزیعهای احتمالی وابسته را برای تمامی متغیرهای مورد استفاده در یک مدل محاسبه کنیم .قبل از پیدایش BBNها ،رسم بود که چنین مشکلات محاسباتی با این فرض که شرایط مستقل هستند دوری کرد .با استفاده