نوع فایل: word
قابل ویرایش 72 صفحه
مقدمه:
طراحی کنترل کننده های مقاوم، یکی از اساسی ترین مسائل در طراحی سیستم های کنترل است. یکی از علایق طراحان سیستم های کنترل این است که کنترل کننده به نوعی طراحی شود که دارای حداقل حساسیت یا به عبارت دیگر بیشترین مقاومت در برابر اختلالات وارده بر سیستم باشد. در این راستا یکی از روش ها استفاده از کنترل کنندههای پارامتری، به منظور دست یابی به درجات آزادی مناسب در طراحی کنترل کننده ها است. آنگاه این پارامترها به روش های متنوعی به گونه ای محاسبه و جایگزین می شوند که مقاومت مورد انتظار البته با حفظ پایداری سیستم میسر گردد.
در این راستا تلاش های زیادی توسط دانشمندان و مهندسان کنترل انجام شده است، که از آن جمله می توان به افرادی مانند، ماین و مردوخدر سال1970، ماکی و وندویچدر سال1974، بارنتدر سال1975، گورشیانکار و رامردر سال1976، مونرودر سال
1976، ونهامدر سال1979، فلامدر سال1980، وارگا1981، فاهمی و اوریلی درسال1982، کاوتسکی و نیکلوسدر1983،1984 و آمین و الابدالدر سال1988، کرباسی و بلدر1993 اشاره کرد.
در این فصل دو الگوریتم برای محاسبه پاسخ مقاوم در مسأله کنترل کننده های پس خورد حالت خطی چند متغیره ارائه می دهیم در همه حالات ماتریس پس خورد با تخصیص بردارهای ویژه متناظر با مقادیر ویژه مورد نیاز به گونه ای محاسبه می گردد که ماتریس بردارهای ویژه نامنفرد، خوش وضع باشند در این روش طیف مقادیر ویژه به گونه ای تخصیص داده می شود که اولاً سیستم کنترل پذیر باشد ثانیاً حساسیت این مقادیر که متناظر حساسیت کنترل کننده است، حداقل باشد. لذا در بخش بعدی مسأله تخصیص مقادیر ویژه به صورت مفصل تعریف می شود. این فصل دارای دو بخش است که در بخش اول یعنی بخش (21) مسأله تخصیص مقادیر ویژه مقاوم برای سیستم های حلقه بسته مطرح می شود در طی فصل با تعریف مقاومت بهینه و بیان معیارهای مقاومت آمادگی لازم را برای ورود به بحث بخش بعدی یعنی بخش (31) را مهیا می کند.
در بخش (31) کنترل کننده های مقاوم با استفاده از دو الگوریتم پیشنهادی در تخصیص مقاوم مقادیر ویژه طراحی می گردند که در یکی از الگوریتم ها یعنی الگوریتم دوم لازم است که یک مسأله کمترین مربعات خطی حل شود که در این راستا الگوریتم ژنتیک، GA ، یکی از ابزارهای کمک کننده است. و در نهایت با بیان دو مثال کاربردهای این بخش را نمایش می دهیم.
فهرست مطالب:
مقدمه
تخصیص مقادیر ویژه مقاوم
بیان مسأله
بیان مسأله تخصیص مقادیر ویژه مقاوم
بیان مسأله تخصیص ساختارهای ویژه مقاوم
ویژگی های یک سیستم حلقه بسته مقاوم
مقاومت بهینه
معیارهای مقاومت
طراحی کنترل کننده های مقاوم و الگوریتم های عددی
الگوریتم های عددی طراحی کنترل کننده های مقاوم
مثالها و کاربرد
مثال 1) دینامیک یک راکتور
منطق فازی و مجموعه های فازی
منطق فازی و استدلال تقریبی
موتور استنتاج فازی
فازی سازها
غیرفازی سازها
طراحی کنترل کننده های فازی (F.C.D)
مدلهای طراحی کنترل کننده های فازی
شبکه های عصبی مصنوعیANN
قاعده آموزش پرسپترون
قاعده آموزش پس انتشار خطا
فاز اول، فاز پیش انتشار
قاعدة آموزش ترکیبی
سیستم های ترکیبی فازی - عصبی
شبیه سازی یک سیستم فازی به یک تقریب کننده عمومی
استفاده از الگوریتم پس انتشار خطا در سیستم فازی
ارائه یک روش صریح در تخصیص مقادیر ویژه سیستم حلقه در یک ناحیه دلخواه از صفحه مختصات
شرحی بر مرحله D الگوریتم طراحی کننده کنترل کننده پارامتری مقاوم با پویش عصبی- فازی ژنتیکی
الگوریتم طراحی کنترل کننده مقاوم با پویش فازی- عصبی- ژنتیکی