لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 24 صفحه
قسمتی از متن .doc :
تعریف ترانسفورماتور
ترانسفورماتور یکی از وسائل بسیار مهم تبدیل کمیات جریان و ولتاژ الکتریکی متناوب است: که برخلاف ماشین های الکتریکی که انرژی الکتریکی و مکانیکی را بهم تبدیل میکند: ترانسفورماتور در نوع انرژی تغییری نمی دهد.
بلکه ولتاژ جریانی را با همان فرکانس ولی متناوب از نظر مقدار تبدیل مینماید یا با بیان دیگر ترانسفورماتور یک وسیله الکترومغناطیسی ساکن است که میتواند انرژی جریان متناوبی را از یک مداری به مداری دیگر فقط با حفظ اندازه فرکانس جریان متناوب انتقال دهد بطوریکه انرژی با ولتاژ پائین را تبدیل به همان انرژی با ولتاژ بالاتر نماید و هم چنین جریان را از مقدار داده شده در یک مدار به جریانی با اندازه ای متفاوت در مدار دیگر تبدیل کند.
امروزه ترانسفورماتور وسیله ای لازم و ضروری در دستگاههای انتقال انرژی الکتریکی و پخش و توزیع انرژی الکتریکی متناوب است: ترانسفورماتورها بطور بسیار وسیعی در مدارهای وسائل الکترونیکی و مدارهای دستگاههای خودکار یا اتوماتیک و راه اندازی موتورهای الکتریکی و تطبیق ولتاژ مورد نیاز جهت تغذیه مصرف کننده هائی از قبیل یکسوسازها و مبدلهای جریان دائم به متناوب شارژ کننده های باطری : و ایجاد دستگاههای چندین فازه از دستگاههای دو فازه و سه فازه و در ارتباطات بمنظور تطبیق امپدانس و هم چنین در سیستم های قدرت بمنظور بالا بردن ولتاژ برای انتقال اقتصادی قدرت یعنی پائین آوردن جریان جهت کاهش افت ولتاژ و گم کردن مقطع سیم انتقال و همچنین در انتهای خطوط انتقال بمنظور پائین آوردن ولتاژ به مقادیر موورد نیاز بکار میرود.
و همینطور ترانسفورماتور یک وسیله بسیار ضروری در مدارهای اندازه گیری الکتریکی و در مدارهای جوشکاری و کوره های الکتریکی است: هم چنین یک مجزا کننده مدارهای با ولتاژ زیاد از مدارهای با ولتاژ پائین است: ترانسفورماتور حذف کننده مؤلفه های مستقیم جریان در یک دستگاه انرژی میباشد:
هم چنین از نقطه نظر تئوری تجزیه و تحلیل آن مطالعه و بررسی تمام ماشینهای الکتریکی را آسان میسازد :
اساس کار ترانسفورماتور :
اساس کار ترانسفورماتورها بر القاء متقابل بین دو بین (سیم پیچی) که بر روی یک مدار مغناطیسی (هسته آهنی) قرار دارند بنا نهاده شده است:
بطور ساده میتوان گفت شکل (1-2) آنرا مشاهده نمود:
دوبوبین که از لحاظ الکتریکی جدا از هم ولی از لحاظ مغناطیسی بوسیله مسیری که دارای رلوکتانس(مقاومت مغناطیسی) کوچکی است بهم مرتبط میباشند.
البته در اتوترانسفورماتورها دوبوبین از لحاظ الکتریکی هم بهم مرتبط هستند که در جای خود از آن صحبت خواهد شد.
اگر یکی از بوبین ها به منبع ولتاژ متناوب وصل شود. یک فوران متناوب در هسته مورق برقرار میشود که بیشتر خطوط فوران از طریق هسته از درون حلقه های بوبین گذشته و خود را می بندند و با این همل مبتنی به قانون فاراده تولید نیروی الکتروموتوری القائی متقابل می کند. اگر مدار بوبین دوم از طریق مثلاً مصرف کننده ای بسته شود جریانی در آن جاری شده و انرژی الکتریکی (کاملاً مغناطیسی) از بوبین اول به بوبین دوم انتقال می یابد بوبین یا سیم پیچی اولیه و بوبین یا سیم پیچی که انرژی از آن گرفته میشود یعنی دوسری از آن که بطرف مصرف کننده رفته است سیم بندی ثانویه مینامند. و هم چنین سیم پیچی یا بوبینی که بمدار با ولتاژ زیاد وصل شده باشد آنرا سیم پیچ طرف فشار قوی (H.V) و سیم پیچ دیگر را که بمدار با ولتاژ پائین وصل شده باشد طرف فشار ضعیف (L.V یا B.T ) میگویند. ترانسفورماتورهائی که ولتاژ سیم پیچی ثانویه آنها از ولتاژ سیم پیچی اولیه کمتر باشد آنرا کاهند و ترانسفورماتورهائی که ولتاژ ثانویه آنها از اولیه بیشتر باشد افزاینده نامیده میشوند.
مطالب فوق را در مورد ترانسفورماتور چنین خلاصه می کنیم که ترانسفورماتور دستگاهی است
قدرت الکتریکی متناوب را از یک مدار به مدار دیگر انتقال میدهد.
انتقال قدرت بدون تغییر فرکانس صورت میپذیرد.
این عمل بوسیله القای مغناطیسی انجام میشود.
در حالیکه دو مدار دارای اثر القای متقابل روی یکدیگر میباشند.
مدارهای سیم پیچی اولیه و ثانویه ممکن است یکفازه یا چند فازه باشند در این صورت ترانسفورماتور را یک فازه یا چند فازه میگویند. که از همه مهمتر ترانسفورماتورهای یکفازه و ترانسفورماتورهای سه فازه هستند.
انواع اصلی ترانسفورماتورها :
ترانسفورماتورهای قدرت برای انتقال و توزیع انرژی الکتریکی
ترانسفورماتورهائی که جهت تغذیه تأسیساتی مانند مبدلهای استاتیک (یکسوسازی های با بخار جیوه و ایگنیترون و یکسوسازهای مجهز به نیمه هادیها و غیره) برای تبدیل جریان متناوبه به دائم و دائم به متناوب بکار میروند.
اتوترانسفورماتورها : جهت داشتن ولتاژهای متناوب قابل تنظیم و تغییر بین صفر ولت تا V ولت و کاربرد آن در راه اندازی موتورهای الکتریکی جریان متناوب:
ترانسفورماتورهای جریان و ولتاژ جهت انشعاب و اتصال وسائل اندازه گیری.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 7 صفحه
قسمتی از متن .doc :
ترانس ولتاژ(( PT
به دلیل این که ولتاژ ورودی پست متناسب با ولتاژ وسایل اندازه گیری و منبع تغذیه رله ها و مدارهای کنترل نمی باشد از ترانس ولتاژ استفاده می کنند . این ترانس بصورت موازی در مدار قرار می گیرد و ولتاژ 66 کیلو ولت ورودی را به 105 ولت به منظور اندازه گیری ولتاژ و تغذیه رله ها و مدارهای کنترل تبدیل می کند.
ترانس جریان (CT)
ترانس جریان به صورت سری در مدار قرار می گیرد که بسته به کد آن ، جریان را به نسبت 600 به 5 یا 1200 به 5 تبدیل می کند .
اندازه گیری مستقیم جریان های زیاد ، مستلزم داشتن وسایل اندازه گیری بسیار حجیم و گران قیمت بوده و حفاظت در مقابل چنین جریان هایی مستلزم استفاده از رله هایی با طرح های بسیار متفاوت می باشد .
با بکار بردن ترانس جریان ، این امکان به وجود می آید که وسایل اندازه گیری معمولی و دستگاه های استاندارد ، به کار برده شده و نیز موجبات حفاظت افراد ، دستگاه های سنجش و وسایل کنترل در مقابل ولتاژهای زیاد فراهم گردد .
از طرف دیگر ، استفاده از ترانس جریان سبب می شود که بتوان وسایل سنجش را در فواصلی بسیار دورتر از مدارهای اصلی ، نصب نمود .
به هر حال ، کار اصلی ترانس جریان ، کاهش مقدار جریان سیستم به مقدار مناسبی است و این امر ، با از بین بردن ضرورت تماس مستقیم با ولتاژهای قوی همراه می باشد .
سکسیونر
سکسیونر وسیله قطع و وصل سیستم هایی است که بدون جریان هستند به عبارت دیگر سکسیونر قطعات و وسایلی را که فقط زیر ولتاژ هستند از شبکه جدا می سازد .
سکسیونرها در انواع های تیغه ای ، کشویی ، دورانی ، قیچی ای وجود دارند که در پست نی ریز از سکسیونر دورانی استفاده شده است . این سکسیونر به جای یک تیغه بلند و یک کنتاکت ثابت دارای دو تیغه دورانی می باشد که با برخورد آنها به هم ارتباط الکتریکی برقرار می شود . در این نوع کلید حرکت تیغه ها به موازات سطح افقی بر سطح محور پایه ها انجام می گیرد که بصورت یک فاز می باشند. به طوری که درموقع قطع ویا وصل سکسیونر پایه ها حول محور خود در جهت خلاف یکدیگر به اندازه 90 درجه می چرخند و باعث قطع و وصل کنتاکت ها می شوند .
دژنگتور
دژنگتور کلیدی است که می تواند در موقع لزوم جریان عادی شبکه و در موقع خطا جریان اتصال کوتاه وجریان اتصال زمین ها ویا هر نوع جریانی با هر اختلاف فازی را سریع قطع کند .
دژنکتور موجود در پست نیریز از نوعSF6 میباشد که با گاز SF6 خنک میشود.که گاز داخل آن جرقه را خاموش میکند و اگر دژنکتور زیاد داغ شود مانع از منفجر شدن آن میشود.
مکانیزم قطع و وصل آن از نوع شارژ فنری میباشد که از داخل تابلو کنار خودش و همچنین از داخل اتاق فرمان کنترل میشود.
جعبه مارشالینگ
تابلویی است که کلیه سیمهای حامل فرمان که از اتاق فرمان و چه از دستگاهها وارد آن میشود.
ترانس
ترانس واقع در این پست برای تبدیل 66 به 20 کیلو ولت میباشد. این ترانس دارای یک تانک روغن میباشد که به آن کنسرواتور میگویند. برای حفاظت از ترانس رله بوخهلتس را قرار میدهند در داخل رادیاتور ترانس روغن وجود دارد که روغن آن به طور طبیعی و به صورت حرارت جریان مییابد و هوا هم بوسیله فن روغن را خنک میکند.
برای گرفتن رطوبت روغن داخل ترانس از سلیکاژن استفاده میکنند زمانی که ولتاژ ترانس کم یا زیاد بشود بوسیله تبچنجر تعداد سیمپیچهای ثانویه ترانس را کم یا زیاد میکنیم که تبچنجر این ترانس روی عدد 14 میباشد.
در این پست از یک ترانس کوچکتر تبدیل 20 کیلو ولت به 220 ولت استفاده شده که برای مصرف داخلی خود پست میباشد.
اتاق فرمان
در اتاق فرمان تعدادی تابلو وجود دارد که شامل تابلوهای آلارم ترانس 1 و 2 و … میباشد و دارای کنتور برای اندازهگیری است. در اتاق فرمان کنترل روی دستگاهها صورت میگیرد.
در اتاق دیگری تابلوهایی با دژنکتور کشویی وجود دارند که هر تابلو برق را به هر منطقه از شهر میفرستد.
باطریخانه
این پست دارای 105 باطری 2/1 ولت میباشد که به هم سری شدهاند و با هم 125 ولت DC تولید میکنند. این باطریها همیشه زیر شارژ میباشند و آب
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 62
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 93
بررسی توزیع ولتاژ و شار حرارتی در قرصهای Zno در برقگیرهای فشار قوی با کمک روش عناصر محدود :هر تجهیز در سیستم فشار قوی برای ولتاژ معینی ساخته میشود ولی درطول کار، اضافه ولتاژهایی پیش میآیند که ممکن است برای دستگاه خطرناک باشند. به منظور جلوگیری از خطر اضافه ولتاژها باید از طرفی مقدار اضافه ولتاژ را تا حد ممکن پایین آورد و از طرف دیگر استقامت عایقی تجهیز را بیشتر از سطح اضافه ولتاژهایی که ممکن است حادث شوند، انتخاب کرد. اضافه ولتاژها را نمیتوان به طور کلی حذف کرد بنابراین برای جلوگیری از آسیبدیدن تجهیزات شبکه، باید تا حد امکان آنها را محدود کرد. برقگیرهای اکسید روی یکی از رایجترین تجهیزاتی هستند که بدین منظور به ویژه برای محافظت از ترانسهای گران قیمت فشار قوی مورد استفاده قرار میگیرند. برقگیرها باعث میشوند که دامنه اضافه ولتاژهای اعمال شده به تجهیز فشار قوی کاهش یافته و در نتیجه امکان سوختن آن کمتر شود. توزیع میدان الکتریکی دردستگاههای فشار قوی و ایزولاتورها علاوه بر خواص الکتریکی المانها و نوع ماده عایقی به کار رفته در آنها، به شکل و محل قرار گرفتن الکترودهای فلزی نیز بستگی دارد. بنابراین به سبب بکارگیری قسمتهای متعدد فلزی در آنها و ایجاد خازنهای پراکندگی، دارای توزیع غیر یکنواخت ولتاژ هستند، اندازهگیری ولتاژ و جریان در ترمینالهای برقگیر، روش مناسبی برای نشان دادن تاثیر شکل و محل قرار گرفتن الکترودهای شناور بر نحوه توزیع میدان نخواهد بود. روشهای تست عملی برای اندازهگیری ولتاژ و جریان درنقاط مختلف برقگیر نیز طبق معمول وقتگیر و پرهزینه هستند. بنابراین بهتر است به دنبال جایگزین عملی مناسب بدین منظور باشیم. برقگیر اکسید روی فاقد فاصله هوایی است و همواره تحت تنش ولتاژ قرار دارد. در نتیجه جریان نشتی کوچکی در رنج چند میکروآمپر از آن میگذرد. در حالت کار عادی سیستم (ولتاژهای نزدیک به ولتاژ نامی شبکه)، مؤلفه خازنی جریان نشتی در برقگیر اکسید روی مولفه غالب است به طوریکه میتواند حتی به 40 برابر مولفه مقاومتی نیز برسد. بنابراین در این شرایط اگر سطح خارجی برقگیر را عاری از آلودگی فرض کنیم، میتوان شبکه خازنی معادلی را برای برقگیر ارایه داد. در اینجا روشی برای تعیین شبکه خازنی معادل برقگیر ارایه شده است که هم برای برقگیر سالم و هم برای برقگیر آسیبدیده کاربرد دارد در اینجا به کمک روش عناصر محدود، نخست مقادیر عددی میدان درنقاط مختلف سیستم مورد نظر محاسبه شده است. سپس مقادیر به دست آمده برای میدان جهت محاسبه بارهای القایی در الکترودها به کار گرفته میشوند. در نهایت با داشتن بار کلی القا شده و همچنین مقدار ولتاژ در هر الکترود، ظرفیتهای خازنی مختلف در برقگیر محاسبه میشوند. توزیع ولتاژ در برقگیر به گونهای است که قسمتهای بالایی که به الکترود فشار قوی نزدیکترند، تحت تنش ولتاژ بالاتر قرار دارند و بالطبع باید تنشهای حرارتی بیشتری را نیز تحمل کنند. بنابراین باید تا حد امکان توزیع ولتاژ را یکنواخت کرد. بعضی تغییرات در شکل هندسی اجزای برقگیر میتواند به مانند خواص الکتریکی اجزای تشکیل دهنده آن، در توزیع ولتاژ تاثیرگذار باشد. لذا عواملی مانند شکستگی سپرها و تاثیر Grading Ring و … مورد بررسی قرار گرفتهاند. کلیه شبیهسازیها به روش عناصر محدود به کمک نرمافزار Pc-Opera 8.7 در فضای سهبعدی انجام شدهاند. از نقطهنظر حرارتی نیز افزایش حرارت ناشی از جذب انرژی صاعقه یا اضافه ولتاژ در المان اکسید روی میتواند باعث ناپایداری حرارتی یا ایجاد Hot Spot در نقاطی از برقگیر شود. با بررسی توزیع حرارت در برقگیر نقاطی که تحت تنش حرارتی بیشتری قرار گرفته و باید در طراحی به آنها توجه کرد مشخص شده است. بررسی توزیع حرارت در برقگیر نیز به روش عناصر محدود و به کمک نرمافزار Pc-Opera 8.7 که قابلیت کوپل کردن میدانهای الکتریکی و حرارتی را داراست، در فضای دو بعدی انجام گرفته است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 60
تنظیم کننده های ولتاژ
مقدمه :
در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .
منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی می شود.
از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .
عوامل موثر بر تنظیم ولتاژ :
عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .
الف)* تغییرات ولتاژ ورودی :
در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .
در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :
فرمول (1ـ2)
که در آن ، تغییرات ولتاژ ورودی ، تغییرات ولتاژ خروجی ، ولتاژ خروجی متوسط (DC) می باشد .
ب)تغییرات ناشی از تغییر دما :
یکی دیگر از عاملهای تعیین کننده در یک تنظیم کننده ولتاژ خوب تغییرات ناشی از دماست .
معیاری که تغییرات نسبی ولتاژ را برحسب دما بیان می کند ضریب دمای تنظیم کننده نام دارد که آن را با T.C نشان می دهیم و بصورت زیر تعریف می شود :
(فرمول 2-2)
T.C = Temperature coefficient
در رابطه فوق ، تغییرات ولتاژ خروجی در اثر تغییرات دمای و مقدار متوسط (DC) ولتاژ خروجی است .
معمولاً TC برحسب (Parts - per - million) بیان می شود و به صورت زیر تعریف می شود .